123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832 |
- use core::ops::Neg;
- use {Float, Num, NumCast};
- // NOTE: These doctests have the same issue as those in src/float.rs.
- // They're testing the inherent methods directly, and not those of `Real`.
- /// A trait for real number types that do not necessarily have
- /// floating-point-specific characteristics such as NaN and infinity.
- ///
- /// See [this Wikipedia article](https://en.wikipedia.org/wiki/Real_data_type)
- /// for a list of data types that could meaningfully implement this trait.
- ///
- /// This trait is only available with the `std` feature, or with the `libm` feature otherwise.
- pub trait Real: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> {
- /// Returns the smallest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x: f64 = Real::min_value();
- ///
- /// assert_eq!(x, f64::MIN);
- /// ```
- fn min_value() -> Self;
- /// Returns the smallest positive, normalized value that this type can represent.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x: f64 = Real::min_positive_value();
- ///
- /// assert_eq!(x, f64::MIN_POSITIVE);
- /// ```
- fn min_positive_value() -> Self;
- /// Returns epsilon, a small positive value.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x: f64 = Real::epsilon();
- ///
- /// assert_eq!(x, f64::EPSILON);
- /// ```
- ///
- /// # Panics
- ///
- /// The default implementation will panic if `f32::EPSILON` cannot
- /// be cast to `Self`.
- fn epsilon() -> Self;
- /// Returns the largest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x: f64 = Real::max_value();
- /// assert_eq!(x, f64::MAX);
- /// ```
- fn max_value() -> Self;
- /// Returns the largest integer less than or equal to a number.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let f = 3.99;
- /// let g = 3.0;
- ///
- /// assert_eq!(f.floor(), 3.0);
- /// assert_eq!(g.floor(), 3.0);
- /// ```
- fn floor(self) -> Self;
- /// Returns the smallest integer greater than or equal to a number.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let f = 3.01;
- /// let g = 4.0;
- ///
- /// assert_eq!(f.ceil(), 4.0);
- /// assert_eq!(g.ceil(), 4.0);
- /// ```
- fn ceil(self) -> Self;
- /// Returns the nearest integer to a number. Round half-way cases away from
- /// `0.0`.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let f = 3.3;
- /// let g = -3.3;
- ///
- /// assert_eq!(f.round(), 3.0);
- /// assert_eq!(g.round(), -3.0);
- /// ```
- fn round(self) -> Self;
- /// Return the integer part of a number.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let f = 3.3;
- /// let g = -3.7;
- ///
- /// assert_eq!(f.trunc(), 3.0);
- /// assert_eq!(g.trunc(), -3.0);
- /// ```
- fn trunc(self) -> Self;
- /// Returns the fractional part of a number.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- /// let abs_difference_x = (x.fract() - 0.5).abs();
- /// let abs_difference_y = (y.fract() - (-0.5)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn fract(self) -> Self;
- /// Computes the absolute value of `self`. Returns `Float::nan()` if the
- /// number is `Float::nan()`.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- ///
- /// let abs_difference_x = (x.abs() - x).abs();
- /// let abs_difference_y = (y.abs() - (-y)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- ///
- /// assert!(::num_traits::Float::is_nan(f64::NAN.abs()));
- /// ```
- fn abs(self) -> Self;
- /// Returns a number that represents the sign of `self`.
- ///
- /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
- /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
- /// - `Float::nan()` if the number is `Float::nan()`
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let f = 3.5;
- ///
- /// assert_eq!(f.signum(), 1.0);
- /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
- ///
- /// assert!(f64::NAN.signum().is_nan());
- /// ```
- fn signum(self) -> Self;
- /// Returns `true` if `self` is positive, including `+0.0`,
- /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let neg_nan: f64 = -f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(f.is_sign_positive());
- /// assert!(!g.is_sign_positive());
- /// assert!(!neg_nan.is_sign_positive());
- /// ```
- fn is_sign_positive(self) -> bool;
- /// Returns `true` if `self` is negative, including `-0.0`,
- /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let nan: f64 = f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(!f.is_sign_negative());
- /// assert!(g.is_sign_negative());
- /// assert!(!nan.is_sign_negative());
- /// ```
- fn is_sign_negative(self) -> bool;
- /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
- /// error, yielding a more accurate result than an unfused multiply-add.
- ///
- /// Using `mul_add` can be more performant than an unfused multiply-add if
- /// the target architecture has a dedicated `fma` CPU instruction.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let m = 10.0;
- /// let x = 4.0;
- /// let b = 60.0;
- ///
- /// // 100.0
- /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn mul_add(self, a: Self, b: Self) -> Self;
- /// Take the reciprocal (inverse) of a number, `1/x`.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.recip() - (1.0/x)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn recip(self) -> Self;
- /// Raise a number to an integer power.
