1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119 |
- use core::mem;
- use core::num::FpCategory;
- use core::ops::Neg;
- use core::f32;
- use core::f64;
- use {Num, NumCast, ToPrimitive};
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- use libm::{F32Ext, F64Ext};
- /// Generic trait for floating point numbers that works with `no_std`.
- ///
- /// This trait implements a subset of the `Float` trait.
- pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
- /// Returns positive infinity.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::infinity() == x);
- /// }
- ///
- /// check(f32::INFINITY);
- /// check(f64::INFINITY);
- /// ```
- fn infinity() -> Self;
- /// Returns negative infinity.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::neg_infinity() == x);
- /// }
- ///
- /// check(f32::NEG_INFINITY);
- /// check(f64::NEG_INFINITY);
- /// ```
- fn neg_infinity() -> Self;
- /// Returns NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- ///
- /// fn check<T: FloatCore>() {
- /// let n = T::nan();
- /// assert!(n != n);
- /// }
- ///
- /// check::<f32>();
- /// check::<f64>();
- /// ```
- fn nan() -> Self;
- /// Returns `-0.0`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(n: T) {
- /// let z = T::neg_zero();
- /// assert!(z.is_zero());
- /// assert!(T::one() / z == n);
- /// }
- ///
- /// check(f32::NEG_INFINITY);
- /// check(f64::NEG_INFINITY);
- /// ```
- fn neg_zero() -> Self;
- /// Returns the smallest finite value that this type can represent.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::min_value() == x);
- /// }
- ///
- /// check(f32::MIN);
- /// check(f64::MIN);
- /// ```
- fn min_value() -> Self;
- /// Returns the smallest positive, normalized value that this type can represent.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::min_positive_value() == x);
- /// }
- ///
- /// check(f32::MIN_POSITIVE);
- /// check(f64::MIN_POSITIVE);
- /// ```
- fn min_positive_value() -> Self;
- /// Returns epsilon, a small positive value.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::epsilon() == x);
- /// }
- ///
- /// check(f32::EPSILON);
- /// check(f64::EPSILON);
- /// ```
- fn epsilon() -> Self;
- /// Returns the largest finite value that this type can represent.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::max_value() == x);
- /// }
- ///
- /// check(f32::MAX);
- /// check(f64::MAX);
- /// ```
- fn max_value() -> Self;
- /// Returns `true` if the number is NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_nan() == p);
- /// }
- ///
- /// check(f32::NAN, true);
- /// check(f32::INFINITY, false);
- /// check(f64::NAN, true);
- /// check(0.0f64, false);
- /// ```
- #[inline]
- fn is_nan(self) -> bool {
- self != self
- }
- /// Returns `true` if the number is infinite.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_infinite() == p);
- /// }
- ///
- /// check(f32::INFINITY, true);
- /// check(f32::NEG_INFINITY, true);
- /// check(f32::NAN, false);
- /// check(f64::INFINITY, true);
- /// check(f64::NEG_INFINITY, true);
- /// check(0.0f64, false);
- /// ```
- #[inline]
- fn is_infinite(self) -> bool {
- self == Self::infinity() || self == Self::neg_infinity()
- }
- /// Returns `true` if the number is neither infinite or NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_finite() == p);
- /// }
- ///
- /// check(f32::INFINITY, false);
- /// check(f32::MAX, true);
- /// check(f64::NEG_INFINITY, false);
- /// check(f64::MIN_POSITIVE, true);
- /// check(f64::NAN, false);
- /// ```
- #[inline]
- fn is_finite(self) -> bool {
- !(self.is_nan() || self.is_infinite())
- }
- /// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_normal() == p);
- /// }
- ///
- /// check(f32::INFINITY, false);
- /// check(f32::MAX, true);
- /// check(f64::NEG_INFINITY, false);
- /// check(f64::MIN_POSITIVE, true);
- /// check(0.0f64, false);
- /// ```
- #[inline]
- fn is_normal(self) -> bool {
- self.classify() == FpCategory::Normal
- }
- /// Returns the floating point category of the number. If only one property
- /// is going to be tested, it is generally faster to use the specific
- /// predicate instead.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- /// use std::num::FpCategory;
- ///
- /// fn check<T: FloatCore>(x: T, c: FpCategory) {
- /// assert!(x.classify() == c);
- /// }
- ///
- /// check(f32::INFINITY, FpCategory::Infinite);
- /// check(f32::MAX, FpCategory::Normal);
- /// check(f64::NAN, FpCategory::Nan);
- /// check(f64::MIN_POSITIVE, FpCategory::Normal);
- /// check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal);
- /// check(0.0f64, FpCategory::Zero);
- /// ```
- fn classify(self) -> FpCategory;
- /// Returns the largest integer less than or equal to a number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.floor() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(0.9f32, 0.0);
- /// check(1.0f32, 1.0);
- /// check(1.1f32, 1.0);
- /// check(-0.0f64, 0.0);
- /// check(-0.9f64, -1.0);
- /// check(-1.0f64, -1.0);
- /// check(-1.1f64, -2.0);
- /// check(f64::MIN, f64::MIN);
- /// ```
- #[inline]
- fn floor(self) -> Self {
- let f = self.fract();
- if f.is_nan() || f.is_zero() {
- self
- } else if self < Self::zero() {
- self - f - Self::one()
- } else {
- self - f
- }
- }
