12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450 |
- // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
- // file at the top-level directory of this distribution and at
- // http://rust-lang.org/COPYRIGHT.
- //
- // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
- // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
- // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
- // option. This file may not be copied, modified, or distributed
- // except according to those terms.
- //! Numeric traits for generic mathematics
- use std::ops::{Add, Sub, Mul, Div, Rem, Neg};
- use std::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
- use std::{usize, u8, u16, u32, u64};
- use std::{isize, i8, i16, i32, i64};
- use std::{f32, f64};
- use std::mem::{self, size_of};
- use std::num::FpCategory;
- /// The base trait for numeric types
- pub trait Num: PartialEq + Zero + One
- + Add<Output = Self> + Sub<Output = Self>
- + Mul<Output = Self> + Div<Output = Self> + Rem<Output = Self>
- {
- /// Parse error for `from_str_radix`
- type FromStrRadixErr;
- /// Convert from a string and radix <= 36.
- fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
- }
- macro_rules! int_trait_impl {
- ($name:ident for $($t:ty)*) => ($(
- impl $name for $t {
- type FromStrRadixErr = ::std::num::ParseIntError;
- fn from_str_radix(s: &str, radix: u32)
- -> Result<Self, ::std::num::ParseIntError>
- {
- <$t>::from_str_radix(s, radix)
- }
- }
- )*)
- }
- // FIXME: Temporary replacements for unstable ::std::num::ParseFloatError and
- // ::std::num::FloatErrorKind. These can be removed once the std float implementation of
- // from_str_radix stabilises.
- pub enum FloatErrorKind { Empty, Invalid }
- pub struct ParseFloatError { pub kind: FloatErrorKind }
- // FIXME: This should be removed and replaced with the std implementation of from_str_radix once
- // it is stabilised.
- macro_rules! float_trait_impl {
- ($name:ident for $($t:ty)*) => ($(
- impl $name for $t {
- type FromStrRadixErr = ParseFloatError;
- fn from_str_radix(src: &str, radix: u32)
- -> Result<Self, ParseFloatError>
- {
- use self::FloatErrorKind::*;
- use self::ParseFloatError as PFE;
- // Special values
- match src {
- "inf" => return Ok(Float::infinity()),
- "-inf" => return Ok(Float::neg_infinity()),
- "NaN" => return Ok(Float::nan()),
- _ => {},
- }
- fn slice_shift_char(src: &str) -> Option<(char, &str)> {
- src.chars().nth(0).map(|ch| (ch, &src[1..]))
- }
- let (is_positive, src) = match slice_shift_char(src) {
- None => return Err(PFE { kind: Empty }),
- Some(('-', "")) => return Err(PFE { kind: Empty }),
- Some(('-', src)) => (false, src),
- Some((_, _)) => (true, src),
- };
- // The significand to accumulate
- let mut sig = if is_positive { 0.0 } else { -0.0 };
- // Necessary to detect overflow
- let mut prev_sig = sig;
- let mut cs = src.chars().enumerate();
- // Exponent prefix and exponent index offset
- let mut exp_info = None::<(char, usize)>;
- // Parse the integer part of the significand
- for (i, c) in cs.by_ref() {
- match c.to_digit(radix) {
- Some(digit) => {
- // shift significand one digit left
- sig = sig * (radix as $t);
- // add/subtract current digit depending on sign
- if is_positive {
- sig = sig + ((digit as isize) as $t);
- } else {
- sig = sig - ((digit as isize) as $t);
- }
- // Detect overflow by comparing to last value, except
- // if we've not seen any non-zero digits.
- if prev_sig != 0.0 {
- if is_positive && sig <= prev_sig
- { return Ok(Float::infinity()); }
- if !is_positive && sig >= prev_sig
- { return Ok(Float::neg_infinity()); }
- // Detect overflow by reversing the shift-and-add process
- if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
- { return Ok(Float::infinity()); }
- if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
- { return Ok(Float::neg_infinity()); }
- }
- prev_sig = sig;
- },
- None => match c {
- 'e' | 'E' | 'p' | 'P' => {
- exp_info = Some((c, i + 1));
- break; // start of exponent
- },
- '.' => {
- break; // start of fractional part
- },
- _ => {
- return Err(PFE { kind: Invalid });
- },
- },
- }
- }
- // If we are not yet at the exponent parse the fractional
- // part of the significand
- if exp_info.is_none() {
- let mut power = 1.0;
- for (i, c) in cs.by_ref() {
- match c.to_digit(radix) {
- Some(digit) => {
- // Decrease power one order of magnitude
- power = power / (radix as $t);
- // add/subtract current digit depending on sign
- sig = if is_positive {
- sig + (digit as $t) * power
- } else {
- sig - (digit as $t) * power
- };
- // Detect overflow by comparing to last value
- if is_positive && sig < prev_sig
- { return Ok(Float::infinity()); }
- if !is_positive && sig > prev_sig
- { return Ok(Float::neg_infinity()); }
- prev_sig = sig;
- },
- None => match c {
- 'e' | 'E' | 'p' | 'P' => {
- exp_info = Some((c, i + 1));
- break; // start of exponent
- },
- _ => {
- return Err(PFE { kind: Invalid });
- },
- },
- }
- }
- }
- // Parse and calculate the exponent
- let exp = match exp_info {
- Some((c, offset)) => {
- let base = match c {
- 'E' | 'e' if radix == 10 => 10.0,
- 'P' | 'p' if radix == 16 => 2.0,
- _ => return Err(PFE { kind: Invalid }),
- };
- // Parse the exponent as decimal integer
- let src = &src[offset..];
- let (is_positive, exp) = match slice_shift_char(src) {
- Some(('-', src)) => (false, src.parse::<usize>()),
- Some(('+', src)) => (true, src.parse::<usize>()),
- Some((_, _)) => (true, src.parse::<usize>()),
- None => return Err(PFE { kind: Invalid }),
- };
- match (is_positive, exp) {
- (true, Ok(exp)) => base.powi(exp as i32),
- (false, Ok(exp)) => 1.0 / base.powi(exp as i32),
- (_, Err(_)) => return Err(PFE { kind: Invalid }),
- }
- },
- None => 1.0, // no exponent
- };
- Ok(sig * exp)
- }
- }
- )*)
- }
- int_trait_impl!(Num for usize u8 u16 u32 u64 isize i8 i16 i32 i64);
- float_trait_impl!(Num for f32 f64);
- /// Defines an additive identity element for `Self`.
- ///
- /// # Deriving
- ///
- /// This trait can be automatically be derived using `#[deriving(Zero)]`
- /// attribute. If you choose to use this, make sure that the laws outlined in
- /// the documentation for `Zero::zero` still hold.
- pub trait Zero: Sized + Add<Self, Output = Self> {
- /// Returns the additive identity element of `Self`, `0`.
- ///
- /// # Laws
- ///
- /// ```{.text}
- /// a + 0 = a ∀ a ∈ Self
- /// 0 + a = a ∀ a ∈ Self
- /// ```
- ///
- /// # Purity
- ///
- /// This function should return the same result at all times regardless of
- /// external mutable state, for example values stored in TLS or in
- /// `static mut`s.
- // FIXME (#5527): This should be an associated constant
- fn zero() -> Self;
- /// Returns `true` if `self` is equal to the additive identity.
