12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319 |
- use std::mem;
- use std::ops::Neg;
- use std::num::FpCategory;
- use {Num, NumCast};
- // FIXME: these doctests aren't actually helpful, because they're using and
- // testing the inherent methods directly, not going through `Float`.
- pub trait Float
- : Num
- + Copy
- + NumCast
- + PartialOrd
- + Neg<Output = Self>
- {
- /// Returns the `NaN` value.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let nan: f32 = Float::nan();
- ///
- /// assert!(nan.is_nan());
- /// ```
- fn nan() -> Self;
- /// Returns the infinite value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let infinity: f32 = Float::infinity();
- ///
- /// assert!(infinity.is_infinite());
- /// assert!(!infinity.is_finite());
- /// assert!(infinity > f32::MAX);
- /// ```
- fn infinity() -> Self;
- /// Returns the negative infinite value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let neg_infinity: f32 = Float::neg_infinity();
- ///
- /// assert!(neg_infinity.is_infinite());
- /// assert!(!neg_infinity.is_finite());
- /// assert!(neg_infinity < f32::MIN);
- /// ```
- fn neg_infinity() -> Self;
- /// Returns `-0.0`.
- ///
- /// ```
- /// use num_traits::{Zero, Float};
- ///
- /// let inf: f32 = Float::infinity();
- /// let zero: f32 = Zero::zero();
- /// let neg_zero: f32 = Float::neg_zero();
- ///
- /// assert_eq!(zero, neg_zero);
- /// assert_eq!(7.0f32/inf, zero);
- /// assert_eq!(zero * 10.0, zero);
- /// ```
- fn neg_zero() -> Self;
- /// Returns the smallest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::min_value();
- ///
- /// assert_eq!(x, f64::MIN);
- /// ```
- fn min_value() -> Self;
- /// Returns the smallest positive, normalized value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::min_positive_value();
- ///
- /// assert_eq!(x, f64::MIN_POSITIVE);
- /// ```
- fn min_positive_value() -> Self;
- /// Returns the largest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::max_value();
- /// assert_eq!(x, f64::MAX);
- /// ```
- fn max_value() -> Self;
- /// Returns `true` if this value is `NaN` and false otherwise.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let nan = f64::NAN;
- /// let f = 7.0;
- ///
- /// assert!(nan.is_nan());
- /// assert!(!f.is_nan());
- /// ```
- fn is_nan(self) -> bool;
- /// Returns `true` if this value is positive infinity or negative infinity and
- /// false otherwise.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let f = 7.0f32;
- /// let inf: f32 = Float::infinity();
- /// let neg_inf: f32 = Float::neg_infinity();
- /// let nan: f32 = f32::NAN;
- ///
- /// assert!(!f.is_infinite());
- /// assert!(!nan.is_infinite());
- ///
- /// assert!(inf.is_infinite());
- /// assert!(neg_inf.is_infinite());
- /// ```
- fn is_infinite(self) -> bool;
- /// Returns `true` if this number is neither infinite nor `NaN`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let f = 7.0f32;
- /// let inf: f32 = Float::infinity();
- /// let neg_inf: f32 = Float::neg_infinity();
- /// let nan: f32 = f32::NAN;
- ///
- /// assert!(f.is_finite());
- ///
- /// assert!(!nan.is_finite());
- /// assert!(!inf.is_finite());
- /// assert!(!neg_inf.is_finite());
- /// ```
- fn is_finite(self) -> bool;
- /// Returns `true` if the number is neither zero, infinite,
- /// [subnormal][subnormal], or `NaN`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
- /// let max = f32::MAX;
- /// let lower_than_min = 1.0e-40_f32;
- /// let zero = 0.0f32;
- ///
- /// assert!(min.is_normal());
- /// assert!(max.is_normal());
- ///
- /// assert!(!zero.is_normal());
- /// assert!(!f32::NAN.is_normal());
- /// assert!(!f32::INFINITY.is_normal());
- /// // Values between `0` and `min` are Subnormal.