- /// Returns the smallest integer greater than or equal to a number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.ceil() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(0.9f32, 1.0);
- /// check(1.0f32, 1.0);
- /// check(1.1f32, 2.0);
- /// check(-0.0f64, 0.0);
- /// check(-0.9f64, -0.0);
- /// check(-1.0f64, -1.0);
- /// check(-1.1f64, -1.0);
- /// check(f64::MIN, f64::MIN);
- /// ```
- #[inline]
- fn ceil(self) -> Self {
- let f = self.fract();
- if f.is_nan() || f.is_zero() {
- self
- } else if self > Self::zero() {
- self - f + Self::one()
- } else {
- self - f
- }
- }
- /// Returns the nearest integer to a number. Round half-way cases away from `0.0`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.round() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(0.4f32, 0.0);
- /// check(0.5f32, 1.0);
- /// check(0.6f32, 1.0);
- /// check(-0.4f64, 0.0);
- /// check(-0.5f64, -1.0);
- /// check(-0.6f64, -1.0);
- /// check(f64::MIN, f64::MIN);
- /// ```
- #[inline]
- fn round(self) -> Self {
- let one = Self::one();
- let h = Self::from(0.5).expect("Unable to cast from 0.5");
- let f = self.fract();
- if f.is_nan() || f.is_zero() {
- self
- } else if self > Self::zero() {
- if f < h {
- self - f
- } else {
- self - f + one
- }
- } else {
- if -f < h {
- self - f
- } else {
- self - f - one
- }
- }
- }
- /// Return the integer part of a number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.trunc() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(0.9f32, 0.0);
- /// check(1.0f32, 1.0);
- /// check(1.1f32, 1.0);
- /// check(-0.0f64, 0.0);
- /// check(-0.9f64, -0.0);
- /// check(-1.0f64, -1.0);
- /// check(-1.1f64, -1.0);
- /// check(f64::MIN, f64::MIN);
- /// ```
- #[inline]
- fn trunc(self) -> Self {
- let f = self.fract();
- if f.is_nan() {
- self
- } else {
- self - f
- }
- }
- /// Returns the fractional part of a number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.fract() == y);
- /// }
- ///
- /// check(f32::MAX, 0.0);
- /// check(0.75f32, 0.75);
- /// check(1.0f32, 0.0);
- /// check(1.25f32, 0.25);
- /// check(-0.0f64, 0.0);
- /// check(-0.75f64, -0.75);
- /// check(-1.0f64, 0.0);
- /// check(-1.25f64, -0.25);
- /// check(f64::MIN, 0.0);
- /// ```
- #[inline]
- fn fract(self) -> Self {
- if self.is_zero() {
- Self::zero()
- } else {
- self % Self::one()
- }
- }
- /// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the
- /// number is `FloatCore::nan()`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.abs() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(1.0f32, 1.0);
- /// check(0.0f64, 0.0);
- /// check(-0.0f64, 0.0);
- /// check(-1.0f64, 1.0);
- /// check(f64::MIN, f64::MAX);
- /// ```
- #[inline]
- fn abs(self) -> Self {
- if self.is_sign_positive() {
- return self;
- }
- if self.is_sign_negative() {
- return -self;
- }
- Self::nan()
- }
- /// Returns a number that represents the sign of `self`.
- ///
- /// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()`
- /// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()`
- /// - `FloatCore::nan()` if the number is `FloatCore::nan()`
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.signum() == y);
- /// }
- ///
- /// check(f32::INFINITY, 1.0);
- /// check(3.0f32, 1.0);
- /// check(0.0f32, 1.0);
- /// check(-0.0f64, -1.0);
- /// check(-3.0f64, -1.0);
- /// check(f64::MIN, -1.0);
- /// ```
- #[inline]
- fn signum(self) -> Self {
- if self.is_nan() {
- Self::nan()
- } else if self.is_sign_negative() {
- -Self::one()
- } else {
- Self::one()
- }
- }
- /// Returns `true` if `self` is positive, including `+0.0` and
- /// `FloatCore::infinity()`, and since Rust 1.20 also
- /// `FloatCore::nan()`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_sign_positive() == p);
- /// }
- ///
- /// check(f32::INFINITY, true);
- /// check(f32::MAX, true);
- /// check(0.0f32, true);
- /// check(-0.0f64, false);
- /// check(f64::NEG_INFINITY, false);
- /// check(f64::MIN_POSITIVE, true);
- /// check(-f64::NAN, false);
- /// ```
- #[inline]
- fn is_sign_positive(self) -> bool {
- !self.is_sign_negative()
- }
- /// Returns `true` if `self` is negative, including `-0.0` and
- /// `FloatCore::neg_infinity()`, and since Rust 1.20 also
- /// `-FloatCore::nan()`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_sign_negative() == p);
- /// }
- ///
- /// check(f32::INFINITY, false);
- /// check(f32::MAX, false);
- /// check(0.0f32, false);
- /// check(-0.0f64, true);
- /// check(f64::NEG_INFINITY, true);
- /// check(f64::MIN_POSITIVE, false);
- /// check(f64::NAN, false);
- /// ```
- #[inline]
- fn is_sign_negative(self) -> bool {
- let (_, _, sign) = self.integer_decode();
- sign < 0
- }
- /// Returns the minimum of the two numbers.
- ///
- /// If one of the arguments is NaN, then the other argument is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T, min: T) {
- /// assert!(x.min(y) == min);
- /// }
- ///
- /// check(1.0f32, 2.0, 1.0);
- /// check(f32::NAN, 2.0, 2.0);
- /// check(1.0f64, -2.0, -2.0);
- /// check(1.0f64, f64::NAN, 1.0);
- /// ```
- #[inline]
- fn min(self, other: Self) -> Self {
- if self.is_nan() {
- return other;
- }
- if other.is_nan() {
- return self;
- }
- if self < other {
- self
- } else {
- other
- }
- }
- /// Returns the maximum of the two numbers.
