123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912 |
- // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
- // file at the top-level directory of this distribution and at
- // http://rust-lang.org/COPYRIGHT.
- //
- // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
- // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
- // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
- // option. This file may not be copied, modified, or distributed
- // except according to those terms.
- //! Rational numbers
- use Integer;
- use std::cmp;
- use std::error::Error;
- use std::fmt;
- use std::ops::{Add, Div, Mul, Neg, Rem, Sub};
- use std::str::FromStr;
- #[cfg(feature = "bigint")]
- use bigint::{BigInt, BigUint, Sign};
- use traits::{FromPrimitive, Float, PrimInt};
- use {Num, Signed, Zero, One};
- /// Represents the ratio between 2 numbers.
- #[derive(Copy, Clone, Hash, Debug)]
- #[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
- #[allow(missing_docs)]
- pub struct Ratio<T> {
- numer: T,
- denom: T
- }
- /// Alias for a `Ratio` of machine-sized integers.
- pub type Rational = Ratio<isize>;
- pub type Rational32 = Ratio<i32>;
- pub type Rational64 = Ratio<i64>;
- #[cfg(feature = "bigint")]
- /// Alias for arbitrary precision rationals.
- pub type BigRational = Ratio<BigInt>;
- impl<T: Clone + Integer> Ratio<T> {
- /// Creates a ratio representing the integer `t`.
- #[inline]
- pub fn from_integer(t: T) -> Ratio<T> {
- Ratio::new_raw(t, One::one())
- }
- /// Creates a ratio without checking for `denom == 0` or reducing.
- #[inline]
- pub fn new_raw(numer: T, denom: T) -> Ratio<T> {
- Ratio { numer: numer, denom: denom }
- }
- /// Create a new Ratio. Fails if `denom == 0`.
- #[inline]
- pub fn new(numer: T, denom: T) -> Ratio<T> {
- if denom == Zero::zero() {
- panic!("denominator == 0");
- }
- let mut ret = Ratio::new_raw(numer, denom);
- ret.reduce();
- ret
- }
- /// Converts to an integer.
- #[inline]
- pub fn to_integer(&self) -> T {
- self.trunc().numer
- }
- /// Gets an immutable reference to the numerator.
- #[inline]
- pub fn numer<'a>(&'a self) -> &'a T {
- &self.numer
- }
- /// Gets an immutable reference to the denominator.
- #[inline]
- pub fn denom<'a>(&'a self) -> &'a T {
- &self.denom
- }
- /// Returns true if the rational number is an integer (denominator is 1).
- #[inline]
- pub fn is_integer(&self) -> bool {
- self.denom == One::one()
- }
- /// Put self into lowest terms, with denom > 0.
- fn reduce(&mut self) {
- let g : T = self.numer.gcd(&self.denom);
- // FIXME(#5992): assignment operator overloads
- // self.numer /= g;
- self.numer = self.numer.clone() / g.clone();
- // FIXME(#5992): assignment operator overloads
- // self.denom /= g;
- self.denom = self.denom.clone() / g;
- // keep denom positive!
- if self.denom < T::zero() {
- self.numer = T::zero() - self.numer.clone();
- self.denom = T::zero() - self.denom.clone();
- }
- }
- /// Returns a `reduce`d copy of self.
- pub fn reduced(&self) -> Ratio<T> {
- let mut ret = self.clone();
- ret.reduce();
- ret
- }
- /// Returns the reciprocal.
- #[inline]
- pub fn recip(&self) -> Ratio<T> {
- Ratio::new_raw(self.denom.clone(), self.numer.clone())
- }
- /// Rounds towards minus infinity.
- #[inline]
- pub fn floor(&self) -> Ratio<T> {
- if *self < Zero::zero() {
- let one: T = One::one();
- Ratio::from_integer((self.numer.clone() - self.denom.clone() + one) / self.denom.clone())
- } else {
- Ratio::from_integer(self.numer.clone() / self.denom.clone())
- }
- }
- /// Rounds towards plus infinity.
- #[inline]
- pub fn ceil(&self) -> Ratio<T> {
- if *self < Zero::zero() {
- Ratio::from_integer(self.numer.clone() / self.denom.clone())
- } else {
- let one: T = One::one();
- Ratio::from_integer((self.numer.clone() + self.denom.clone() - one) / self.denom.clone())
- }
- }
- /// Rounds to the nearest integer. Rounds half-way cases away from zero.