- /// assert!(!lower_than_min.is_normal());
- /// ```
- /// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
- fn is_normal(self) -> bool;
- /// Returns the floating point category of the number. If only one property
- /// is going to be tested, it is generally faster to use the specific
- /// predicate instead.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::num::FpCategory;
- /// use std::f32;
- ///
- /// let num = 12.4f32;
- /// let inf = f32::INFINITY;
- ///
- /// assert_eq!(num.classify(), FpCategory::Normal);
- /// assert_eq!(inf.classify(), FpCategory::Infinite);
- /// ```
- fn classify(self) -> FpCategory;
- /// Returns the largest integer less than or equal to a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.99;
- /// let g = 3.0;
- ///
- /// assert_eq!(f.floor(), 3.0);
- /// assert_eq!(g.floor(), 3.0);
- /// ```
- fn floor(self) -> Self;
- /// Returns the smallest integer greater than or equal to a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.01;
- /// let g = 4.0;
- ///
- /// assert_eq!(f.ceil(), 4.0);
- /// assert_eq!(g.ceil(), 4.0);
- /// ```
- fn ceil(self) -> Self;
- /// Returns the nearest integer to a number. Round half-way cases away from
- /// `0.0`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.3;
- /// let g = -3.3;
- ///
- /// assert_eq!(f.round(), 3.0);
- /// assert_eq!(g.round(), -3.0);
- /// ```
- fn round(self) -> Self;
- /// Return the integer part of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.3;
- /// let g = -3.7;
- ///
- /// assert_eq!(f.trunc(), 3.0);
- /// assert_eq!(g.trunc(), -3.0);
- /// ```
- fn trunc(self) -> Self;
- /// Returns the fractional part of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- /// let abs_difference_x = (x.fract() - 0.5).abs();
- /// let abs_difference_y = (y.fract() - (-0.5)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn fract(self) -> Self;
- /// Computes the absolute value of `self`. Returns `Float::nan()` if the
- /// number is `Float::nan()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- ///
- /// let abs_difference_x = (x.abs() - x).abs();
- /// let abs_difference_y = (y.abs() - (-y)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- ///
- /// assert!(f64::NAN.abs().is_nan());
- /// ```
- fn abs(self) -> Self;
- /// Returns a number that represents the sign of `self`.
- ///
- /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
- /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
- /// - `Float::nan()` if the number is `Float::nan()`
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = 3.5;
- ///
- /// assert_eq!(f.signum(), 1.0);
- /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
- ///
- /// assert!(f64::NAN.signum().is_nan());
- /// ```
- fn signum(self) -> Self;
- /// Returns `true` if `self` is positive, including `+0.0` and
- /// `Float::infinity()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let nan: f64 = f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(f.is_sign_positive());
- /// assert!(!g.is_sign_positive());
- /// // Requires both tests to determine if is `NaN`
- /// assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
- /// ```
- fn is_sign_positive(self) -> bool;
- /// Returns `true` if `self` is negative, including `-0.0` and
- /// `Float::neg_infinity()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let nan = f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(!f.is_sign_negative());
- /// assert!(g.is_sign_negative());
- /// // Requires both tests to determine if is `NaN`.
- /// assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
- /// ```
- fn is_sign_negative(self) -> bool;
- /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
- /// error. This produces a more accurate result with better performance than
- /// a separate multiplication operation followed by an add.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let m = 10.0;
- /// let x = 4.0;
- /// let b = 60.0;
- ///
- /// // 100.0
- /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn mul_add(self, a: Self, b: Self) -> Self;
- /// Take the reciprocal (inverse) of a number, `1/x`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.recip() - (1.0/x)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn recip(self) -> Self;
- /// Raise a number to an integer power.
- ///
- /// Using this function is generally faster than using `powf`
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powi(2) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powi(self, n: i32) -> Self;
- /// Raise a number to a floating point power.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powf(2.0) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powf(self, n: Self) -> Self;
- /// Take the square root of a number.
