//! Tests of `num_traits::cast`. #![cfg_attr(not(feature = "std"), no_std)] use num_traits::cast::*; use num_traits::Bounded; use core::{f32, f64}; use core::{i128, i16, i32, i64, i8, isize}; use core::{u128, u16, u32, u64, u8, usize}; use core::fmt::Debug; use core::mem; use core::num::Wrapping; #[test] fn to_primitive_float() { let f32_toolarge = 1e39f64; assert_eq!(f32_toolarge.to_f32(), Some(f32::INFINITY)); assert_eq!((-f32_toolarge).to_f32(), Some(f32::NEG_INFINITY)); assert_eq!((f32::MAX as f64).to_f32(), Some(f32::MAX)); assert_eq!((-f32::MAX as f64).to_f32(), Some(-f32::MAX)); assert_eq!(f64::INFINITY.to_f32(), Some(f32::INFINITY)); assert_eq!((f64::NEG_INFINITY).to_f32(), Some(f32::NEG_INFINITY)); assert!((f64::NAN).to_f32().map_or(false, |f| f.is_nan())); } #[test] fn wrapping_to_primitive() { macro_rules! test_wrapping_to_primitive { ($($t:ty)+) => { $({ let i: $t = 0; let w = Wrapping(i); assert_eq!(i.to_u8(), w.to_u8()); assert_eq!(i.to_u16(), w.to_u16()); assert_eq!(i.to_u32(), w.to_u32()); assert_eq!(i.to_u64(), w.to_u64()); assert_eq!(i.to_usize(), w.to_usize()); assert_eq!(i.to_i8(), w.to_i8()); assert_eq!(i.to_i16(), w.to_i16()); assert_eq!(i.to_i32(), w.to_i32()); assert_eq!(i.to_i64(), w.to_i64()); assert_eq!(i.to_isize(), w.to_isize()); assert_eq!(i.to_f32(), w.to_f32()); assert_eq!(i.to_f64(), w.to_f64()); })+ }; } test_wrapping_to_primitive!(usize u8 u16 u32 u64 isize i8 i16 i32 i64); } #[test] fn wrapping_is_toprimitive() { fn require_toprimitive(_: &T) {} require_toprimitive(&Wrapping(42)); } #[test] fn wrapping_is_fromprimitive() { fn require_fromprimitive(_: &T) {} require_fromprimitive(&Wrapping(42)); } #[test] fn wrapping_is_numcast() { fn require_numcast(_: &T) {} require_numcast(&Wrapping(42)); } #[test] fn as_primitive() { let x: f32 = (1.625f64).as_(); assert_eq!(x, 1.625f32); let x: f32 = (3.14159265358979323846f64).as_(); assert_eq!(x, 3.1415927f32); let x: u8 = (768i16).as_(); assert_eq!(x, 0); } #[test] fn float_to_integer_checks_overflow() { // This will overflow an i32 let source: f64 = 1.0e+123f64; // Expect the overflow to be caught assert_eq!(cast::(source), None); } #[test] fn cast_to_int_checks_overflow() { let big_f: f64 = 1.0e123; let normal_f: f64 = 1.0; let small_f: f64 = -1.0e123; assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(Some(normal_f as isize), cast::(normal_f)); assert_eq!(Some(normal_f as i8), cast::(normal_f)); assert_eq!(Some(normal_f as i16), cast::(normal_f)); assert_eq!(Some(normal_f as i32), cast::(normal_f)); assert_eq!(Some(normal_f as i64), cast::(normal_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); } #[test] fn cast_to_unsigned_int_checks_overflow() { let big_f: f64 = 1.0e123; let normal_f: f64 = 1.0; let small_f: f64 = -1.0e123; assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(Some(normal_f as usize), cast::(normal_f)); assert_eq!(Some(normal_f as u8), cast::(normal_f)); assert_eq!