|
@@ -0,0 +1,155 @@
|
|
|
+use std::iter::repeat;
|
|
|
+use integer::Integer;
|
|
|
+use traits::{Zero, One};
|
|
|
+
|
|
|
+use biguint::BigUint;
|
|
|
+
|
|
|
+pub struct MontyReducer<'a> {
|
|
|
+ p: &'a BigUint,
|
|
|
+ n: Vec<u32>,
|
|
|
+ n0inv: u64
|
|
|
+}
|
|
|
+
|
|
|
+// Calculate the modular inverse of `num`, using Extended GCD.
|
|
|
+//
|
|
|
+// Reference:
|
|
|
+// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.20
|
|
|
+fn inv_mod_u32(num: u32) -> u64 {
|
|
|
+ // num needs to be relatively prime to u32::max_value()
|
|
|
+ assert!(num % 2 != 0);
|
|
|
+
|
|
|
+ let mut a: i64 = num as i64;
|
|
|
+ let mut b: i64 = (u32::max_value() as i64) + 1;
|
|
|
+ let mu = b;
|
|
|
+
|
|
|
+ // ExtendedGcd
|
|
|
+ // Input: positive integers a and b
|
|
|
+ // Output: integers (g, u, v) such that g = gcd(a, b) = ua + vb
|
|
|
+ // As we don't need v for modular inverse, we don't calculate it.
|
|
|
+
|
|
|
+ // 1: (u, w) <- (1, 0)
|
|
|
+ let mut u = 1;
|
|
|
+ let mut w = 0;
|
|
|
+ // 3: while b != 0
|
|
|
+ while b != 0 {
|
|
|
+ // 4: (q, r) <- DivRem(a, b)
|
|
|
+ let q = a / b;
|
|
|
+ let r = a % b;
|
|
|
+ // 5: (a, b) <- (b, r)
|
|
|
+ a = b; b = r;
|
|
|
+ // 6: (u, w) <- (w, u - qw)
|
|
|
+ let m = u - w*q;
|
|
|
+ u = w; w = m;
|
|
|
+ }
|
|
|
+
|
|
|
+ assert!(a == 1);
|
|
|
+ // Ensure returned value is in-range
|
|
|
+ if u < 0 {
|
|
|
+ (u + mu) as u64
|
|
|
+ } else {
|
|
|
+ u as u64
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+impl<'a> MontyReducer<'a> {
|
|
|
+ pub fn new(p: &'a BigUint) -> Self {
|
|
|
+ let n : Vec<u32> = p.data.clone();
|
|
|
+ let n0inv = inv_mod_u32(n[0]);
|
|
|
+ MontyReducer { p: p, n: n, n0inv: n0inv }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Montgomery Reduction
|
|
|
+//
|
|
|
+// Reference:
|
|
|
+// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 2.6
|
|
|
+pub fn monty_redc(a: BigUint, mr: &MontyReducer) -> BigUint {
|
|
|
+ let mut c = a.data;
|
|
|
+ let n = &mr.n;
|
|
|
+ let n_size = n.len();
|
|
|
+ let old_size = c.len();
|
|
|
+
|
|
|
+ // Allocate sufficient work space
|
|
|
+ c.reserve(2*n_size+2-old_size);
|
|
|
+ c.extend(repeat(0).take(2*n_size+2-old_size));
|
|
|
+
|
|
|
+ // β is the size of a word, in this case 32 bits. So "a mod β" is
|
|
|
+ // equivalent to masking a to 32 bits.
|
|
|
+ let beta_mask = u32::max_value() as u64;
|
|
|
+ // mu <- -N^(-1) mod β
|
|
|
+ let mu = (beta_mask-mr.n0inv)+1;
|
|
|
+
|
|
|
+ // 1: for i = 0 to (n-1)
|
|
|
+ for i in 0..n_size {
|
|
|
+ // Carry storage
|
|
|
+ let mut carry = 0;
|
|
|
+
|
|
|
+ // 2: q_i <- mu*c_i mod β
|
|
|
+ let q_i = ((c[i] as u64) * mu) & beta_mask;
|
|
|
+
|
|
|
+ // 3: C <- C + q_i * N * β^i
|
|
|
+ // When iterating over each word, this becomes:
|
|
|
+ for j in 0..n_size {
|
|
|
+ // c_(i+j) <- c_(i+j) + q_i * n_j
|
|
|
+ let x = (c[i+j] as u64) + q_i * (n[j] as u64) + carry;
|
|
|
+ c[i+j] = (x & beta_mask) as u32;
|
|
|
+ carry = x >> 32;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Apply the remaining carry to the rest of the work space
|
|
|
+ for j in n_size..2*n_size-i+2 {
|
|
|
+ let x = (c[i+j] as u64) + carry;
|
|
|
+ c[i+j] = (x & beta_mask) as u32;
|
|
|
+ carry = x >> 32;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // 4: R <- C * β^(-n)
|
|
|
+ // This is an n-word bitshift, equivalent to skipping n words.
|
|
|
+ let r : Vec<u32> = c.iter().skip(n_size).cloned().collect();
|
|
|
+ let ret = BigUint::new(r);
|
|
|
+
|
|
|
+ // 5: if R >= β^n then return R-N else return R.
|
|
|
+ if &ret < mr.p {
|
|
|
+ ret
|
|
|
+ } else {
|
|
|
+ &ret-mr.p
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Montgomery Multiplication
|
|
|
+fn monty_mult(a: BigUint, b: &BigUint, mr: &MontyReducer) -> BigUint {
|
|
|
+ monty_redc(a * b, mr)
|
|
|
+}
|
|
|
+
|
|
|
+// Montgomery Squaring
|
|
|
+fn monty_sqr(a: BigUint, mr: &MontyReducer) -> BigUint {
|
|
|
+ // TODO: Replace with an optimised squaring function
|
|
|
+ monty_redc(&a * &a, mr)
|
|
|
+}
|
|
|
+
|
|
|
+pub fn monty_modpow(a: &BigUint, exp: &BigUint, mr: &MontyReducer) -> BigUint{
|
|
|
+ // Calculate the Montgomery parameter
|
|
|
+ let mut r : BigUint = One::one();
|
|
|
+ while &r < mr.p {
|
|
|
+ r = r << 32;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Map the base to the Montgomery domain
|
|
|
+ let mut apri = a * &r % mr.p;
|
|
|
+
|
|
|
+ // Binary exponentiation
|
|
|
+ let mut ans = &r % mr.p;
|
|
|
+ let mut e = exp.clone();
|
|
|
+ let zero = Zero::zero();
|
|
|
+ while e > zero {
|
|
|
+ if e.is_odd() {
|
|
|
+ ans = monty_mult(ans, &apri, mr);
|
|
|
+ }
|
|
|
+ apri = monty_sqr(apri, mr);
|
|
|
+ e = e >> 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Map the result back to the residues domain
|
|
|
+ monty_redc(ans, mr)
|
|
|
+}
|