- ///
- /// Returns NaN if `self` is a negative number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let positive = 4.0;
- /// let negative = -4.0;
- ///
- /// let abs_difference = (positive.sqrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// assert!(negative.sqrt().is_nan());
- /// ```
- fn sqrt(self) -> Self;
- /// Returns `e^(self)`, (the exponential function).
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp(self) -> Self;
- /// Returns `2^(self)`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 2.0;
- ///
- /// // 2^2 - 4 == 0
- /// let abs_difference = (f.exp2() - 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp2(self) -> Self;
- /// Returns the natural logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln(self) -> Self;
- /// Returns the logarithm of the number with respect to an arbitrary base.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let ten = 10.0;
- /// let two = 2.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
- ///
- /// assert!(abs_difference_10 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn log(self, base: Self) -> Self;
- /// Returns the base 2 logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let two = 2.0;
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference = (two.log2() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log2(self) -> Self;
- /// Returns the base 10 logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let ten = 10.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference = (ten.log10() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log10(self) -> Self;
- /// Converts radians to degrees.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = consts::PI;
- ///
- /// let abs_difference = (angle.to_degrees() - 180.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- #[inline]
- fn to_degrees(self) -> Self {
- let halfpi = Self::zero().acos();
- let ninety = Self::from(90u8).unwrap();
- self * ninety / halfpi
- }
- /// Converts degrees to radians.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = 180.0_f64;
- ///
- /// let abs_difference = (angle.to_radians() - consts::PI).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- #[inline]
- fn to_radians(self) -> Self {
- let halfpi = Self::zero().acos();
- let ninety = Self::from(90u8).unwrap();
- self * halfpi / ninety
- }
- /// Returns the maximum of the two numbers.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.max(y), y);
- /// ```
- fn max(self, other: Self) -> Self;
- /// Returns the minimum of the two numbers.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.min(y), x);
- /// ```
- fn min(self, other: Self) -> Self;
- /// The positive difference of two numbers.
- ///
- /// * If `self <= other`: `0:0`
- /// * Else: `self - other`
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 3.0;
- /// let y = -3.0;
- ///
- /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
- /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn abs_sub(self, other: Self) -> Self;
- /// Take the cubic root of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 8.0;
- ///
- /// // x^(1/3) - 2 == 0
- /// let abs_difference = (x.cbrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cbrt(self) -> Self;
- /// Calculate the length of the hypotenuse of a right-angle triangle given
- /// legs of length `x` and `y`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let y = 3.0;
- ///
- /// // sqrt(x^2 + y^2)
- /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn hypot(self, other: Self) -> Self;
- /// Computes the sine of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/2.0;
- ///
- /// let abs_difference = (x.sin() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sin(self) -> Self;
- /// Computes the cosine of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = 2.0*f64::consts::PI;
- ///
- /// let abs_difference = (x.cos() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cos(self) -> Self;