- #[inline]
- fn is_zero(&self) -> bool;
- }
- macro_rules! zero_impl {
- ($t:ty, $v:expr) => {
- impl Zero for $t {
- #[inline]
- fn zero() -> $t { $v }
- #[inline]
- fn is_zero(&self) -> bool { *self == $v }
- }
- }
- }
- zero_impl!(usize, 0usize);
- zero_impl!(u8, 0u8);
- zero_impl!(u16, 0u16);
- zero_impl!(u32, 0u32);
- zero_impl!(u64, 0u64);
- zero_impl!(isize, 0isize);
- zero_impl!(i8, 0i8);
- zero_impl!(i16, 0i16);
- zero_impl!(i32, 0i32);
- zero_impl!(i64, 0i64);
- zero_impl!(f32, 0.0f32);
- zero_impl!(f64, 0.0f64);
- /// Defines a multiplicative identity element for `Self`.
- pub trait One: Sized + Mul<Self, Output = Self> {
- /// Returns the multiplicative identity element of `Self`, `1`.
- ///
- /// # Laws
- ///
- /// ```{.text}
- /// a * 1 = a ∀ a ∈ Self
- /// 1 * a = a ∀ a ∈ Self
- /// ```
- ///
- /// # Purity
- ///
- /// This function should return the same result at all times regardless of
- /// external mutable state, for example values stored in TLS or in
- /// `static mut`s.
- // FIXME (#5527): This should be an associated constant
- fn one() -> Self;
- }
- macro_rules! one_impl {
- ($t:ty, $v:expr) => {
- impl One for $t {
- #[inline]
- fn one() -> $t { $v }
- }
- }
- }
- one_impl!(usize, 1usize);
- one_impl!(u8, 1u8);
- one_impl!(u16, 1u16);
- one_impl!(u32, 1u32);
- one_impl!(u64, 1u64);
- one_impl!(isize, 1isize);
- one_impl!(i8, 1i8);
- one_impl!(i16, 1i16);
- one_impl!(i32, 1i32);
- one_impl!(i64, 1i64);
- one_impl!(f32, 1.0f32);
- one_impl!(f64, 1.0f64);
- /// Useful functions for signed numbers (i.e. numbers that can be negative).
- pub trait Signed: Sized + Num + Neg<Output = Self> {
- /// Computes the absolute value.
- ///
- /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`.
- ///
- /// For signed integers, `::MIN` will be returned if the number is `::MIN`.
- fn abs(&self) -> Self;
- /// The positive difference of two numbers.
- ///
- /// Returns `zero` if the number is less than or equal to `other`, otherwise the difference
- /// between `self` and `other` is returned.
- fn abs_sub(&self, other: &Self) -> Self;
- /// Returns the sign of the number.
- ///
- /// For `f32` and `f64`:
- ///
- /// * `1.0` if the number is positive, `+0.0` or `INFINITY`
- /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
- /// * `NaN` if the number is `NaN`
- ///
- /// For signed integers:
- ///
- /// * `0` if the number is zero
- /// * `1` if the number is positive
- /// * `-1` if the number is negative
- fn signum(&self) -> Self;
- /// Returns true if the number is positive and false if the number is zero or negative.
- fn is_positive(&self) -> bool;
- /// Returns true if the number is negative and false if the number is zero or positive.
- fn is_negative(&self) -> bool;
- }
- macro_rules! signed_impl {
- ($($t:ty)*) => ($(
- impl Signed for $t {
- #[inline]
- fn abs(&self) -> $t {
- if self.is_negative() { -*self } else { *self }
- }
- #[inline]
- fn abs_sub(&self, other: &$t) -> $t {
- if *self <= *other { 0 } else { *self - *other }
- }
- #[inline]
- fn signum(&self) -> $t {
- match *self {
- n if n > 0 => 1,
- 0 => 0,
- _ => -1,
- }
- }
- #[inline]
- fn is_positive(&self) -> bool { *self > 0 }
- #[inline]
- fn is_negative(&self) -> bool { *self < 0 }
- }
- )*)
- }
- signed_impl!(isize i8 i16 i32 i64);
- macro_rules! signed_float_impl {
- ($t:ty, $nan:expr, $inf:expr, $neg_inf:expr) => {
- impl Signed for $t {
- /// Computes the absolute value. Returns `NAN` if the number is `NAN`.
- #[inline]
- fn abs(&self) -> $t {
- <$t>::abs(*self)
- }
- /// The positive difference of two numbers. Returns `0.0` if the number is
- /// less than or equal to `other`, otherwise the difference between`self`
- /// and `other` is returned.
- #[inline]
- fn abs_sub(&self, other: &$t) -> $t {
- <$t>::abs_sub(*self, *other)
- }
- /// # Returns
- ///
- /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
- /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
- /// - `NAN` if the number is NaN
- #[inline]
- fn signum(&self) -> $t {
- <$t>::signum(*self)
- }
- /// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
- #[inline]
- fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == $inf }
- /// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
- #[inline]
- fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == $neg_inf }
- }
- }
- }
- signed_float_impl!(f32, f32::NAN, f32::INFINITY, f32::NEG_INFINITY);
- signed_float_impl!(f64, f64::NAN, f64::INFINITY, f64::NEG_INFINITY);
- /// A trait for values which cannot be negative
- pub trait Unsigned: Num {}
- macro_rules! empty_trait_impl {
- ($name:ident for $($t:ty)*) => ($(
- impl $name for $t {}
- )*)
- }
- empty_trait_impl!(Unsigned for usize u8 u16 u32 u64);
- /// Numbers which have upper and lower bounds
- pub trait Bounded {
- // FIXME (#5527): These should be associated constants
- /// returns the smallest finite number this type can represent
- fn min_value() -> Self;
- /// returns the largest finite number this type can represent
- fn max_value() -> Self;
- }
- macro_rules! bounded_impl {
- ($t:ty, $min:expr, $max:expr) => {
- impl Bounded for $t {
- #[inline]
- fn min_value() -> $t { $min }
- #[inline]
- fn max_value() -> $t { $max }
- }
- }
- }
- bounded_impl!(usize, usize::MIN, usize::MAX);
- bounded_impl!(u8, u8::MIN, u8::MAX);
- bounded_impl!(u16, u16::MIN, u16::MAX);
- bounded_impl!(u32, u32::MIN, u32::MAX);
- bounded_impl!(u64, u64::MIN, u64::MAX);
- bounded_impl!(isize, isize::MIN, isize::MAX);
- bounded_impl!(i8, i8::MIN, i8::MAX);
- bounded_impl!(i16, i16::MIN, i16::MAX);
- bounded_impl!(i32, i32::MIN, i32::MAX);
- bounded_impl!(i64, i64::MIN, i64::MAX);
- bounded_impl!(f32, f32::MIN, f32::MAX);
- bounded_impl!(f64, f64::MIN, f64::MAX);
- macro_rules! for_each_tuple_ {
- ( $m:ident !! ) => (
- $m! { }
- );
- ( $m:ident !! $h:ident, $($t:ident,)* ) => (
- $m! { $h $($t)* }
- for_each_tuple_! { $m !! $($t,)* }
- );
- }
- macro_rules! for_each_tuple {
- ( $m:ident ) => (
- for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, }
- );
- }
- macro_rules! bounded_tuple {
- ( $($name:ident)* ) => (
- impl<$($name: Bounded,)*> Bounded for ($($name,)*) {
- fn min_value() -> Self {
- ($($name::min_value(),)*)
- }
- fn max_value() -> Self {
- ($($name::max_value(),)*)
- }
- }
- );
- }
- for_each_tuple!(bounded_tuple);
- /// Saturating math operations
- pub trait Saturating {
- /// Saturating addition operator.
- /// Returns a+b, saturating at the numeric bounds instead of overflowing.
- fn saturating_add(self, v: Self) -> Self;
- /// Saturating subtraction operator.
- /// Returns a-b, saturating at the numeric bounds instead of overflowing.