- ///
- /// If one of the arguments is NaN, then the other argument is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T, min: T) {
- /// assert!(x.max(y) == min);
- /// }
- ///
- /// check(1.0f32, 2.0, 2.0);
- /// check(1.0f32, f32::NAN, 1.0);
- /// check(-1.0f64, 2.0, 2.0);
- /// check(-1.0f64, f64::NAN, -1.0);
- /// ```
- #[inline]
- fn max(self, other: Self) -> Self {
- if self.is_nan() {
- return other;
- }
- if other.is_nan() {
- return self;
- }
- if self > other {
- self
- } else {
- other
- }
- }
- /// Returns the reciprocal (multiplicative inverse) of the number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.recip() == y);
- /// assert!(y.recip() == x);
- /// }
- ///
- /// check(f32::INFINITY, 0.0);
- /// check(2.0f32, 0.5);
- /// check(-0.25f64, -4.0);
- /// check(-0.0f64, f64::NEG_INFINITY);
- /// ```
- #[inline]
- fn recip(self) -> Self {
- Self::one() / self
- }
- /// Raise a number to an integer power.
- ///
- /// Using this function is generally faster than using `powf`
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- ///
- /// fn check<T: FloatCore>(x: T, exp: i32, powi: T) {
- /// assert!(x.powi(exp) == powi);
- /// }
- ///
- /// check(9.0f32, 2, 81.0);
- /// check(1.0f32, -2, 1.0);
- /// check(10.0f64, 20, 1e20);
- /// check(4.0f64, -2, 0.0625);
- /// check(-1.0f64, std::i32::MIN, 1.0);
- /// ```
- #[inline]
- fn powi(mut self, mut exp: i32) -> Self {
- if exp < 0 {
- exp = exp.wrapping_neg();
- self = self.recip();
- }
- // It should always be possible to convert a positive `i32` to a `usize`.
- // Note, `i32::MIN` will wrap and still be negative, so we need to convert
- // to `u32` without sign-extension before growing to `usize`.
- super::pow(self, (exp as u32).to_usize().unwrap())
- }
- /// Converts to degrees, assuming the number is in radians.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(rad: T, deg: T) {
- /// assert!(rad.to_degrees() == deg);
- /// }
- ///
- /// check(0.0f32, 0.0);
- /// check(f32::consts::PI, 180.0);
- /// check(f64::consts::FRAC_PI_4, 45.0);
- /// check(f64::INFINITY, f64::INFINITY);
- /// ```
- fn to_degrees(self) -> Self;
- /// Converts to radians, assuming the number is in degrees.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(deg: T, rad: T) {
- /// assert!(deg.to_radians() == rad);
- /// }
- ///
- /// check(0.0f32, 0.0);
- /// check(180.0, f32::consts::PI);
- /// check(45.0, f64::consts::FRAC_PI_4);
- /// check(f64::INFINITY, f64::INFINITY);
- /// ```
- fn to_radians(self) -> Self;
- /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
- /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) {
- /// let (mantissa, exponent, sign) = x.integer_decode();
- /// assert_eq!(mantissa, m);
- /// assert_eq!(exponent, e);
- /// assert_eq!(sign, s);
- /// }
- ///
- /// check(2.0f32, 1 << 23, -22, 1);
- /// check(-2.0f32, 1 << 23, -22, -1);
- /// check(f32::INFINITY, 1 << 23, 105, 1);
- /// check(f64::NEG_INFINITY, 1 << 52, 972, -1);
- /// ```
- fn integer_decode(self) -> (u64, i16, i8);
- }
- impl FloatCore for f32 {
- constant! {
- infinity() -> f32::INFINITY;
- neg_infinity() -> f32::NEG_INFINITY;
- nan() -> f32::NAN;
- neg_zero() -> -0.0;
- min_value() -> f32::MIN;
- min_positive_value() -> f32::MIN_POSITIVE;
- epsilon() -> f32::EPSILON;
- max_value() -> f32::MAX;
- }
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- integer_decode_f32(self)
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn classify(self) -> FpCategory {
- const EXP_MASK: u32 = 0x7f800000;
- const MAN_MASK: u32 = 0x007fffff;
- // Safety: this identical to the implementation of f32::to_bits(),
- // which is only available starting at Rust 1.20
- let bits: u32 = unsafe { mem::transmute(self) };
- match (bits & MAN_MASK, bits & EXP_MASK) {
- (0, 0) => FpCategory::Zero,
- (_, 0) => FpCategory::Subnormal,
- (0, EXP_MASK) => FpCategory::Infinite,
- (_, EXP_MASK) => FpCategory::Nan,
- _ => FpCategory::Normal,
- }
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn to_degrees(self) -> Self {
- // Use a constant for better precision.