- /// Computes the tangent of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let abs_difference = (x.tan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-14);
- /// ```
- fn tan(self) -> Self;
- /// Computes the arcsine of a number. Return value is in radians in
- /// the range [-pi/2, pi/2] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 2.0;
- ///
- /// // asin(sin(pi/2))
- /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn asin(self) -> Self;
- /// Computes the arccosine of a number. Return value is in radians in
- /// the range [0, pi] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 4.0;
- ///
- /// // acos(cos(pi/4))
- /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn acos(self) -> Self;
- /// Computes the arctangent of a number. Return value is in radians in the
- /// range [-pi/2, pi/2];
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 1.0;
- ///
- /// // atan(tan(1))
- /// let abs_difference = (f.tan().atan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn atan(self) -> Self;
- /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
- ///
- /// * `x = 0`, `y = 0`: `0`
- /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
- /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
- /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let pi = f64::consts::PI;
- /// // All angles from horizontal right (+x)
- /// // 45 deg counter-clockwise
- /// let x1 = 3.0;
- /// let y1 = -3.0;
- ///
- /// // 135 deg clockwise
- /// let x2 = -3.0;
- /// let y2 = 3.0;
- ///
- /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
- /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
- ///
- /// assert!(abs_difference_1 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn atan2(self, other: Self) -> Self;
- /// Simultaneously computes the sine and cosine of the number, `x`. Returns
- /// `(sin(x), cos(x))`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let f = x.sin_cos();
- ///
- /// let abs_difference_0 = (f.0 - x.sin()).abs();
- /// let abs_difference_1 = (f.1 - x.cos()).abs();
- ///
- /// assert!(abs_difference_0 < 1e-10);
- /// assert!(abs_difference_0 < 1e-10);
- /// ```
- fn sin_cos(self) -> (Self, Self);
- /// Returns `e^(self) - 1` in a way that is accurate even if the
- /// number is close to zero.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 7.0;
- ///
- /// // e^(ln(7)) - 1
- /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp_m1(self) -> Self;
- /// Returns `ln(1+n)` (natural logarithm) more accurately than if
- /// the operations were performed separately.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::E - 1.0;
- ///
- /// // ln(1 + (e - 1)) == ln(e) == 1
- /// let abs_difference = (x.ln_1p() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln_1p(self) -> Self;
- /// Hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.sinh();
- /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
- /// let g = (e*e - 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sinh(self) -> Self;
- /// Hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- /// let f = x.cosh();
- /// // Solving cosh() at 1 gives this result
- /// let g = (e*e + 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// // Same result
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn cosh(self) -> Self;
- /// Hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.tanh();
- /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
- /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn tanh(self) -> Self;
- /// Inverse hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let f = x.sinh().asinh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn asinh(self) -> Self;
- /// Inverse hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let f = x.cosh().acosh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn acosh(self) -> Self;