- fn saturating_sub(self, v: Self) -> Self;
- }
- impl<T: CheckedAdd + CheckedSub + Zero + PartialOrd + Bounded> Saturating for T {
- #[inline]
- fn saturating_add(self, v: T) -> T {
- match self.checked_add(&v) {
- Some(x) => x,
- None => if v >= Zero::zero() {
- Bounded::max_value()
- } else {
- Bounded::min_value()
- }
- }
- }
- #[inline]
- fn saturating_sub(self, v: T) -> T {
- match self.checked_sub(&v) {
- Some(x) => x,
- None => if v >= Zero::zero() {
- Bounded::min_value()
- } else {
- Bounded::max_value()
- }
- }
- }
- }
- /// Performs addition that returns `None` instead of wrapping around on
- /// overflow.
- pub trait CheckedAdd: Sized + Add<Self, Output = Self> {
- /// Adds two numbers, checking for overflow. If overflow happens, `None` is
- /// returned.
- fn checked_add(&self, v: &Self) -> Option<Self>;
- }
- macro_rules! checked_impl {
- ($trait_name:ident, $method:ident, $t:ty) => {
- impl $trait_name for $t {
- #[inline]
- fn $method(&self, v: &$t) -> Option<$t> {
- <$t>::$method(*self, *v)
- }
- }
- }
- }
- checked_impl!(CheckedAdd, checked_add, u8);
- checked_impl!(CheckedAdd, checked_add, u16);
- checked_impl!(CheckedAdd, checked_add, u32);
- checked_impl!(CheckedAdd, checked_add, u64);
- checked_impl!(CheckedAdd, checked_add, usize);
- checked_impl!(CheckedAdd, checked_add, i8);
- checked_impl!(CheckedAdd, checked_add, i16);
- checked_impl!(CheckedAdd, checked_add, i32);
- checked_impl!(CheckedAdd, checked_add, i64);
- checked_impl!(CheckedAdd, checked_add, isize);
- /// Performs subtraction that returns `None` instead of wrapping around on underflow.
- pub trait CheckedSub: Sized + Sub<Self, Output = Self> {
- /// Subtracts two numbers, checking for underflow. If underflow happens,
- /// `None` is returned.
- fn checked_sub(&self, v: &Self) -> Option<Self>;
- }
- checked_impl!(CheckedSub, checked_sub, u8);
- checked_impl!(CheckedSub, checked_sub, u16);
- checked_impl!(CheckedSub, checked_sub, u32);
- checked_impl!(CheckedSub, checked_sub, u64);
- checked_impl!(CheckedSub, checked_sub, usize);
- checked_impl!(CheckedSub, checked_sub, i8);
- checked_impl!(CheckedSub, checked_sub, i16);
- checked_impl!(CheckedSub, checked_sub, i32);
- checked_impl!(CheckedSub, checked_sub, i64);
- checked_impl!(CheckedSub, checked_sub, isize);
- /// Performs multiplication that returns `None` instead of wrapping around on underflow or
- /// overflow.
- pub trait CheckedMul: Sized + Mul<Self, Output = Self> {
- /// Multiplies two numbers, checking for underflow or overflow. If underflow
- /// or overflow happens, `None` is returned.
- fn checked_mul(&self, v: &Self) -> Option<Self>;
- }
- checked_impl!(CheckedMul, checked_mul, u8);
- checked_impl!(CheckedMul, checked_mul, u16);
- checked_impl!(CheckedMul, checked_mul, u32);
- checked_impl!(CheckedMul, checked_mul, u64);
- checked_impl!(CheckedMul, checked_mul, usize);
- checked_impl!(CheckedMul, checked_mul, i8);
- checked_impl!(CheckedMul, checked_mul, i16);
- checked_impl!(CheckedMul, checked_mul, i32);
- checked_impl!(CheckedMul, checked_mul, i64);
- checked_impl!(CheckedMul, checked_mul, isize);
- /// Performs division that returns `None` instead of panicking on division by zero and instead of
- /// wrapping around on underflow and overflow.
- pub trait CheckedDiv: Sized + Div<Self, Output = Self> {
- /// Divides two numbers, checking for underflow, overflow and division by
- /// zero. If any of that happens, `None` is returned.
- fn checked_div(&self, v: &Self) -> Option<Self>;
- }
- macro_rules! checkeddiv_int_impl {
- ($t:ty, $min:expr) => {
- impl CheckedDiv for $t {
- #[inline]
- fn checked_div(&self, v: &$t) -> Option<$t> {
- if *v == 0 || (*self == $min && *v == -1) {
- None
- } else {
- Some(*self / *v)
- }
- }
- }
- }
- }
- checkeddiv_int_impl!(isize, isize::MIN);
- checkeddiv_int_impl!(i8, i8::MIN);
- checkeddiv_int_impl!(i16, i16::MIN);
- checkeddiv_int_impl!(i32, i32::MIN);
- checkeddiv_int_impl!(i64, i64::MIN);
- macro_rules! checkeddiv_uint_impl {
- ($($t:ty)*) => ($(
- impl CheckedDiv for $t {
- #[inline]
- fn checked_div(&self, v: &$t) -> Option<$t> {
- if *v == 0 {
- None
- } else {
- Some(*self / *v)
- }
- }
- }
- )*)
- }
- checkeddiv_uint_impl!(usize u8 u16 u32 u64);
- pub trait PrimInt
- : Sized
- + Copy
- + Num + NumCast
- + Bounded
- + PartialOrd + Ord + Eq
- + Not<Output=Self>
- + BitAnd<Output=Self>
- + BitOr<Output=Self>
- + BitXor<Output=Self>
- + Shl<usize, Output=Self>
- + Shr<usize, Output=Self>
- + CheckedAdd<Output=Self>
- + CheckedSub<Output=Self>
- + CheckedMul<Output=Self>
- + CheckedDiv<Output=Self>
- + Saturating
- {
- /// Returns the number of ones in the binary representation of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num::traits::PrimInt;
- ///
- /// let n = 0b01001100u8;
- ///
- /// assert_eq!(n.count_ones(), 3);
- /// ```
- fn count_ones(self) -> u32;
- /// Returns the number of zeros in the binary representation of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num::traits::PrimInt;
- ///
- /// let n = 0b01001100u8;
- ///
- /// assert_eq!(n.count_zeros(), 5);
- /// ```
- fn count_zeros(self) -> u32;
- /// Returns the number of leading zeros in the binary representation
- /// of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num::traits::PrimInt;
- ///
- /// let n = 0b0101000u16;
- ///
- /// assert_eq!(n.leading_zeros(), 10);
- /// ```
- fn leading_zeros(self) -> u32;
- /// Returns the number of trailing zeros in the binary representation
- /// of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num::traits::PrimInt;
- ///
- /// let n = 0b0101000u16;
- ///
- /// assert_eq!(n.trailing_zeros(), 3);
- /// ```
- fn trailing_zeros(self) -> u32;
- /// Shifts the bits to the left by a specified amount amount, `n`, wrapping
- /// the truncated bits to the end of the resulting integer.
- ///
- /// # Examples
- ///
- /// ```
- /// use num::traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- /// let m = 0x3456789ABCDEF012u64;
- ///
- /// assert_eq!(n.rotate_left(12), m);
- /// ```
- fn rotate_left(self, n: u32) -> Self;
- /// Shifts the bits to the right by a specified amount amount, `n`, wrapping
- /// the truncated bits to the beginning of the resulting integer.
- ///
- /// # Examples
- ///
- /// ```
- /// use num::traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- /// let m = 0xDEF0123456789ABCu64;
- ///
- /// assert_eq!(n.rotate_right(12), m);
- /// ```
- fn rotate_right(self, n: u32) -> Self;
- /// Reverses the byte order of the integer.