(Some(normal_f as u16), cast::(normal_f)); assert_eq!(Some(normal_f as u32), cast::(normal_f)); assert_eq!(Some(normal_f as u64), cast::(normal_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); } #[test] fn cast_to_i128_checks_overflow() { let big_f: f64 = 1.0e123; let normal_f: f64 = 1.0; let small_f: f64 = -1.0e123; assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(Some(normal_f as i128), cast::(normal_f)); assert_eq!(Some(normal_f as u128), cast::(normal_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); } #[cfg(feature = "std")] fn dbg(args: ::core::fmt::Arguments<'_>) { println!("{}", args); } #[cfg(not(feature = "std"))] fn dbg(_: ::core::fmt::Arguments) {} // Rust 1.8 doesn't handle cfg on macros correctly macro_rules! dbg { ($($tok:tt)*) => { dbg(format_args!($($tok)*)) } } macro_rules! float_test_edge { ($f:ident -> $($t:ident)+) => { $({ dbg!("testing cast edge cases for {} -> {}", stringify!($f), stringify!($t)); let small = if $t::MIN == 0 || mem::size_of::<$t>() < mem::size_of::<$f>() { $t::MIN as $f - 1.0 } else { ($t::MIN as $f).raw_inc().floor() }; let fmin = small.raw_dec(); dbg!(" testing min {}\n\tvs. {:.0}\n\tand {:.0}", $t::MIN, fmin, small); assert_eq!(Some($t::MIN), cast::<$f, $t>($t::MIN as $f)); assert_eq!(Some($t::MIN), cast::<$f, $t>(fmin)); assert_eq!(None, cast::<$f, $t>(small)); let (max, large) = if mem::size_of::<$t>() < mem::size_of::<$f>() { ($t::MAX, $t::MAX as $f + 1.0) } else { let large = $t::MAX as $f; // rounds up! let max = large.raw_dec() as $t; // the next smallest possible assert_eq!(max.count_ones(), $f::MANTISSA_DIGITS); (max, large) }; let fmax = large.raw_dec(); dbg!(" testing max {}\n\tvs. {:.0}\n\tand {:.0}", max, fmax, large); assert_eq!(Some(max), cast::<$f, $t>(max as $f)); assert_eq!(Some(max), cast::<$f, $t>(fmax)); assert_eq!(None, cast::<$f, $t>(large)); dbg!(" testing non-finite values"); assert_eq!(None, cast::<$f, $t>($f::NAN)); assert_eq!(None, cast::<$f, $t>($f::INFINITY)); assert_eq!(None, cast::<$f, $t>($f::NEG_INFINITY)); })+} } trait RawOffset: Sized { fn raw_inc(self) -> Self; fn raw_dec(self) -> Self; } impl RawOffset for f32 { fn raw_inc(self) -> Self { Self::from_bits(self.to_bits() + 1) } fn raw_dec(self) -> Self { Self::from_bits(self.to_bits() - 1) } } impl RawOffset for f64 { fn raw_inc(self) -> Self { Self::from_bits(self.to_bits() + 1) } fn raw_dec(self) -> Self { Self::from_bits(self.to_bits() - 1) } } #[test] fn cast_float_to_int_edge_cases() { float_test_edge!(f32 -> isize i8 i16 i32 i64); float_test_edge!(f32 -> usize u8 u16 u32 u64); float_test_edge!(f64 -> isize i8 i16 i32 i64); float_test_edge!(f64 -> usize u8 u16 u32 u64); } #[test] fn cast_float_to_i128_edge_cases() { float_test_edge!(f32 -> i128 u128); float_test_edge!(f64 -> i128 u128); } macro_rules! int_test_edge { ($f:ident -> { $($t:ident)+ } with $BigS:ident $BigU:ident ) => { $({ fn test_edge() { dbg!