- ///
- /// Using this function is generally faster than using `powf`
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powi(2) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powi(self, n: i32) -> Self;
- /// Raise a number to a real number power.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powf(2.0) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powf(self, n: Self) -> Self;
- /// Take the square root of a number.
- ///
- /// Returns NaN if `self` is a negative floating-point number.
- ///
- /// # Panics
- ///
- /// If the implementing type doesn't support NaN, this method should panic if `self < 0`.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let positive = 4.0;
- /// let negative = -4.0;
- ///
- /// let abs_difference = (positive.sqrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// assert!(::num_traits::Float::is_nan(negative.sqrt()));
- /// ```
- fn sqrt(self) -> Self;
- /// Returns `e^(self)`, (the exponential function).
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp(self) -> Self;
- /// Returns `2^(self)`.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let f = 2.0;
- ///
- /// // 2^2 - 4 == 0
- /// let abs_difference = (f.exp2() - 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp2(self) -> Self;
- /// Returns the natural logarithm of the number.
- ///
- /// # Panics
- ///
- /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln(self) -> Self;
- /// Returns the logarithm of the number with respect to an arbitrary base.
- ///
- /// # Panics
- ///
- /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let ten = 10.0;
- /// let two = 2.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
- ///
- /// assert!(abs_difference_10 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn log(self, base: Self) -> Self;
- /// Returns the base 2 logarithm of the number.
- ///
- /// # Panics
- ///
- /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let two = 2.0;
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference = (two.log2() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log2(self) -> Self;
- /// Returns the base 10 logarithm of the number.
- ///
- /// # Panics
- ///
- /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
- ///
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let ten = 10.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference = (ten.log10() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log10(self) -> Self;
- /// Converts radians to degrees.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = consts::PI;
- ///
- /// let abs_difference = (angle.to_degrees() - 180.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn to_degrees(self) -> Self;
- /// Converts degrees to radians.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = 180.0_f64;
- ///
- /// let abs_difference = (angle.to_radians() - consts::PI).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn to_radians(self) -> Self;
- /// Returns the maximum of the two numbers.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.max(y), y);
- /// ```
- fn max(self, other: Self) -> Self;
- /// Returns the minimum of the two numbers.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.min(y), x);
- /// ```
- fn min(self, other: Self) -> Self;
- /// The positive difference of two numbers.
- ///
- /// * If `self <= other`: `0:0`
- /// * Else: `self - other`
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 3.0;
- /// let y = -3.0;
- ///
- /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
- /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn abs_sub(self, other: Self) -> Self;
- /// Take the cubic root of a number.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 8.0;
- ///
- /// // x^(1/3) - 2 == 0
- /// let abs_difference = (x.cbrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cbrt(self) -> Self;
- /// Calculate the length of the hypotenuse of a right-angle triangle given
- /// legs of length `x` and `y`.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 2.0;
- /// let y = 3.0;
- ///
- /// // sqrt(x^2 + y^2)
- /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn hypot(self, other: Self) -> Self;
- /// Computes the sine of a number (in radians).
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/2.0;
- ///
- /// let abs_difference = (x.sin() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sin(self) -> Self;
- /// Computes the cosine of a number (in radians).
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x = 2.0*f64::consts::PI;
- ///
- /// let abs_difference = (x.cos() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cos(self) -> Self;
- /// Computes the tangent of a number (in radians).
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let abs_difference = (x.tan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-14);
- /// ```
- fn tan(self) -> Self;
- /// Computes the arcsine of a number. Return value is in radians in
- /// the range [-pi/2, pi/2] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// # Panics
- ///
- /// If this type does not support a NaN representation, this function should panic
- /// if the number is outside the range [-1, 1].
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 2.0;
- ///
- /// // asin(sin(pi/2))
- /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn asin(self) -> Self;
- /// Computes the arccosine of a number. Return value is in radians in
- /// the range [0, pi] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// # Panics
- ///
- /// If this type does not support a NaN representation, this function should panic
- /// if the number is outside the range [-1, 1].