- ///
- /// # Examples
- ///
- /// ```
- /// use num::traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- /// let m = 0xEFCDAB8967452301u64;
- ///
- /// assert_eq!(n.swap_bytes(), m);
- /// ```
- fn swap_bytes(self) -> Self;
- /// Convert an integer from big endian to the target's endianness.
- ///
- /// On big endian this is a no-op. On little endian the bytes are swapped.
- ///
- /// # Examples
- ///
- /// ```
- /// use num::traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- ///
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(u64::from_be(n), n)
- /// } else {
- /// assert_eq!(u64::from_be(n), n.swap_bytes())
- /// }
- /// ```
- fn from_be(x: Self) -> Self;
- /// Convert an integer from little endian to the target's endianness.
- ///
- /// On little endian this is a no-op. On big endian the bytes are swapped.
- ///
- /// # Examples
- ///
- /// ```
- /// use num::traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- ///
- /// if cfg!(target_endian = "little") {
- /// assert_eq!(u64::from_le(n), n)
- /// } else {
- /// assert_eq!(u64::from_le(n), n.swap_bytes())
- /// }
- /// ```
- fn from_le(x: Self) -> Self;
- /// Convert `self` to big endian from the target's endianness.
- ///
- /// On big endian this is a no-op. On little endian the bytes are swapped.
- ///
- /// # Examples
- ///
- /// ```
- /// use num::traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- ///
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(n.to_be(), n)
- /// } else {
- /// assert_eq!(n.to_be(), n.swap_bytes())
- /// }
- /// ```
- fn to_be(self) -> Self;
- /// Convert `self` to little endian from the target's endianness.
- ///
- /// On little endian this is a no-op. On big endian the bytes are swapped.
- ///
- /// # Examples
- ///
- /// ```
- /// use num::traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- ///
- /// if cfg!(target_endian = "little") {
- /// assert_eq!(n.to_le(), n)
- /// } else {
- /// assert_eq!(n.to_le(), n.swap_bytes())
- /// }
- /// ```
- fn to_le(self) -> Self;
- /// Raises self to the power of `exp`, using exponentiation by squaring.
- ///
- /// # Examples
- ///
- /// ```
- /// use num::traits::PrimInt;
- ///
- /// assert_eq!(2i32.pow(4), 16);
- /// ```
- fn pow(self, mut exp: u32) -> Self;
- }
- macro_rules! prim_int_impl {
- ($($T:ty)*) => ($(
- impl PrimInt for $T {
- fn count_ones(self) -> u32 {
- <$T>::count_ones(self)
- }
- fn count_zeros(self) -> u32 {
- <$T>::count_zeros(self)
- }
- fn leading_zeros(self) -> u32 {
- <$T>::leading_zeros(self)
- }
- fn trailing_zeros(self) -> u32 {
- <$T>::trailing_zeros(self)
- }
- fn rotate_left(self, n: u32) -> Self {
- <$T>::rotate_left(self, n)
- }
- fn rotate_right(self, n: u32) -> Self {
- <$T>::rotate_right(self, n)
- }
- fn swap_bytes(self) -> Self {
- <$T>::swap_bytes(self)
- }
- fn from_be(x: Self) -> Self {
- <$T>::from_be(x)
- }
- fn from_le(x: Self) -> Self {
- <$T>::from_le(x)
- }
- fn to_be(self) -> Self {
- <$T>::to_be(self)
- }
- fn to_le(self) -> Self {
- <$T>::to_le(self)
- }
- fn pow(self, exp: u32) -> Self {
- <$T>::pow(self, exp)
- }
- }
- )*)
- }
- prim_int_impl!(u8 u16 u32 u64 usize i8 i16 i32 i64 isize);
- /// A generic trait for converting a value to a number.
- pub trait ToPrimitive {
- /// Converts the value of `self` to an `isize`.
- #[inline]
- fn to_isize(&self) -> Option<isize> {
- self.to_i64().and_then(|x| x.to_isize())
- }
- /// Converts the value of `self` to an `i8`.
- #[inline]
- fn to_i8(&self) -> Option<i8> {
- self.to_i64().and_then(|x| x.to_i8())
- }
- /// Converts the value of `self` to an `i16`.
- #[inline]
- fn to_i16(&self) -> Option<i16> {
- self.to_i64().and_then(|x| x.to_i16())
- }
- /// Converts the value of `self` to an `i32`.
- #[inline]
- fn to_i32(&self) -> Option<i32> {
- self.to_i64().and_then(|x| x.to_i32())
- }
- /// Converts the value of `self` to an `i64`.
- fn to_i64(&self) -> Option<i64>;
- /// Converts the value of `self` to a `usize`.
- #[inline]
- fn to_usize(&self) -> Option<usize> {
- self.to_u64().and_then(|x| x.to_usize())
- }
- /// Converts the value of `self` to an `u8`.
- #[inline]
- fn to_u8(&self) -> Option<u8> {
- self.to_u64().and_then(|x| x.to_u8())
- }
- /// Converts the value of `self` to an `u16`.
- #[inline]
- fn to_u16(&self) -> Option<u16> {
- self.to_u64().and_then(|x| x.to_u16())
- }
- /// Converts the value of `self` to an `u32`.
- #[inline]
- fn to_u32(&self) -> Option<u32> {
- self.to_u64().and_then(|x| x.to_u32())
- }
- /// Converts the value of `self` to an `u64`.
- #[inline]
- fn to_u64(&self) -> Option<u64>;
- /// Converts the value of `self` to an `f32`.
- #[inline]
- fn to_f32(&self) -> Option<f32> {
- self.to_f64().and_then(|x| x.to_f32())
- }
- /// Converts the value of `self` to an `f64`.