- const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32;
- self * PIS_IN_180
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn to_radians(self) -> Self {
- self * (f32::consts::PI / 180.0)
- }
- #[cfg(feature = "std")]
- forward! {
- Self::is_nan(self) -> bool;
- Self::is_infinite(self) -> bool;
- Self::is_finite(self) -> bool;
- Self::is_normal(self) -> bool;
- Self::classify(self) -> FpCategory;
- Self::floor(self) -> Self;
- Self::ceil(self) -> Self;
- Self::round(self) -> Self;
- Self::trunc(self) -> Self;
- Self::fract(self) -> Self;
- Self::abs(self) -> Self;
- Self::signum(self) -> Self;
- Self::is_sign_positive(self) -> bool;
- Self::is_sign_negative(self) -> bool;
- Self::min(self, other: Self) -> Self;
- Self::max(self, other: Self) -> Self;
- Self::recip(self) -> Self;
- Self::powi(self, n: i32) -> Self;
- Self::to_degrees(self) -> Self;
- Self::to_radians(self) -> Self;
- }
- }
- impl FloatCore for f64 {
- constant! {
- infinity() -> f64::INFINITY;
- neg_infinity() -> f64::NEG_INFINITY;
- nan() -> f64::NAN;
- neg_zero() -> -0.0;
- min_value() -> f64::MIN;
- min_positive_value() -> f64::MIN_POSITIVE;
- epsilon() -> f64::EPSILON;
- max_value() -> f64::MAX;
- }
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- integer_decode_f64(self)
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn classify(self) -> FpCategory {
- const EXP_MASK: u64 = 0x7ff0000000000000;
- const MAN_MASK: u64 = 0x000fffffffffffff;
- // Safety: this identical to the implementation of f64::to_bits(),
- // which is only available starting at Rust 1.20
- let bits: u64 = unsafe { mem::transmute(self) };
- match (bits & MAN_MASK, bits & EXP_MASK) {
- (0, 0) => FpCategory::Zero,
- (_, 0) => FpCategory::Subnormal,
- (0, EXP_MASK) => FpCategory::Infinite,
- (_, EXP_MASK) => FpCategory::Nan,
- _ => FpCategory::Normal,
- }
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn to_degrees(self) -> Self {
- // The division here is correctly rounded with respect to the true
- // value of 180/π. (This differs from f32, where a constant must be
- // used to ensure a correctly rounded result.)
- self * (180.0 / f64::consts::PI)
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn to_radians(self) -> Self {
- self * (f64::consts::PI / 180.0)
- }
- #[cfg(feature = "std")]
- forward! {
- Self::is_nan(self) -> bool;
- Self::is_infinite(self) -> bool;
- Self::is_finite(self) -> bool;
- Self::is_normal(self) -> bool;
- Self::classify(self) -> FpCategory;
- Self::floor(self) -> Self;
- Self::ceil(self) -> Self;
- Self::round(self) -> Self;
- Self::trunc(self) -> Self;
- Self::fract(self) -> Self;
- Self::abs(self) -> Self;
- Self::signum(self) -> Self;
- Self::is_sign_positive(self) -> bool;
- Self::is_sign_negative(self) -> bool;
- Self::min(self, other: Self) -> Self;
- Self::max(self, other: Self) -> Self;
- Self::recip(self) -> Self;
- Self::powi(self, n: i32) -> Self;
- Self::to_degrees(self) -> Self;
- Self::to_radians(self) -> Self;
- }
- }
- // FIXME: these doctests aren't actually helpful, because they're using and
- // testing the inherent methods directly, not going through `Float`.
- /// Generic trait for floating point numbers
- ///
- /// This trait is only available with the `std` feature, or with the `libm` feature otherwise.
- #[cfg(any(feature = "std", feature = "libm"))]
- pub trait Float: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> {
- /// Returns the `NaN` value.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let nan: f32 = Float::nan();
- ///
- /// assert!(nan.is_nan());
- /// ```
- fn nan() -> Self;
- /// Returns the infinite value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let infinity: f32 = Float::infinity();
- ///
- /// assert!(infinity.is_infinite());
- /// assert!(!infinity.is_finite());
- /// assert!(infinity > f32::MAX);
- /// ```
- fn infinity() -> Self;
- /// Returns the negative infinite value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let neg_infinity: f32 = Float::neg_infinity();
- ///
- /// assert!(neg_infinity.is_infinite());
- /// assert!(!neg_infinity.is_finite());
- /// assert!(neg_infinity < f32::MIN);
- /// ```
- fn neg_infinity() -> Self;
- /// Returns `-0.0`.
- ///
- /// ```
- /// use num_traits::{Zero, Float};
- ///
- /// let inf: f32 = Float::infinity();
- /// let zero: f32 = Zero::zero();
- /// let neg_zero: f32 = Float::neg_zero();
- ///
- /// assert_eq!(zero, neg_zero);
- /// assert_eq!(7.0f32/inf, zero);
- /// assert_eq!(zero * 10.0, zero);
- /// ```
- fn neg_zero() -> Self;
- /// Returns the smallest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::min_value();
- ///
- /// assert_eq!(x, f64::MIN);
- /// ```
- fn min_value() -> Self;
- /// Returns the smallest positive, normalized value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::min_positive_value();
- ///
- /// assert_eq!(x, f64::MIN_POSITIVE);
- /// ```
- fn min_positive_value() -> Self;
- /// Returns epsilon, a small positive value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::epsilon();
- ///
- /// assert_eq!(x, f64::EPSILON);
- /// ```
- ///
- /// # Panics
- ///
- /// The default implementation will panic if `f32::EPSILON` cannot
- /// be cast to `Self`.