("testing cast edge cases for {} -> {}", stringify!($f), stringify!($t)); match ($f::MIN as $BigS).cmp(&($t::MIN as $BigS)) { Greater => { assert_eq!(Some($f::MIN as $t), cast::<$f, $t>($f::MIN)); } Equal => { assert_eq!(Some($t::MIN), cast::<$f, $t>($f::MIN)); } Less => { let min = $t::MIN as $f; assert_eq!(Some($t::MIN), cast::<$f, $t>(min)); assert_eq!(None, cast::<$f, $t>(min - 1)); } } match ($f::MAX as $BigU).cmp(&($t::MAX as $BigU)) { Greater => { let max = $t::MAX as $f; assert_eq!(Some($t::MAX), cast::<$f, $t>(max)); assert_eq!(None, cast::<$f, $t>(max + 1)); } Equal => { assert_eq!(Some($t::MAX), cast::<$f, $t>($f::MAX)); } Less => { assert_eq!(Some($f::MAX as $t), cast::<$f, $t>($f::MAX)); } } } test_edge(); })+} } #[test] fn cast_int_to_int_edge_cases() { use core::cmp::Ordering::*; macro_rules! test_edge { ($( $from:ident )+) => { $({ int_test_edge!($from -> { isize i8 i16 i32 i64 } with i64 u64); int_test_edge!($from -> { usize u8 u16 u32 u64 } with i64 u64); })+} } test_edge!(isize i8 i16 i32 i64); test_edge!(usize u8 u16 u32 u64); } #[test] fn cast_int_to_128_edge_cases() { use core::cmp::Ordering::*; macro_rules! test_edge { ($( $t:ident )+) => { $( int_test_edge!($t -> { i128 u128 } with i128 u128); )+ int_test_edge!(i128 -> { $( $t )+ } with i128 u128); int_test_edge!(u128 -> { $( $t )+ } with i128 u128); } } test_edge!(isize i8 i16 i32 i64 i128); test_edge!(usize u8 u16 u32 u64 u128); } #[test] fn newtype_from_primitive() { #[derive(PartialEq, Debug)] struct New(T); // minimal impl impl FromPrimitive for New { fn from_i64(n: i64) -> Option { T::from_i64(n).map(New) } fn from_u64(n: u64) -> Option { T::from_u64(n).map(New) } } macro_rules! assert_eq_from { ($( $from:ident )+) => {$( assert_eq!(T::$from(Bounded::min_value()).map(New), New::::$from(Bounded::min_value())); assert_eq!(T::$from(Bounded::max_value()).map(New), New::::$from(Bounded::max_value())); )+} } fn check() { assert_eq_from!(from_i8 from_i16 from_i32 from_i64 from_isize); assert_eq_from!(from_u8 from_u16 from_u32 from_u64 from_usize); assert_eq_from!(from_f32 from_f64); } macro_rules! check { ($( $ty:ty )+) => {$( check::<$ty>(); )+} } check!(i8 i16 i32 i64 isize); check!(u8 u16 u32 u64 usize); } #[test] fn newtype_to_primitive() { #[derive(PartialEq, Debug)] struct New(T); // minimal impl impl ToPrimitive for New { fn to_i64(&self) -> Option { self.0.to_i64() } fn to_u64(&self) -> Option { self.0.to_u64() } } macro_rules! assert_eq_to { ($( $to:ident )+) => {$( assert_eq!(T::$to(&Bounded::min_value()), New::::$to(&New(Bounded::min_value()))); assert_eq!(T::$to(&Bounded::max_value()), New::::$to(&New(Bounded::max_value()))); )+} } fn check() { assert_eq_to!(to_i8 to_i16 to_i32 to_i64 to_isize); assert_eq_to!(to_u8 to_u16 to_u32 to_u64 to_usize); assert_eq_to!(to_f32 to_f64); } macro_rules! check { ($( $ty:ty )+) => {$( check::<$ty>(); )+} } check!(i8 i16 i32 i64 isize); check!(u8 u16 u32 u64 usize); }