- #[inline]
- fn to_f64(&self) -> Option<f64> {
- self.to_i64().and_then(|x| x.to_f64())
- }
- }
- macro_rules! impl_to_primitive_int_to_int {
- ($SrcT:ty, $DstT:ty, $slf:expr) => (
- {
- if size_of::<$SrcT>() <= size_of::<$DstT>() {
- Some($slf as $DstT)
- } else {
- let n = $slf as i64;
- let min_value: $DstT = Bounded::min_value();
- let max_value: $DstT = Bounded::max_value();
- if min_value as i64 <= n && n <= max_value as i64 {
- Some($slf as $DstT)
- } else {
- None
- }
- }
- }
- )
- }
- macro_rules! impl_to_primitive_int_to_uint {
- ($SrcT:ty, $DstT:ty, $slf:expr) => (
- {
- let zero: $SrcT = Zero::zero();
- let max_value: $DstT = Bounded::max_value();
- if zero <= $slf && $slf as u64 <= max_value as u64 {
- Some($slf as $DstT)
- } else {
- None
- }
- }
- )
- }
- macro_rules! impl_to_primitive_int {
- ($T:ty) => (
- impl ToPrimitive for $T {
- #[inline]
- fn to_isize(&self) -> Option<isize> { impl_to_primitive_int_to_int!($T, isize, *self) }
- #[inline]
- fn to_i8(&self) -> Option<i8> { impl_to_primitive_int_to_int!($T, i8, *self) }
- #[inline]
- fn to_i16(&self) -> Option<i16> { impl_to_primitive_int_to_int!($T, i16, *self) }
- #[inline]
- fn to_i32(&self) -> Option<i32> { impl_to_primitive_int_to_int!($T, i32, *self) }
- #[inline]
- fn to_i64(&self) -> Option<i64> { impl_to_primitive_int_to_int!($T, i64, *self) }
- #[inline]
- fn to_usize(&self) -> Option<usize> { impl_to_primitive_int_to_uint!($T, usize, *self) }
- #[inline]
- fn to_u8(&self) -> Option<u8> { impl_to_primitive_int_to_uint!($T, u8, *self) }
- #[inline]
- fn to_u16(&self) -> Option<u16> { impl_to_primitive_int_to_uint!($T, u16, *self) }
- #[inline]
- fn to_u32(&self) -> Option<u32> { impl_to_primitive_int_to_uint!($T, u32, *self) }
- #[inline]
- fn to_u64(&self) -> Option<u64> { impl_to_primitive_int_to_uint!($T, u64, *self) }
- #[inline]
- fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
- #[inline]
- fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
- }
- )
- }
- impl_to_primitive_int! { isize }
- impl_to_primitive_int! { i8 }
- impl_to_primitive_int! { i16 }
- impl_to_primitive_int! { i32 }
- impl_to_primitive_int! { i64 }
- macro_rules! impl_to_primitive_uint_to_int {
- ($DstT:ty, $slf:expr) => (
- {
- let max_value: $DstT = Bounded::max_value();
- if $slf as u64 <= max_value as u64 {
- Some($slf as $DstT)
- } else {
- None
- }
- }
- )
- }
- macro_rules! impl_to_primitive_uint_to_uint {
- ($SrcT:ty, $DstT:ty, $slf:expr) => (
- {
- if size_of::<$SrcT>() <= size_of::<$DstT>() {
- Some($slf as $DstT)
- } else {
- let zero: $SrcT = Zero::zero();
- let max_value: $DstT = Bounded::max_value();
- if zero <= $slf && $slf as u64 <= max_value as u64 {
- Some($slf as $DstT)
- } else {
- None
- }
- }
- }
- )
- }
- macro_rules! impl_to_primitive_uint {
- ($T:ty) => (
- impl ToPrimitive for $T {
- #[inline]
- fn to_isize(&self) -> Option<isize> { impl_to_primitive_uint_to_int!(isize, *self) }
- #[inline]
- fn to_i8(&self) -> Option<i8> { impl_to_primitive_uint_to_int!(i8, *self) }
- #[inline]
- fn to_i16(&self) -> Option<i16> { impl_to_primitive_uint_to_int!(i16, *self) }
- #[inline]
- fn to_i32(&self) -> Option<i32> { impl_to_primitive_uint_to_int!(i32, *self) }
- #[inline]
- fn to_i64(&self) -> Option<i64> { impl_to_primitive_uint_to_int!(i64, *self) }
- #[inline]
- fn to_usize(&self) -> Option<usize> {
- impl_to_primitive_uint_to_uint!($T, usize, *self)
- }
- #[inline]
- fn to_u8(&self) -> Option<u8> { impl_to_primitive_uint_to_uint!($T, u8, *self) }
- #[inline]
- fn to_u16(&self) -> Option<u16> { impl_to_primitive_uint_to_uint!($T, u16, *self) }
- #[inline]
- fn to_u32(&self) -> Option<u32> { impl_to_primitive_uint_to_uint!($T, u32, *self) }
- #[inline]
- fn to_u64(&self) -> Option<u64> { impl_to_primitive_uint_to_uint!($T, u64, *self) }
- #[inline]
- fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
- #[inline]
- fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
- }
- )
- }
- impl_to_primitive_uint! { usize }
- impl_to_primitive_uint! { u8 }
- impl_to_primitive_uint! { u16 }
- impl_to_primitive_uint! { u32 }
- impl_to_primitive_uint! { u64 }
- macro_rules! impl_to_primitive_float_to_float {
- ($SrcT:ident, $DstT:ident, $slf:expr) => (
- if size_of::<$SrcT>() <= size_of::<$DstT>() {
- Some($slf as $DstT)
- } else {
- let n = $slf as f64;
- let max_value: $SrcT = ::std::$SrcT::MAX;
- if -max_value as f64 <= n && n <= max_value as f64 {
- Some($slf as $DstT)
- } else {
- None
- }
- }
- )
- }
- macro_rules! impl_to_primitive_float {
- ($T:ident) => (
- impl ToPrimitive for $T {
- #[inline]
- fn to_isize(&self) -> Option<isize> { Some(*self as isize) }
- #[inline]
- fn to_i8(&self) -> Option<i8> { Some(*self as i8) }
- #[inline]
- fn to_i16(&self) -> Option<i16> { Some(*self as i16) }
- #[inline]
- fn to_i32(&self) -> Option<i32> { Some(*self as i32) }
- #[inline]
- fn to_i64(&self) -> Option<i64> { Some(*self as i64) }
- #[inline]
- fn to_usize(&self) -> Option<usize> { Some(*self as usize) }
- #[inline]
- fn to_u8(&self) -> Option<u8> { Some(*self as u8) }
- #[inline]
- fn to_u16(&self) -> Option<u16> { Some(*self as u16) }
- #[inline]
- fn to_u32(&self) -> Option<u32> { Some(*self as u32) }
- #[inline]
- fn to_u64(&self) -> Option<u64> { Some(*self as u64) }
- #[inline]
- fn to_f32(&self) -> Option<f32> { impl_to_primitive_float_to_float!($T, f32, *self) }
- #[inline]
- fn to_f64(&self) -> Option<f64> { impl_to_primitive_float_to_float!($T, f64, *self) }
- }
- )
- }
- impl_to_primitive_float! { f32 }
- impl_to_primitive_float! { f64 }
- /// A generic trait for converting a number to a value.
- pub trait FromPrimitive: Sized {
- /// Convert an `isize` to return an optional value of this type. If the
- /// value cannot be represented by this value, the `None` is returned.
- #[inline]
- fn from_isize(n: isize) -> Option<Self> {
- FromPrimitive::from_i64(n as i64)
- }
- /// Convert an `i8` to return an optional value of this type. If the
- /// type cannot be represented by this value, the `None` is returned.
- #[inline]
- fn from_i8(n: i8) -> Option<Self> {
- FromPrimitive::from_i64(n as i64)
- }
- /// Convert an `i16` to return an optional value of this type. If the
- /// type cannot be represented by this value, the `None` is returned.
- #[inline]
- fn from_i16(n: i16) -> Option<Self> {
- FromPrimitive::from_i64(n as i64)
- }
- /// Convert an `i32` to return an optional value of this type. If the
- /// type cannot be represented by this value, the `None` is returned.
- #[inline]
- fn from_i32(n: i32) -> Option<Self> {
- FromPrimitive::from_i64(n as i64)
- }
- /// Convert an `i64` to return an optional value of this type. If the
- /// type cannot be represented by this value, the `None` is returned.
- fn from_i64(n: i64) -> Option<Self>;
- /// Convert a `usize` to return an optional value of this type. If the
- /// type cannot be represented by this value, the `None` is returned.
- #[inline]
- fn from_usize(n: usize) -> Option<Self> {
- FromPrimitive::from_u64(n as u64)
- }
- /// Convert an `u8` to return an optional value of this type. If the
- /// type cannot be represented by this value, the `None` is returned.
- #[inline]
- fn from_u8(n: u8) -> Option<Self> {
- FromPrimitive::from_u64(n as u64)
- }
- /// Convert an `u16` to return an optional value of this type. If the
- /// type cannot be represented by this value, the `None` is returned.
- #[inline]
- fn from_u16(n: u16) -> Option<Self> {
- FromPrimitive::from_u64(n as u64)
- }
- /// Convert an `u32` to return an optional value of this type. If the
- /// type cannot be represented by this value, the `None` is returned.