- /// Inverse hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let f = e.tanh().atanh();
- ///
- /// let abs_difference = (f - e).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn atanh(self) -> Self;
- /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
- /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
- /// The floating point encoding is documented in the [Reference][floating-point].
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let num = 2.0f32;
- ///
- /// // (8388608, -22, 1)
- /// let (mantissa, exponent, sign) = Float::integer_decode(num);
- /// let sign_f = sign as f32;
- /// let mantissa_f = mantissa as f32;
- /// let exponent_f = num.powf(exponent as f32);
- ///
- /// // 1 * 8388608 * 2^(-22) == 2
- /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- /// [floating-point]: ../../../../../reference.html#machine-types
- fn integer_decode(self) -> (u64, i16, i8);
- }
- macro_rules! float_impl {
- ($T:ident $decode:ident) => (
- impl Float for $T {
- #[inline]
- fn nan() -> Self {
- ::std::$T::NAN
- }
- #[inline]
- fn infinity() -> Self {
- ::std::$T::INFINITY
- }
- #[inline]
- fn neg_infinity() -> Self {
- ::std::$T::NEG_INFINITY
- }
- #[inline]
- fn neg_zero() -> Self {
- -0.0
- }
- #[inline]
- fn min_value() -> Self {
- ::std::$T::MIN
- }
- #[inline]
- fn min_positive_value() -> Self {
- ::std::$T::MIN_POSITIVE
- }
- #[inline]
- fn max_value() -> Self {
- ::std::$T::MAX
- }
- #[inline]
- fn is_nan(self) -> bool {
- <$T>::is_nan(self)
- }
- #[inline]
- fn is_infinite(self) -> bool {
- <$T>::is_infinite(self)
- }
- #[inline]
- fn is_finite(self) -> bool {
- <$T>::is_finite(self)
- }
- #[inline]
- fn is_normal(self) -> bool {
- <$T>::is_normal(self)
- }
- #[inline]
- fn classify(self) -> FpCategory {
- <$T>::classify(self)
- }
- #[inline]
- fn floor(self) -> Self {
- <$T>::floor(self)
- }
- #[inline]
- fn ceil(self) -> Self {
- <$T>::ceil(self)
- }
- #[inline]
- fn round(self) -> Self {
- <$T>::round(self)
- }
- #[inline]
- fn trunc(self) -> Self {
- <$T>::trunc(self)
- }
- #[inline]
- fn fract(self) -> Self {
- <$T>::fract(self)
- }
- #[inline]
- fn abs(self) -> Self {
- <$T>::abs(self)
- }
- #[inline]
- fn signum(self) -> Self {
- <$T>::signum(self)
- }
- #[inline]
- fn is_sign_positive(self) -> bool {
- <$T>::is_sign_positive(self)
- }
- #[inline]
- fn is_sign_negative(self) -> bool {
- <$T>::is_sign_negative(self)
- }
- #[inline]
- fn mul_add(self, a: Self, b: Self) -> Self {
- <$T>::mul_add(self, a, b)
- }
- #[inline]
- fn recip(self) -> Self {
- <$T>::recip(self)
- }
- #[inline]
- fn powi(self, n: i32) -> Self {
- <$T>::powi(self, n)
- }
- #[inline]
- fn powf(self, n: Self) -> Self {
- <$T>::powf(self, n)
- }
- #[inline]
- fn sqrt(self) -> Self {
- <$T>::sqrt(self)
- }
- #[inline]
- fn exp(self) -> Self {
- <$T>::exp(self)
- }
- #[inline]
- fn exp2(self) -> Self {
- <$T>::exp2(self)
- }
- #[inline]
- fn ln(self) -> Self {
- <$T>::ln(self)
- }
- #[inline]
- fn log(self, base: Self) -> Self {
- <$T>::log(self, base)
- }
- #[inline]
- fn log2(self) -> Self {
- <$T>::log2(self)
- }
- #[inline]
- fn log10(self) -> Self {
- <$T>::log10(self)
- }
- #[inline]
- fn to_degrees(self) -> Self {
- // NB: `f32` didn't stabilize this until 1.7
- // <$T>::to_degrees(self)
- self * (180. / ::std::$T::consts::PI)
- }
- #[inline]
- fn to_radians(self) -> Self {
- // NB: `f32` didn't stabilize this until 1.7
- // <$T>::to_radians(self)
- self * (::std::$T::consts::PI / 180.)
- }
- #[inline]
- fn max(self, other: Self) -> Self {
- <$T>::max(self, other)
- }
- #[inline]
- fn min(self, other: Self) -> Self {
- <$T>::min(self, other)
- }
- #[inline]
- #[allow(deprecated)]
- fn abs_sub(self, other: Self) -> Self {
- <$T>::abs_sub(self, other)
- }
- #[inline]
- fn cbrt(self) -> Self {
- <$T>::cbrt(self)
- }
- #[inline]
- fn hypot(self, other: Self) -> Self {
- <$T>::hypot(self, other)
- }
- #[inline]
- fn sin(self) -> Self {