- fn epsilon() -> Self {
- Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON")
- }
- /// Returns the largest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::max_value();
- /// assert_eq!(x, f64::MAX);
- /// ```
- fn max_value() -> Self;
- /// Returns `true` if this value is `NaN` and false otherwise.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let nan = f64::NAN;
- /// let f = 7.0;
- ///
- /// assert!(nan.is_nan());
- /// assert!(!f.is_nan());
- /// ```
- fn is_nan(self) -> bool;
- /// Returns `true` if this value is positive infinity or negative infinity and
- /// false otherwise.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let f = 7.0f32;
- /// let inf: f32 = Float::infinity();
- /// let neg_inf: f32 = Float::neg_infinity();
- /// let nan: f32 = f32::NAN;
- ///
- /// assert!(!f.is_infinite());
- /// assert!(!nan.is_infinite());
- ///
- /// assert!(inf.is_infinite());
- /// assert!(neg_inf.is_infinite());
- /// ```
- fn is_infinite(self) -> bool;
- /// Returns `true` if this number is neither infinite nor `NaN`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let f = 7.0f32;
- /// let inf: f32 = Float::infinity();
- /// let neg_inf: f32 = Float::neg_infinity();
- /// let nan: f32 = f32::NAN;
- ///
- /// assert!(f.is_finite());
- ///
- /// assert!(!nan.is_finite());
- /// assert!(!inf.is_finite());
- /// assert!(!neg_inf.is_finite());
- /// ```
- fn is_finite(self) -> bool;
- /// Returns `true` if the number is neither zero, infinite,
- /// [subnormal][subnormal], or `NaN`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
- /// let max = f32::MAX;
- /// let lower_than_min = 1.0e-40_f32;
- /// let zero = 0.0f32;
- ///
- /// assert!(min.is_normal());
- /// assert!(max.is_normal());
- ///
- /// assert!(!zero.is_normal());
- /// assert!(!f32::NAN.is_normal());
- /// assert!(!f32::INFINITY.is_normal());
- /// // Values between `0` and `min` are Subnormal.
- /// assert!(!lower_than_min.is_normal());
- /// ```
- /// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
- fn is_normal(self) -> bool;
- /// Returns the floating point category of the number. If only one property
- /// is going to be tested, it is generally faster to use the specific
- /// predicate instead.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::num::FpCategory;
- /// use std::f32;
- ///
- /// let num = 12.4f32;
- /// let inf = f32::INFINITY;
- ///
- /// assert_eq!(num.classify(), FpCategory::Normal);
- /// assert_eq!(inf.classify(), FpCategory::Infinite);
- /// ```
- fn classify(self) -> FpCategory;
- /// Returns the largest integer less than or equal to a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.99;
- /// let g = 3.0;
- ///
- /// assert_eq!(f.floor(), 3.0);
- /// assert_eq!(g.floor(), 3.0);
- /// ```
- fn floor(self) -> Self;
- /// Returns the smallest integer greater than or equal to a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.01;
- /// let g = 4.0;
- ///
- /// assert_eq!(f.ceil(), 4.0);
- /// assert_eq!(g.ceil(), 4.0);
- /// ```
- fn ceil(self) -> Self;
- /// Returns the nearest integer to a number. Round half-way cases away from
- /// `0.0`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.3;
- /// let g = -3.3;
- ///
- /// assert_eq!(f.round(), 3.0);
- /// assert_eq!(g.round(), -3.0);
- /// ```
- fn round(self) -> Self;
- /// Return the integer part of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.3;
- /// let g = -3.7;
- ///
- /// assert_eq!(f.trunc(), 3.0);
- /// assert_eq!(g.trunc(), -3.0);
- /// ```
- fn trunc(self) -> Self;
- /// Returns the fractional part of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- /// let abs_difference_x = (x.fract() - 0.5).abs();
- /// let abs_difference_y = (y.fract() - (-0.5)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn fract(self) -> Self;
- /// Computes the absolute value of `self`. Returns `Float::nan()` if the
- /// number is `Float::nan()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- ///
- /// let abs_difference_x = (x.abs() - x).abs();
- /// let abs_difference_y = (y.abs() - (-y)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- ///
- /// assert!(f64::NAN.abs().is_nan());
- /// ```
- fn abs(self) -> Self;
- /// Returns a number that represents the sign of `self`.
- ///
- /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
- /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
- /// - `Float::nan()` if the number is `Float::nan()`
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = 3.5;
- ///
- /// assert_eq!(f.signum(), 1.0);
- /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
- ///
- /// assert!(f64::NAN.signum().is_nan());
- /// ```
- fn signum(self) -> Self;
- /// Returns `true` if `self` is positive, including `+0.0`,
- /// `Float::infinity()`, and since Rust 1.20 also `Float::nan()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let neg_nan: f64 = -f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(f.is_sign_positive());
- /// assert!(!g.is_sign_positive());
- /// assert!(!neg_nan.is_sign_positive());
- /// ```
- fn is_sign_positive(self) -> bool;
- /// Returns `true` if `self` is negative, including `-0.0`,
- /// `Float::neg_infinity()`, and since Rust 1.20 also `-Float::nan()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let nan: f64 = f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(!f.is_sign_negative());
- /// assert!(g.is_sign_negative());
- /// assert!(!nan.is_sign_negative());
- /// ```
- fn is_sign_negative(self) -> bool;
- /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
- /// error, yielding a more accurate result than an unfused multiply-add.
- ///
- /// Using `mul_add` can be more performant than an unfused multiply-add if
- /// the target architecture has a dedicated `fma` CPU instruction.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let m = 10.0;
- /// let x = 4.0;
- /// let b = 60.0;
- ///
- /// // 100.0
- /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn mul_add(self, a: Self, b: Self) -> Self;
- /// Take the reciprocal (inverse) of a number, `1/x`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.recip() - (1.0/x)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn recip(self) -> Self;
- /// Raise a number to an integer power.
- ///
- /// Using this function is generally faster than using `powf`
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powi(2) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powi(self, n: i32) -> Self;
- /// Raise a number to a floating point power.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powf(2.0) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powf(self, n: Self) -> Self;
- /// Take the square root of a number.
- ///
- /// Returns NaN if `self` is a negative number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let positive = 4.0;
- /// let negative = -4.0;
- ///
- /// let abs_difference = (positive.sqrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// assert!(negative.sqrt().is_nan());
- /// ```
- fn sqrt(self) -> Self;
- /// Returns `e^(self)`, (the exponential function).