- #[inline]
- fn from_u32(n: u32) -> Option<Self> {
- FromPrimitive::from_u64(n as u64)
- }
- /// Convert an `u64` to return an optional value of this type. If the
- /// type cannot be represented by this value, the `None` is returned.
- fn from_u64(n: u64) -> Option<Self>;
- /// Convert a `f32` to return an optional value of this type. If the
- /// type cannot be represented by this value, the `None` is returned.
- #[inline]
- fn from_f32(n: f32) -> Option<Self> {
- FromPrimitive::from_f64(n as f64)
- }
- /// Convert a `f64` to return an optional value of this type. If the
- /// type cannot be represented by this value, the `None` is returned.
- #[inline]
- fn from_f64(n: f64) -> Option<Self> {
- FromPrimitive::from_i64(n as i64)
- }
- }
- macro_rules! impl_from_primitive {
- ($T:ty, $to_ty:ident) => (
- #[allow(deprecated)]
- impl FromPrimitive for $T {
- #[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() }
- #[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() }
- #[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() }
- #[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() }
- #[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() }
- #[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() }
- #[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() }
- #[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() }
- #[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() }
- #[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() }
- }
- )
- }
- impl_from_primitive! { isize, to_isize }
- impl_from_primitive! { i8, to_i8 }
- impl_from_primitive! { i16, to_i16 }
- impl_from_primitive! { i32, to_i32 }
- impl_from_primitive! { i64, to_i64 }
- impl_from_primitive! { usize, to_usize }
- impl_from_primitive! { u8, to_u8 }
- impl_from_primitive! { u16, to_u16 }
- impl_from_primitive! { u32, to_u32 }
- impl_from_primitive! { u64, to_u64 }
- impl_from_primitive! { f32, to_f32 }
- impl_from_primitive! { f64, to_f64 }
- /// Cast from one machine scalar to another.
- ///
- /// # Examples
- ///
- /// ```
- /// use num;
- ///
- /// let twenty: f32 = num::cast(0x14).unwrap();
- /// assert_eq!(twenty, 20f32);
- /// ```
- ///
- #[inline]
- pub fn cast<T: NumCast,U: NumCast>(n: T) -> Option<U> {
- NumCast::from(n)
- }
- /// An interface for casting between machine scalars.
- pub trait NumCast: Sized + ToPrimitive {
- /// Creates a number from another value that can be converted into
- /// a primitive via the `ToPrimitive` trait.
- fn from<T: ToPrimitive>(n: T) -> Option<Self>;
- }
- macro_rules! impl_num_cast {
- ($T:ty, $conv:ident) => (
- impl NumCast for $T {
- #[inline]
- #[allow(deprecated)]
- fn from<N: ToPrimitive>(n: N) -> Option<$T> {
- // `$conv` could be generated using `concat_idents!`, but that
- // macro seems to be broken at the moment
- n.$conv()
- }
- }
- )
- }
- impl_num_cast! { u8, to_u8 }
- impl_num_cast! { u16, to_u16 }
- impl_num_cast! { u32, to_u32 }
- impl_num_cast! { u64, to_u64 }
- impl_num_cast! { usize, to_usize }
- impl_num_cast! { i8, to_i8 }
- impl_num_cast! { i16, to_i16 }
- impl_num_cast! { i32, to_i32 }
- impl_num_cast! { i64, to_i64 }
- impl_num_cast! { isize, to_isize }
- impl_num_cast! { f32, to_f32 }
- impl_num_cast! { f64, to_f64 }
- pub trait Float
- : Num
- + Copy
- + NumCast
- + PartialOrd
- + Neg<Output = Self>
- {
- /// Returns the `NaN` value.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let nan: f32 = Float::nan();
- ///
- /// assert!(nan.is_nan());
- /// ```
- fn nan() -> Self;
- /// Returns the infinite value.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f32;
- ///
- /// let infinity: f32 = Float::infinity();
- ///
- /// assert!(infinity.is_infinite());
- /// assert!(!infinity.is_finite());
- /// assert!(infinity > f32::MAX);
- /// ```
- fn infinity() -> Self;
- /// Returns the negative infinite value.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f32;
- ///
- /// let neg_infinity: f32 = Float::neg_infinity();
- ///
- /// assert!(neg_infinity.is_infinite());
- /// assert!(!neg_infinity.is_finite());
- /// assert!(neg_infinity < f32::MIN);
- /// ```
- fn neg_infinity() -> Self;
- /// Returns `-0.0`.
- ///
- /// ```
- /// use num::traits::{Zero, Float};
- ///
- /// let inf: f32 = Float::infinity();
- /// let zero: f32 = Zero::zero();
- /// let neg_zero: f32 = Float::neg_zero();
- ///
- /// assert_eq!(zero, neg_zero);
- /// assert_eq!(7.0f32/inf, zero);
- /// assert_eq!(zero * 10.0, zero);
- /// ```
- fn neg_zero() -> Self;
- /// Returns the smallest finite value that this type can represent.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::min_value();
- ///
- /// assert_eq!(x, f64::MIN);
- /// ```
- fn min_value() -> Self;
- /// Returns the smallest positive, normalized value that this type can represent.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::min_positive_value();
- ///
- /// assert_eq!(x, f64::MIN_POSITIVE);
- /// ```
- fn min_positive_value() -> Self;
- /// Returns the largest finite value that this type can represent.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::max_value();
- /// assert_eq!(x, f64::MAX);
- /// ```
- fn max_value() -> Self;
- /// Returns `true` if this value is `NaN` and false otherwise.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let nan = f64::NAN;
- /// let f = 7.0;
- ///
- /// assert!(nan.is_nan());
- /// assert!(!f.is_nan());
- /// ```
- fn is_nan(self) -> bool;
- /// Returns `true` if this value is positive infinity or negative infinity and
- /// false otherwise.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f32;
- ///
- /// let f = 7.0f32;
- /// let inf: f32 = Float::infinity();
- /// let neg_inf: f32 = Float::neg_infinity();
- /// let nan: f32 = f32::NAN;
- ///
- /// assert!(!f.is_infinite());
- /// assert!(!nan.is_infinite());
- ///
- /// assert!(inf.is_infinite());
- /// assert!(neg_inf.is_infinite());
- /// ```
- fn is_infinite(self) -> bool;
- /// Returns `true` if this number is neither infinite nor `NaN`.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f32;
- ///
- /// let f = 7.0f32;
- /// let inf: f32 = Float::infinity();
- /// let neg_inf: f32 = Float::neg_infinity();
- /// let nan: f32 = f32::NAN;
- ///
- /// assert!(f.is_finite());
- ///
- /// assert!(!nan.is_finite());
- /// assert!(!inf.is_finite());
- /// assert!(!neg_inf.is_finite());
- /// ```
- fn is_finite(self) -> bool;
- /// Returns `true` if the number is neither zero, infinite,
- /// [subnormal][subnormal], or `NaN`.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f32;
- ///
- /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
- /// let max = f32::MAX;
- /// let lower_than_min = 1.0e-40_f32;
- /// let zero = 0.0f32;
- ///
- /// assert!(min.is_normal());
- /// assert!(max.is_normal());
- ///
- /// assert!(!zero.is_normal());
- /// assert!(!f32::NAN.is_normal());
- /// assert!(!f32::INFINITY.is_normal());
- /// // Values between `0` and `min` are Subnormal.
