123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- // Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT
- // file at the top-level directory of this distribution and at
- // http://rust-lang.org/COPYRIGHT.
- //
- // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
- // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
- // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
- // option. This file may not be copied, modified, or distributed
- // except according to those terms.
- //! A collection of numeric types and traits for Rust.
- //!
- //! This includes new types for big integers, rationals, and complex numbers,
- //! new traits for generic programming on numeric properties like `Integer`,
- //! and generic range iterators.
- //!
- //! ## Example
- //!
- //! This example uses the BigRational type and [Newton's method][newt] to
- //! approximate a square root to arbitrary precision:
- //!
- //! ```
- //! extern crate num;
- //! # #[cfg(all(feature = "bigint", feature="rational"))]
- //! # mod test {
- //!
- //! use num::FromPrimitive;
- //! use num::bigint::BigInt;
- //! use num::rational::{Ratio, BigRational};
- //!
- //! # pub
- //! fn approx_sqrt(number: u64, iterations: usize) -> BigRational {
- //! let start: Ratio<BigInt> = Ratio::from_integer(FromPrimitive::from_u64(number).unwrap());
- //! let mut approx = start.clone();
- //!
- //! for _ in 0..iterations {
- //! approx = (&approx + (&start / &approx)) /
- //! Ratio::from_integer(FromPrimitive::from_u64(2).unwrap());
- //! }
- //!
- //! approx
- //! }
- //! # }
- //! # #[cfg(not(all(feature = "bigint", feature="rational")))]
- //! # mod test { pub fn approx_sqrt(n: u64, _: usize) -> u64 { n } }
- //! # use test::approx_sqrt;
- //!
- //! fn main() {
- //! println!("{}", approx_sqrt(10, 4)); // prints 4057691201/1283082416
- //! }
- //!
- //! ```
- //!
- //! [newt]: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
- #![doc(html_logo_url = "http://rust-num.github.io/num/rust-logo-128x128-blk-v2.png",
- html_favicon_url = "http://rust-num.github.io/num/favicon.ico",
- html_root_url = "http://rust-num.github.io/num/",
- html_playground_url = "http://play.rust-lang.org/")]
- pub extern crate num_traits;
- pub extern crate num_integer;
- pub extern crate num_iter;
- #[cfg(feature = "num-complex")]
- pub extern crate num_complex;
- #[cfg(feature = "num-bigint")]
- pub extern crate num_bigint;
- #[cfg(feature = "num-rational")]
- pub extern crate num_rational;
- #[cfg(feature = "num-bigint")]
- pub use num_bigint::{BigInt, BigUint};
- #[cfg(feature = "num-rational")]
- pub use num_rational::Rational;
- #[cfg(all(feature = "num-rational", feature="num-bigint"))]
- pub use num_rational::BigRational;
- #[cfg(feature = "num-complex")]
- pub use num_complex::Complex;
- pub use num_integer::Integer;
- pub use num_iter::{range, range_inclusive, range_step, range_step_inclusive};
- pub use num_traits::{Num, Zero, One, Signed, Unsigned, Bounded,
- Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv,
- PrimInt, Float, ToPrimitive, FromPrimitive, NumCast, cast};
- use std::ops::{Mul};
- #[cfg(feature = "num-bigint")]
- pub use num_bigint as bigint;
- #[cfg(feature = "num-complex")]
- pub use num_complex as complex;
- pub use num_integer as integer;
- pub use num_iter as iter;
- pub use num_traits as traits;
- #[cfg(feature = "num-rational")]
- pub use num_rational as rational;
- /// Returns the additive identity, `0`.
- #[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() }
- /// Returns the multiplicative identity, `1`.
- #[inline(always)] pub fn one<T: One>() -> T { One::one() }
- /// Computes the absolute value.
- ///
- /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`
- ///
- /// For signed integers, `::MIN` will be returned if the number is `::MIN`.
- #[inline(always)]
- pub fn abs<T: Signed>(value: T) -> T {
- value.abs()
- }
- /// The positive difference of two numbers.
- ///
- /// Returns zero if `x` is less than or equal to `y`, otherwise the difference
- /// between `x` and `y` is returned.
- #[inline(always)]
- pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
- x.abs_sub(&y)
- }
- /// Returns the sign of the number.
- ///
- /// For `f32` and `f64`:
- ///
- /// * `1.0` if the number is positive, `+0.0` or `INFINITY`
- /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
- /// * `NaN` if the number is `NaN`
- ///
- /// For signed integers:
- ///
- /// * `0` if the number is zero
- /// * `1` if the number is positive
- /// * `-1` if the number is negative
- #[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() }
- /// Raises a value to the power of exp, using exponentiation by squaring.
- ///
- /// # Example
- ///
- /// ```rust
- /// use num;
- ///
- /// assert_eq!(num::pow(2i8, 4), 16);
- /// assert_eq!(num::pow(6u8, 3), 216);
- /// ```
- #[inline]
- pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T {
- if exp == 0 { return T::one() }
- while exp & 1 == 0 {
- base = base.clone() * base;
- exp >>= 1;
- }
- if exp == 1 { return base }
- let mut acc = base.clone();
- while exp > 1 {
- exp >>= 1;
- base = base.clone() * base;
- if exp & 1 == 1 {
- acc = acc * base.clone();
- }
- }
- acc
- }
- /// Raises a value to the power of exp, returning `None` if an overflow occurred.
- ///
- /// Otherwise same as the `pow` function.
- ///
- /// # Example
- ///
- /// ```rust
- /// use num;
- ///
- /// assert_eq!(num::checked_pow(2i8, 4), Some(16));
- /// assert_eq!(num::checked_pow(7i8, 8), None);
- /// assert_eq!(num::checked_pow(7u32, 8), Some(5_764_801));
- /// ```
- #[inline]
- pub fn checked_pow<T: Clone + One + CheckedMul>(mut base: T, mut exp: usize) -> Option<T> {
- if exp == 0 { return Some(T::one()) }
- macro_rules! optry {
- ( $ expr : expr ) => {
- if let Some(val) = $expr { val } else { return None }
- }
- }
- while exp & 1 == 0 {
- base = optry!(base.checked_mul(&base));
- exp >>= 1;
- }
- if exp == 1 { return Some(base) }
- let mut acc = base.clone();
- while exp > 1 {
- exp >>= 1;
- base = optry!(base.checked_mul(&base));
- if exp & 1 == 1 {
- acc = optry!(acc.checked_mul(&base));
- }
- }
- Some(acc)
- }
|