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp(self) -> Self;
- /// Returns `2^(self)`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 2.0;
- ///
- /// // 2^2 - 4 == 0
- /// let abs_difference = (f.exp2() - 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp2(self) -> Self;
- /// Returns the natural logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln(self) -> Self;
- /// Returns the logarithm of the number with respect to an arbitrary base.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let ten = 10.0;
- /// let two = 2.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
- ///
- /// assert!(abs_difference_10 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn log(self, base: Self) -> Self;
- /// Returns the base 2 logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let two = 2.0;
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference = (two.log2() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log2(self) -> Self;
- /// Returns the base 10 logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let ten = 10.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference = (ten.log10() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log10(self) -> Self;
- /// Converts radians to degrees.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = consts::PI;
- ///
- /// let abs_difference = (angle.to_degrees() - 180.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- #[inline]
- fn to_degrees(self) -> Self {
- let halfpi = Self::zero().acos();
- let ninety = Self::from(90u8).unwrap();
- self * ninety / halfpi
- }
- /// Converts degrees to radians.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = 180.0_f64;
- ///
- /// let abs_difference = (angle.to_radians() - consts::PI).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- #[inline]
- fn to_radians(self) -> Self {
- let halfpi = Self::zero().acos();
- let ninety = Self::from(90u8).unwrap();
- self * halfpi / ninety
- }
- /// Returns the maximum of the two numbers.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.max(y), y);
- /// ```
- fn max(self, other: Self) -> Self;
- /// Returns the minimum of the two numbers.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.min(y), x);
- /// ```
- fn min(self, other: Self) -> Self;
- /// The positive difference of two numbers.
- ///
- /// * If `self <= other`: `0:0`
- /// * Else: `self - other`
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 3.0;
- /// let y = -3.0;
- ///
- /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
- /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn abs_sub(self, other: Self) -> Self;
- /// Take the cubic root of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 8.0;
- ///
- /// // x^(1/3) - 2 == 0
- /// let abs_difference = (x.cbrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cbrt(self) -> Self;
- /// Calculate the length of the hypotenuse of a right-angle triangle given
- /// legs of length `x` and `y`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let y = 3.0;
- ///
- /// // sqrt(x^2 + y^2)
- /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn hypot(self, other: Self) -> Self;
- /// Computes the sine of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/2.0;
- ///
- /// let abs_difference = (x.sin() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sin(self) -> Self;
- /// Computes the cosine of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = 2.0*f64::consts::PI;
- ///
- /// let abs_difference = (x.cos() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cos(self) -> Self;
- /// Computes the tangent of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let abs_difference = (x.tan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-14);
- /// ```
- fn tan(self) -> Self;
- /// Computes the arcsine of a number. Return value is in radians in
- /// the range [-pi/2, pi/2] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 2.0;
- ///
- /// // asin(sin(pi/2))
- /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn asin(self) -> Self;
- /// Computes the arccosine of a number. Return value is in radians in
- /// the range [0, pi] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 4.0;
- ///
- /// // acos(cos(pi/4))
- /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn acos(self) -> Self;
- /// Computes the arctangent of a number. Return value is in radians in the
- /// range [-pi/2, pi/2];
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 1.0;
- ///
- /// // atan(tan(1))
- /// let abs_difference = (f.tan().atan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn atan(self) -> Self;
- /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
- ///
- /// * `x = 0`, `y = 0`: `0`
- /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
- /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
- /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let pi = f64::consts::PI;
- /// // All angles from horizontal right (+x)
- /// // 45 deg counter-clockwise
- /// let x1 = 3.0;
- /// let y1 = -3.0;
- ///
- /// // 135 deg clockwise
- /// let x2 = -3.0;
- /// let y2 = 3.0;
- ///
- /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
- /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
- ///
- /// assert!(abs_difference_1 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn atan2(self, other: Self) -> Self;
- /// Simultaneously computes the sine and cosine of the number, `x`. Returns
- /// `(sin(x), cos(x))`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let f = x.sin_cos();
- ///
- /// let abs_difference_0 = (f.0 - x.sin()).abs();