- /// assert!(!lower_than_min.is_normal());
- /// ```
- /// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
- fn is_normal(self) -> bool;
- /// Returns the floating point category of the number. If only one property
- /// is going to be tested, it is generally faster to use the specific
- /// predicate instead.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::num::FpCategory;
- /// use std::f32;
- ///
- /// let num = 12.4f32;
- /// let inf = f32::INFINITY;
- ///
- /// assert_eq!(num.classify(), FpCategory::Normal);
- /// assert_eq!(inf.classify(), FpCategory::Infinite);
- /// ```
- fn classify(self) -> FpCategory;
- /// Returns the largest integer less than or equal to a number.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let f = 3.99;
- /// let g = 3.0;
- ///
- /// assert_eq!(f.floor(), 3.0);
- /// assert_eq!(g.floor(), 3.0);
- /// ```
- fn floor(self) -> Self;
- /// Returns the smallest integer greater than or equal to a number.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let f = 3.01;
- /// let g = 4.0;
- ///
- /// assert_eq!(f.ceil(), 4.0);
- /// assert_eq!(g.ceil(), 4.0);
- /// ```
- fn ceil(self) -> Self;
- /// Returns the nearest integer to a number. Round half-way cases away from
- /// `0.0`.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let f = 3.3;
- /// let g = -3.3;
- ///
- /// assert_eq!(f.round(), 3.0);
- /// assert_eq!(g.round(), -3.0);
- /// ```
- fn round(self) -> Self;
- /// Return the integer part of a number.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let f = 3.3;
- /// let g = -3.7;
- ///
- /// assert_eq!(f.trunc(), 3.0);
- /// assert_eq!(g.trunc(), -3.0);
- /// ```
- fn trunc(self) -> Self;
- /// Returns the fractional part of a number.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- /// let abs_difference_x = (x.fract() - 0.5).abs();
- /// let abs_difference_y = (y.fract() - (-0.5)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn fract(self) -> Self;
- /// Computes the absolute value of `self`. Returns `Float::nan()` if the
- /// number is `Float::nan()`.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- ///
- /// let abs_difference_x = (x.abs() - x).abs();
- /// let abs_difference_y = (y.abs() - (-y)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- ///
- /// assert!(f64::NAN.abs().is_nan());
- /// ```
- fn abs(self) -> Self;
- /// Returns a number that represents the sign of `self`.
- ///
- /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
- /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
- /// - `Float::nan()` if the number is `Float::nan()`
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let f = 3.5;
- ///
- /// assert_eq!(f.signum(), 1.0);
- /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
- ///
- /// assert!(f64::NAN.signum().is_nan());
- /// ```
- fn signum(self) -> Self;
- /// Returns `true` if `self` is positive, including `+0.0` and
- /// `Float::infinity()`.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let nan: f64 = f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(f.is_sign_positive());
- /// assert!(!g.is_sign_positive());
- /// // Requires both tests to determine if is `NaN`
- /// assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
- /// ```
- fn is_sign_positive(self) -> bool;
- /// Returns `true` if `self` is negative, including `-0.0` and
- /// `Float::neg_infinity()`.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let nan = f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(!f.is_sign_negative());
- /// assert!(g.is_sign_negative());
- /// // Requires both tests to determine if is `NaN`.
- /// assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
- /// ```
- fn is_sign_negative(self) -> bool;
- /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
- /// error. This produces a more accurate result with better performance than
- /// a separate multiplication operation followed by an add.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let m = 10.0;
- /// let x = 4.0;
- /// let b = 60.0;
- ///
- /// // 100.0
- /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn mul_add(self, a: Self, b: Self) -> Self;
- /// Take the reciprocal (inverse) of a number, `1/x`.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.recip() - (1.0/x)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn recip(self) -> Self;
- /// Raise a number to an integer power.
- ///
- /// Using this function is generally faster than using `powf`
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powi(2) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powi(self, n: i32) -> Self;
- /// Raise a number to a floating point power.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powf(2.0) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powf(self, n: Self) -> Self;
- /// Take the square root of a number.
- ///
- /// Returns NaN if `self` is a negative number.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let positive = 4.0;
- /// let negative = -4.0;
- ///
- /// let abs_difference = (positive.sqrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// assert!(negative.sqrt().is_nan());
- /// ```
- fn sqrt(self) -> Self;
- /// Returns `e^(self)`, (the exponential function).
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp(self) -> Self;
- /// Returns `2^(self)`.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let f = 2.0;
- ///
- /// // 2^2 - 4 == 0
- /// let abs_difference = (f.exp2() - 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp2(self) -> Self;
- /// Returns the natural logarithm of the number.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln(self) -> Self;
- /// Returns the logarithm of the number with respect to an arbitrary base.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let ten = 10.0;
- /// let two = 2.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
- ///
- /// assert!(abs_difference_10 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn log(self, base: Self) -> Self;
- /// Returns the base 2 logarithm of the number.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let two = 2.0;
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference = (two.log2() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log2(self) -> Self;
- /// Returns the base 10 logarithm of the number.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let ten = 10.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference = (ten.log10() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log10(self) -> Self;
- /// Returns the maximum of the two numbers.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.max(y), y);
- /// ```
- fn max(self, other: Self) -> Self;
- /// Returns the minimum of the two numbers.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.min(y), x);
- /// ```
- fn min(self, other: Self) -> Self;
- /// The positive difference of two numbers.
- ///
- /// * If `self <= other`: `0:0`
- /// * Else: `self - other`
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let x = 3.0;
- /// let y = -3.0;
- ///
- /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
- /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn abs_sub(self, other: Self) -> Self;
- /// Take the cubic root of a number.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let x = 8.0;
- ///
- /// // x^(1/3) - 2 == 0
- /// let abs_difference = (x.cbrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cbrt(self) -> Self;
- /// Calculate the length of the hypotenuse of a right-angle triangle given
- /// legs of length `x` and `y`.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let x = 2.0;
- /// let y = 3.0;
- ///
- /// // sqrt(x^2 + y^2)
- /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn hypot(self, other: Self) -> Self;
- /// Computes the sine of a number (in radians).
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/2.0;
- ///
- /// let abs_difference = (x.sin() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sin(self) -> Self;
- /// Computes the cosine of a number (in radians).
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let x = 2.0*f64::consts::PI;
- ///
- /// let abs_difference = (x.cos() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cos(self) -> Self;
- /// Computes the tangent of a number (in radians).
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let abs_difference = (x.tan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-14);
- /// ```
- fn tan(self) -> Self;
- /// Computes the arcsine of a number. Return value is in radians in
- /// the range [-pi/2, pi/2] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 2.0;
- ///
- /// // asin(sin(pi/2))
- /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn asin(self) -> Self;
- /// Computes the arccosine of a number. Return value is in radians in
- /// the range [0, pi] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 4.0;
- ///
- /// // acos(cos(pi/4))
- /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn acos(self) -> Self;
- /// Computes the arctangent of a number. Return value is in radians in the
- /// range [-pi/2, pi/2];
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let f = 1.0;
- ///
- /// // atan(tan(1))
- /// let abs_difference = (f.tan().atan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn atan(self) -> Self;
- /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
- ///
- /// * `x = 0`, `y = 0`: `0`
- /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
- /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
- /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let pi = f64::consts::PI;
- /// // All angles from horizontal right (+x)
- /// // 45 deg counter-clockwise
- /// let x1 = 3.0;
- /// let y1 = -3.0;
- ///
- /// // 135 deg clockwise
- /// let x2 = -3.0;
- /// let y2 = 3.0;
- ///
- /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
- /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
- ///
- /// assert!(abs_difference_1 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn atan2(self, other: Self) -> Self;
- /// Simultaneously computes the sine and cosine of the number, `x`. Returns
- /// `(sin(x), cos(x))`.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let f = x.sin_cos();
- ///
- /// let abs_difference_0 = (f.0 - x.sin()).abs();
- /// let abs_difference_1 = (f.1 - x.cos()).abs();
- ///
- /// assert!(abs_difference_0 < 1e-10);
- /// assert!(abs_difference_0 < 1e-10);
- /// ```
- fn sin_cos(self) -> (Self, Self);
- /// Returns `e^(self) - 1` in a way that is accurate even if the
- /// number is close to zero.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let x = 7.0;
- ///
- /// // e^(ln(7)) - 1
- /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp_m1(self) -> Self;
- /// Returns `ln(1+n)` (natural logarithm) more accurately than if
- /// the operations were performed separately.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::E - 1.0;
- ///
- /// // ln(1 + (e - 1)) == ln(e) == 1
- /// let abs_difference = (x.ln_1p() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln_1p(self) -> Self;
- /// Hyperbolic sine function.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.sinh();
- /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
- /// let g = (e*e - 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sinh(self) -> Self;
- /// Hyperbolic cosine function.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- /// let f = x.cosh();
- /// // Solving cosh() at 1 gives this result
- /// let g = (e*e + 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// // Same result
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn cosh(self) -> Self;
- /// Hyperbolic tangent function.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.tanh();
- /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
- /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn tanh(self) -> Self;
- /// Inverse hyperbolic sine function.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let x = 1.0;
- /// let f = x.sinh().asinh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn asinh(self) -> Self;
- /// Inverse hyperbolic cosine function.