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 4.0;
- ///
- /// // acos(cos(pi/4))
- /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn acos(self) -> Self;
- /// Computes the arctangent of a number. Return value is in radians in the
- /// range [-pi/2, pi/2];
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let f = 1.0;
- ///
- /// // atan(tan(1))
- /// let abs_difference = (f.tan().atan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn atan(self) -> Self;
- /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
- ///
- /// * `x = 0`, `y = 0`: `0`
- /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
- /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
- /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let pi = f64::consts::PI;
- /// // All angles from horizontal right (+x)
- /// // 45 deg counter-clockwise
- /// let x1 = 3.0;
- /// let y1 = -3.0;
- ///
- /// // 135 deg clockwise
- /// let x2 = -3.0;
- /// let y2 = 3.0;
- ///
- /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
- /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
- ///
- /// assert!(abs_difference_1 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn atan2(self, other: Self) -> Self;
- /// Simultaneously computes the sine and cosine of the number, `x`. Returns
- /// `(sin(x), cos(x))`.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let f = x.sin_cos();
- ///
- /// let abs_difference_0 = (f.0 - x.sin()).abs();
- /// let abs_difference_1 = (f.1 - x.cos()).abs();
- ///
- /// assert!(abs_difference_0 < 1e-10);
- /// assert!(abs_difference_0 < 1e-10);
- /// ```
- fn sin_cos(self) -> (Self, Self);
- /// Returns `e^(self) - 1` in a way that is accurate even if the
- /// number is close to zero.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 7.0;
- ///
- /// // e^(ln(7)) - 1
- /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp_m1(self) -> Self;
- /// Returns `ln(1+n)` (natural logarithm) more accurately than if
- /// the operations were performed separately.
- ///
- /// # Panics
- ///
- /// If this type does not support a NaN representation, this function should panic
- /// if `self-1 <= 0`.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x = f64::consts::E - 1.0;
- ///
- /// // ln(1 + (e - 1)) == ln(e) == 1
- /// let abs_difference = (x.ln_1p() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln_1p(self) -> Self;
- /// Hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.sinh();
- /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
- /// let g = (e*e - 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sinh(self) -> Self;
- /// Hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- /// let f = x.cosh();
- /// // Solving cosh() at 1 gives this result
- /// let g = (e*e + 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// // Same result
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn cosh(self) -> Self;
- /// Hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.tanh();
- /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
- /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn tanh(self) -> Self;
- /// Inverse hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 1.0;
- /// let f = x.sinh().asinh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn asinh(self) -> Self;
- /// Inverse hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 1.0;
- /// let f = x.cosh().acosh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn acosh(self) -> Self;
- /// Inverse hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let f = e.tanh().atanh();
- ///
- /// let abs_difference = (f - e).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn atanh(self) -> Self;
- }
- impl<T: Float> Real for T {
- forward! {
- Float::min_value() -> Self;
- Float::min_positive_value() -> Self;
- Float::epsilon() -> Self;
- Float::max_value() -> Self;
- }
- forward! {
- Float::floor(self) -> Self;
- Float::ceil(self) -> Self;
- Float::round(self) -> Self;
- Float::trunc(self) -> Self;
- Float::fract(self) -> Self;
- Float::abs(self) -> Self;
- Float::signum(self) -> Self;
- Float::is_sign_positive(self) -> bool;
- Float::is_sign_negative(self) -> bool;
- Float::mul_add(self, a: Self, b: Self) -> Self;
- Float::recip(self) -> Self;
- Float::powi(self, n: i32) -> Self;
- Float::powf(self, n: Self) -> Self;
- Float::sqrt(self) -> Self;
- Float::exp(self) -> Self;
- Float::exp2(self) -> Self;
- Float::ln(self) -> Self;
- Float::log(self, base: Self) -> Self;
- Float::log2(self) -> Self;
- Float::log10(self) -> Self;
- Float::to_degrees(self) -> Self;
- Float::to_radians(self) -> Self;
- Float::max(self, other: Self) -> Self;
- Float::min(self, other: Self) -> Self;
- Float::abs_sub(self, other: Self) -> Self;
- Float::cbrt(self) -> Self;
- Float::hypot(self, other: Self) -> Self;
- Float::sin(self) -> Self;
- Float::cos(self) -> Self;
- Float::tan(self) -> Self;
- Float::asin(self) -> Self;
- Float::acos(self) -> Self;
- Float::atan(self) -> Self;
- Float::atan2(self, other: Self) -> Self;
- Float::sin_cos(self) -> (Self, Self);
- Float::exp_m1(self) -> Self;
- Float::ln_1p(self) -> Self;
- Float::sinh(self) -> Self;
- Float::cosh(self) -> Self;
- Float::tanh(self) -> Self;
- Float::asinh(self) -> Self;
- Float::acosh(self) -> Self;
- Float::atanh(self) -> Self;
- }
- }
|