- /// let abs_difference_1 = (f.1 - x.cos()).abs();
- ///
- /// assert!(abs_difference_0 < 1e-10);
- /// assert!(abs_difference_0 < 1e-10);
- /// ```
- fn sin_cos(self) -> (Self, Self);
- /// Returns `e^(self) - 1` in a way that is accurate even if the
- /// number is close to zero.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 7.0;
- ///
- /// // e^(ln(7)) - 1
- /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp_m1(self) -> Self;
- /// Returns `ln(1+n)` (natural logarithm) more accurately than if
- /// the operations were performed separately.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::E - 1.0;
- ///
- /// // ln(1 + (e - 1)) == ln(e) == 1
- /// let abs_difference = (x.ln_1p() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln_1p(self) -> Self;
- /// Hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.sinh();
- /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
- /// let g = (e*e - 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sinh(self) -> Self;
- /// Hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- /// let f = x.cosh();
- /// // Solving cosh() at 1 gives this result
- /// let g = (e*e + 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// // Same result
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn cosh(self) -> Self;
- /// Hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.tanh();
- /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
- /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn tanh(self) -> Self;
- /// Inverse hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let f = x.sinh().asinh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn asinh(self) -> Self;
- /// Inverse hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let f = x.cosh().acosh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn acosh(self) -> Self;
- /// Inverse hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let f = e.tanh().atanh();
- ///
- /// let abs_difference = (f - e).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn atanh(self) -> Self;
- /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
- /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let num = 2.0f32;
- ///
- /// // (8388608, -22, 1)
- /// let (mantissa, exponent, sign) = Float::integer_decode(num);
- /// let sign_f = sign as f32;
- /// let mantissa_f = mantissa as f32;
- /// let exponent_f = num.powf(exponent as f32);
- ///
- /// // 1 * 8388608 * 2^(-22) == 2
- /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn integer_decode(self) -> (u64, i16, i8);
- }
- #[cfg(feature = "std")]
- macro_rules! float_impl_std {
- ($T:ident $decode:ident) => {
- impl Float for $T {
- constant! {
- nan() -> $T::NAN;
- infinity() -> $T::INFINITY;
- neg_infinity() -> $T::NEG_INFINITY;
- neg_zero() -> -0.0;
- min_value() -> $T::MIN;
- min_positive_value() -> $T::MIN_POSITIVE;
- epsilon() -> $T::EPSILON;
- max_value() -> $T::MAX;
- }
- #[inline]
- #[allow(deprecated)]
- fn abs_sub(self, other: Self) -> Self {
- <$T>::abs_sub(self, other)
- }
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- $decode(self)
- }
- forward! {
- Self::is_nan(self) -> bool;
- Self::is_infinite(self) -> bool;
- Self::is_finite(self) -> bool;
- Self::is_normal(self) -> bool;
- Self::classify(self) -> FpCategory;
- Self::floor(self) -> Self;
- Self::ceil(self) -> Self;
- Self::round(self) -> Self;
- Self::trunc(self) -> Self;
- Self::fract(self) -> Self;
- Self::abs(self) -> Self;
- Self::signum(self) -> Self;
- Self::is_sign_positive(self) -> bool;
- Self::is_sign_negative(self) -> bool;
- Self::mul_add(self, a: Self, b: Self) -> Self;
- Self::recip(self) -> Self;
- Self::powi(self, n: i32) -> Self;
- Self::powf(self, n: Self) -> Self;
- Self::sqrt(self) -> Self;
- Self::exp(self) -> Self;
- Self::exp2(self) -> Self;
- Self::ln(self) -> Self;
- Self::log(self, base: Self) -> Self;
- Self::log2(self) -> Self;
- Self::log10(self) -> Self;
- Self::to_degrees(self) -> Self;
- Self::to_radians(self) -> Self;
- Self::max(self, other: Self) -> Self;
- Self::min(self, other: Self) -> Self;
- Self::cbrt(self) -> Self;
- Self::hypot(self, other: Self) -> Self;
- Self::sin(self) -> Self;
- Self::cos(self) -> Self;
- Self::tan(self) -> Self;
- Self::asin(self) -> Self;
- Self::acos(self) -> Self;
- Self::atan(self) -> Self;
- Self::atan2(self, other: Self) -> Self;
- Self::sin_cos(self) -> (Self, Self);
- Self::exp_m1(self) -> Self;
- Self::ln_1p(self) -> Self;
- Self::sinh(self) -> Self;
- Self::cosh(self) -> Self;
- Self::tanh(self) -> Self;
- Self::asinh(self) -> Self;
- Self::acosh(self) -> Self;
- Self::atanh(self) -> Self;
- }
- }
- };
- }
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- macro_rules! float_impl_libm {
- ($T:ident $decode:ident $LibmImpl:ident) => {
- impl Float for $T {
- constant! {
- nan() -> $T::NAN;
- infinity() -> $T::INFINITY;
- neg_infinity() -> $T::NEG_INFINITY;
- neg_zero() -> -0.0;
- min_value() -> $T::MIN;
- min_positive_value() -> $T::MIN_POSITIVE;
- epsilon() -> $T::EPSILON;
- max_value() -> $T::MAX;
- }
- #[inline]
- #[allow(deprecated)]
- fn abs_sub(self, other: Self) -> Self {
- <$T as $LibmImpl>::fdim(self, other)
- }
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- $decode(self)
- }
- forward! {
- FloatCore::is_nan(self) -> bool;
- FloatCore::is_infinite(self) -> bool;
- FloatCore::is_finite(self) -> bool;
- FloatCore::is_normal(self) -> bool;
- FloatCore::classify(self) -> FpCategory;
- $LibmImpl::floor(self) -> Self;
- $LibmImpl::ceil(self) -> Self;
- $LibmImpl::round(self) -> Self;