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let x = 1.0;
- /// let f = x.cosh().acosh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn acosh(self) -> Self;
- /// Inverse hyperbolic tangent function.
- ///
- /// ```
- /// use num::traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let f = e.tanh().atanh();
- ///
- /// let abs_difference = (f - e).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn atanh(self) -> Self;
- /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
- /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
- /// The floating point encoding is documented in the [Reference][floating-point].
- ///
- /// ```
- /// use num::traits::Float;
- ///
- /// let num = 2.0f32;
- ///
- /// // (8388608, -22, 1)
- /// let (mantissa, exponent, sign) = Float::integer_decode(num);
- /// let sign_f = sign as f32;
- /// let mantissa_f = mantissa as f32;
- /// let exponent_f = num.powf(exponent as f32);
- ///
- /// // 1 * 8388608 * 2^(-22) == 2
- /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- /// [floating-point]: ../../../../../reference.html#machine-types
- fn integer_decode(self) -> (u64, i16, i8);
- }
- macro_rules! float_impl {
- ($T:ident $decode:ident) => (
- impl Float for $T {
- fn nan() -> Self {
- ::std::$T::NAN
- }
- fn infinity() -> Self {
- ::std::$T::INFINITY
- }
- fn neg_infinity() -> Self {
- ::std::$T::NEG_INFINITY
- }
- fn neg_zero() -> Self {
- -0.0
- }
- fn min_value() -> Self {
- ::std::$T::MIN
- }
- fn min_positive_value() -> Self {
- ::std::$T::MIN_POSITIVE
- }
- fn max_value() -> Self {
- ::std::$T::MAX
- }
- fn is_nan(self) -> bool {
- <$T>::is_nan(self)
- }
- fn is_infinite(self) -> bool {
- <$T>::is_infinite(self)
- }
- fn is_finite(self) -> bool {
- <$T>::is_finite(self)
- }
- fn is_normal(self) -> bool {
- <$T>::is_normal(self)
- }
- fn classify(self) -> FpCategory {
- <$T>::classify(self)
- }
- fn floor(self) -> Self {
- <$T>::floor(self)
- }
- fn ceil(self) -> Self {
- <$T>::ceil(self)
- }
- fn round(self) -> Self {
- <$T>::round(self)
- }
- fn trunc(self) -> Self {
- <$T>::trunc(self)
- }
- fn fract(self) -> Self {
- <$T>::fract(self)
- }
- fn abs(self) -> Self {
- <$T>::abs(self)
- }
- fn signum(self) -> Self {
- <$T>::signum(self)
- }
- fn is_sign_positive(self) -> bool {
- <$T>::is_sign_positive(self)
- }
- fn is_sign_negative(self) -> bool {
- <$T>::is_sign_negative(self)
- }
- fn mul_add(self, a: Self, b: Self) -> Self {
- <$T>::mul_add(self, a, b)
- }
- fn recip(self) -> Self {
- <$T>::recip(self)
- }
- fn powi(self, n: i32) -> Self {
- <$T>::powi(self, n)
- }
- fn powf(self, n: Self) -> Self {
- <$T>::powf(self, n)
- }
- fn sqrt(self) -> Self {
- <$T>::sqrt(self)
- }
- fn exp(self) -> Self {
- <$T>::exp(self)
- }
- fn exp2(self) -> Self {
- <$T>::exp2(self)
- }
- fn ln(self) -> Self {
- <$T>::ln(self)
- }
- fn log(self, base: Self) -> Self {
- <$T>::log(self, base)
- }
- fn log2(self) -> Self {
- <$T>::log2(self)
- }
- fn log10(self) -> Self {
- <$T>::log10(self)
- }
- fn max(self, other: Self) -> Self {
- <$T>::max(self, other)
- }
- fn min(self, other: Self) -> Self {
- <$T>::min(self, other)
- }
- fn abs_sub(self, other: Self) -> Self {
- <$T>::abs_sub(self, other)
- }
- fn cbrt(self) -> Self {
- <$T>::cbrt(self)
- }
- fn hypot(self, other: Self) -> Self {
- <$T>::hypot(self, other)
- }
- fn sin(self) -> Self {
- <$T>::sin(self)
- }
- fn cos(self) -> Self {
- <$T>::cos(self)
- }
- fn tan(self) -> Self {
- <$T>::tan(self)
- }
- fn asin(self) -> Self {
- <$T>::asin(self)
- }
- fn acos(self) -> Self {
- <$T>::acos(self)
- }
- fn atan(self) -> Self {
- <$T>::atan(self)
- }
- fn atan2(self, other: Self) -> Self {
- <$T>::atan2(self, other)
- }
- fn sin_cos(self) -> (Self, Self) {
- <$T>::sin_cos(self)
- }
- fn exp_m1(self) -> Self {
- <$T>::exp_m1(self)
- }
- fn ln_1p(self) -> Self {
- <$T>::ln_1p(self)
- }
- fn sinh(self) -> Self {
- <$T>::sinh(self)
- }
- fn cosh(self) -> Self {
- <$T>::cosh(self)
- }
- fn tanh(self) -> Self {
- <$T>::tanh(self)
- }
- fn asinh(self) -> Self {
- <$T>::asinh(self)
- }
- fn acosh(self) -> Self {
- <$T>::acosh(self)
- }
- fn atanh(self) -> Self {
- <$T>::atanh(self)
- }
- fn integer_decode(self) -> (u64, i16, i8) {
- $decode(self)
- }
- }
- )
- }
- fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
- let bits: u32 = unsafe { mem::transmute(f) };
- let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
- let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
- let mantissa = if exponent == 0 {
- (bits & 0x7fffff) << 1
- } else {
- (bits & 0x7fffff) | 0x800000
- };
- // Exponent bias + mantissa shift
- exponent -= 127 + 23;
- (mantissa as u64, exponent, sign)
- }
- fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
- let bits: u64 = unsafe { mem::transmute(f) };
- let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
- let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
- let mantissa = if exponent == 0 {
- (bits & 0xfffffffffffff) << 1
- } else {
- (bits & 0xfffffffffffff) | 0x10000000000000
- };
- // Exponent bias + mantissa shift
- exponent -= 1023 + 52;
- (mantissa, exponent, sign)
- }
- float_impl!(f32 integer_decode_f32);
- float_impl!(f64 integer_decode_f64);
|