- <$T>::sin(self)
- }
- #[inline]
- fn cos(self) -> Self {
- <$T>::cos(self)
- }
- #[inline]
- fn tan(self) -> Self {
- <$T>::tan(self)
- }
- #[inline]
- fn asin(self) -> Self {
- <$T>::asin(self)
- }
- #[inline]
- fn acos(self) -> Self {
- <$T>::acos(self)
- }
- #[inline]
- fn atan(self) -> Self {
- <$T>::atan(self)
- }
- #[inline]
- fn atan2(self, other: Self) -> Self {
- <$T>::atan2(self, other)
- }
- #[inline]
- fn sin_cos(self) -> (Self, Self) {
- <$T>::sin_cos(self)
- }
- #[inline]
- fn exp_m1(self) -> Self {
- <$T>::exp_m1(self)
- }
- #[inline]
- fn ln_1p(self) -> Self {
- <$T>::ln_1p(self)
- }
- #[inline]
- fn sinh(self) -> Self {
- <$T>::sinh(self)
- }
- #[inline]
- fn cosh(self) -> Self {
- <$T>::cosh(self)
- }
- #[inline]
- fn tanh(self) -> Self {
- <$T>::tanh(self)
- }
- #[inline]
- fn asinh(self) -> Self {
- <$T>::asinh(self)
- }
- #[inline]
- fn acosh(self) -> Self {
- <$T>::acosh(self)
- }
- #[inline]
- fn atanh(self) -> Self {
- <$T>::atanh(self)
- }
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- $decode(self)
- }
- }
- )
- }
- fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
- let bits: u32 = unsafe { mem::transmute(f) };
- let sign: i8 = if bits >> 31 == 0 {
- 1
- } else {
- -1
- };
- let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
- let mantissa = if exponent == 0 {
- (bits & 0x7fffff) << 1
- } else {
- (bits & 0x7fffff) | 0x800000
- };
- // Exponent bias + mantissa shift
- exponent -= 127 + 23;
- (mantissa as u64, exponent, sign)
- }
- fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
- let bits: u64 = unsafe { mem::transmute(f) };
- let sign: i8 = if bits >> 63 == 0 {
- 1
- } else {
- -1
- };
- let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
- let mantissa = if exponent == 0 {
- (bits & 0xfffffffffffff) << 1
- } else {
- (bits & 0xfffffffffffff) | 0x10000000000000
- };
- // Exponent bias + mantissa shift
- exponent -= 1023 + 52;
- (mantissa, exponent, sign)
- }
- float_impl!(f32 integer_decode_f32);
- float_impl!(f64 integer_decode_f64);
- macro_rules! float_const_impl {
- ($(#[$doc:meta] $constant:ident,)+) => (
- #[allow(non_snake_case)]
- pub trait FloatConst {
- $(#[$doc] fn $constant() -> Self;)+
- }
- float_const_impl! { @float f32, $($constant,)+ }
- float_const_impl! { @float f64, $($constant,)+ }
- );
- (@float $T:ident, $($constant:ident,)+) => (
- impl FloatConst for $T {
- $(
- #[inline]
- fn $constant() -> Self {
- ::std::$T::consts::$constant
- }
- )+
- }
- );
- }
- float_const_impl! {
- #[doc = "Return Euler’s number."]
- E,
- #[doc = "Return `1.0 / π`."]
- FRAC_1_PI,
- #[doc = "Return `1.0 / sqrt(2.0)`."]
- FRAC_1_SQRT_2,
- #[doc = "Return `2.0 / π`."]
- FRAC_2_PI,
- #[doc = "Return `2.0 / sqrt(π)`."]
- FRAC_2_SQRT_PI,
- #[doc = "Return `π / 2.0`."]
- FRAC_PI_2,
- #[doc = "Return `π / 3.0`."]
- FRAC_PI_3,
- #[doc = "Return `π / 4.0`."]
- FRAC_PI_4,
- #[doc = "Return `π / 6.0`."]
- FRAC_PI_6,
- #[doc = "Return `π / 8.0`."]
- FRAC_PI_8,
- #[doc = "Return `ln(10.0)`."]
- LN_10,
- #[doc = "Return `ln(2.0)`."]
- LN_2,
- #[doc = "Return `log10(e)`."]
- LOG10_E,
- #[doc = "Return `log2(e)`."]
- LOG2_E,
- #[doc = "Return Archimedes’ constant."]
- PI,
- #[doc = "Return `sqrt(2.0)`."]
- SQRT_2,
- }
- #[cfg(test)]
- mod tests {
- use Float;
- #[test]
- fn convert_deg_rad() {
- use std::f64::consts;
- const DEG_RAD_PAIRS: [(f64, f64); 7] = [
- (0.0, 0.),
- (22.5, consts::FRAC_PI_8),
- (30.0, consts::FRAC_PI_6),
- (45.0, consts::FRAC_PI_4),
- (60.0, consts::FRAC_PI_3),
- (90.0, consts::FRAC_PI_2),
- (180.0, consts::PI),
- ];
- for &(deg, rad) in &DEG_RAD_PAIRS {
- assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
- assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
- let (deg, rad) = (deg as f32, rad as f32);
- assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
- assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
- }
- }
- }
|