- $LibmImpl::trunc(self) -> Self;
- $LibmImpl::fract(self) -> Self;
- $LibmImpl::abs(self) -> Self;
- FloatCore::signum(self) -> Self;
- FloatCore::is_sign_positive(self) -> bool;
- FloatCore::is_sign_negative(self) -> bool;
- $LibmImpl::mul_add(self, a: Self, b: Self) -> Self;
- FloatCore::recip(self) -> Self;
- FloatCore::powi(self, n: i32) -> Self;
- $LibmImpl::powf(self, n: Self) -> Self;
- $LibmImpl::sqrt(self) -> Self;
- $LibmImpl::exp(self) -> Self;
- $LibmImpl::exp2(self) -> Self;
- $LibmImpl::ln(self) -> Self;
- $LibmImpl::log(self, base: Self) -> Self;
- $LibmImpl::log2(self) -> Self;
- $LibmImpl::log10(self) -> Self;
- FloatCore::to_degrees(self) -> Self;
- FloatCore::to_radians(self) -> Self;
- FloatCore::max(self, other: Self) -> Self;
- FloatCore::min(self, other: Self) -> Self;
- $LibmImpl::cbrt(self) -> Self;
- $LibmImpl::hypot(self, other: Self) -> Self;
- $LibmImpl::sin(self) -> Self;
- $LibmImpl::cos(self) -> Self;
- $LibmImpl::tan(self) -> Self;
- $LibmImpl::asin(self) -> Self;
- $LibmImpl::acos(self) -> Self;
- $LibmImpl::atan(self) -> Self;
- $LibmImpl::atan2(self, other: Self) -> Self;
- $LibmImpl::sin_cos(self) -> (Self, Self);
- $LibmImpl::exp_m1(self) -> Self;
- $LibmImpl::ln_1p(self) -> Self;
- $LibmImpl::sinh(self) -> Self;
- $LibmImpl::cosh(self) -> Self;
- $LibmImpl::tanh(self) -> Self;
- $LibmImpl::asinh(self) -> Self;
- $LibmImpl::acosh(self) -> Self;
- $LibmImpl::atanh(self) -> Self;
- }
- }
- };
- }
- fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
- // Safety: this identical to the implementation of f32::to_bits(),
- // which is only available starting at Rust 1.20
- let bits: u32 = unsafe { mem::transmute(f) };
- let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
- let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
- let mantissa = if exponent == 0 {
- (bits & 0x7fffff) << 1
- } else {
- (bits & 0x7fffff) | 0x800000
- };
- // Exponent bias + mantissa shift
- exponent -= 127 + 23;
- (mantissa as u64, exponent, sign)
- }
- fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
- // Safety: this identical to the implementation of f64::to_bits(),
- // which is only available starting at Rust 1.20
- let bits: u64 = unsafe { mem::transmute(f) };
- let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
- let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
- let mantissa = if exponent == 0 {
- (bits & 0xfffffffffffff) << 1
- } else {
- (bits & 0xfffffffffffff) | 0x10000000000000
- };
- // Exponent bias + mantissa shift
- exponent -= 1023 + 52;
- (mantissa, exponent, sign)
- }
- #[cfg(feature = "std")]
- float_impl_std!(f32 integer_decode_f32);
- #[cfg(feature = "std")]
- float_impl_std!(f64 integer_decode_f64);
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- float_impl_libm!(f32 integer_decode_f32 F32Ext);
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- float_impl_libm!(f64 integer_decode_f64 F64Ext);
- macro_rules! float_const_impl {
- ($(#[$doc:meta] $constant:ident,)+) => (
- #[allow(non_snake_case)]
- pub trait FloatConst {
- $(#[$doc] fn $constant() -> Self;)+
- }
- float_const_impl! { @float f32, $($constant,)+ }
- float_const_impl! { @float f64, $($constant,)+ }
- );
- (@float $T:ident, $($constant:ident,)+) => (
- impl FloatConst for $T {
- constant! {
- $( $constant() -> $T::consts::$constant; )+
- }
- }
- );
- }
- float_const_impl! {
- #[doc = "Return Euler’s number."]
- E,
- #[doc = "Return `1.0 / π`."]
- FRAC_1_PI,
- #[doc = "Return `1.0 / sqrt(2.0)`."]
- FRAC_1_SQRT_2,
- #[doc = "Return `2.0 / π`."]
- FRAC_2_PI,
- #[doc = "Return `2.0 / sqrt(π)`."]
- FRAC_2_SQRT_PI,
- #[doc = "Return `π / 2.0`."]
- FRAC_PI_2,
- #[doc = "Return `π / 3.0`."]
- FRAC_PI_3,
- #[doc = "Return `π / 4.0`."]
- FRAC_PI_4,
- #[doc = "Return `π / 6.0`."]
- FRAC_PI_6,
- #[doc = "Return `π / 8.0`."]
- FRAC_PI_8,
- #[doc = "Return `ln(10.0)`."]
- LN_10,
- #[doc = "Return `ln(2.0)`."]
- LN_2,
- #[doc = "Return `log10(e)`."]
- LOG10_E,
- #[doc = "Return `log2(e)`."]
- LOG2_E,
- #[doc = "Return Archimedes’ constant."]
- PI,
- #[doc = "Return `sqrt(2.0)`."]
- SQRT_2,
- }
- #[cfg(test)]
- mod tests {
- use core::f64::consts;
- const DEG_RAD_PAIRS: [(f64, f64); 7] = [
- (0.0, 0.),
- (22.5, consts::FRAC_PI_8),
- (30.0, consts::FRAC_PI_6),
- (45.0, consts::FRAC_PI_4),
- (60.0, consts::FRAC_PI_3),
- (90.0, consts::FRAC_PI_2),
- (180.0, consts::PI),
- ];
- #[test]
- fn convert_deg_rad() {
- use float::FloatCore;
- for &(deg, rad) in &DEG_RAD_PAIRS {
- assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6);
- assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6);
- let (deg, rad) = (deg as f32, rad as f32);
- assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-5);
- assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-5);
- }
- }
- #[cfg(any(feature = "std", feature = "libm"))]
- #[test]
- fn convert_deg_rad_std() {
- for &(deg, rad) in &DEG_RAD_PAIRS {
- use Float;
- assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
- assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
- let (deg, rad) = (deg as f32, rad as f32);
- assert!((Float::to_degrees(rad) - deg).abs() < 1e-5);
- assert!((Float::to_radians(deg) - rad).abs() < 1e-5);
- }
- }
- #[test]
- // This fails with the forwarded `std` implementation in Rust 1.8.
- // To avoid the failure, the test is limited to `no_std` builds.
- #[cfg(not(feature = "std"))]
- fn to_degrees_rounding() {
- use float::FloatCore;
- assert_eq!(
- FloatCore::to_degrees(1_f32),
- 57.2957795130823208767981548141051703
- );
- }
- }
|