- #[inline]
- pub fn round(&self) -> Ratio<T> {
- let zero: Ratio<T> = Zero::zero();
- let one: T = One::one();
- let two: T = one.clone() + one.clone();
- // Find unsigned fractional part of rational number
- let mut fractional = self.fract();
- if fractional < zero { fractional = zero - fractional };
- // The algorithm compares the unsigned fractional part with 1/2, that
- // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use
- // a >= (b/2)+1. This avoids overflow issues.
- let half_or_larger = if fractional.denom().is_even() {
- *fractional.numer() >= fractional.denom().clone() / two.clone()
- } else {
- *fractional.numer() >= (fractional.denom().clone() / two.clone()) + one.clone()
- };
- if half_or_larger {
- let one: Ratio<T> = One::one();
- if *self >= Zero::zero() {
- self.trunc() + one
- } else {
- self.trunc() - one
- }
- } else {
- self.trunc()
- }
- }
- /// Rounds towards zero.
- #[inline]
- pub fn trunc(&self) -> Ratio<T> {
- Ratio::from_integer(self.numer.clone() / self.denom.clone())
- }
- /// Returns the fractional part of a number.
- #[inline]
- pub fn fract(&self) -> Ratio<T> {
- Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone())
- }
- }
- impl<T: Clone + Integer + PrimInt> Ratio<T> {
- /// Raises the ratio to the power of an exponent
- #[inline]
- pub fn pow(&self, expon: i32) -> Ratio<T> {
- match expon.cmp(&0) {
- cmp::Ordering::Equal => One::one(),
- cmp::Ordering::Less => self.recip().pow(-expon),
- cmp::Ordering::Greater => Ratio::new_raw(self.numer.pow(expon as u32),
- self.denom.pow(expon as u32)),
- }
- }
- }
- #[cfg(feature = "bigint")]
- impl Ratio<BigInt> {
- /// Converts a float into a rational number.
- pub fn from_float<T: Float>(f: T) -> Option<BigRational> {
- if !f.is_finite() {
- return None;
- }
- let (mantissa, exponent, sign) = f.integer_decode();
- let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus };
- if exponent < 0 {
- let one: BigInt = One::one();
- let denom: BigInt = one << ((-exponent) as usize);
- let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
- Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom))
- } else {
- let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
- numer = numer << (exponent as usize);
- Some(Ratio::from_integer(BigInt::from_biguint(bigint_sign, numer)))
- }
- }
- }
- /* Comparisons */
- // comparing a/b and c/d is the same as comparing a*d and b*c, so we
- // abstract that pattern. The following macro takes a trait and either
- // a comma-separated list of "method name -> return value" or just
- // "method name" (return value is bool in that case)
- macro_rules! cmp_impl {
- (impl $imp:ident, $($method:ident),+) => {
- cmp_impl!(impl $imp, $($method -> bool),+);
- };
- // return something other than a Ratio<T>
- (impl $imp:ident, $($method:ident -> $res:ty),*) => {
- impl<T> $imp for Ratio<T> where
- T: Clone + Mul<T, Output = T> + $imp
- {
- $(
- #[inline]
- fn $method(&self, other: &Ratio<T>) -> $res {
- (self.numer.clone() * other.denom.clone()). $method (&(self.denom.clone()*other.numer.clone()))
- }
- )*
- }
- };
- }
- cmp_impl!(impl PartialEq, eq, ne);
- cmp_impl!(impl PartialOrd, lt -> bool, gt -> bool, le -> bool, ge -> bool,
- partial_cmp -> Option<cmp::Ordering>);
- cmp_impl!(impl Eq, );
- cmp_impl!(impl Ord, cmp -> cmp::Ordering);
- macro_rules! forward_val_val_binop {
- (impl $imp:ident, $method:ident) => {
- impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> {
- type Output = Ratio<T>;
- #[inline]
- fn $method(self, other: Ratio<T>) -> Ratio<T> {
- (&self).$method(&other)
- }
- }
- }
- }
- macro_rules! forward_ref_val_binop {
- (impl $imp:ident, $method:ident) => {
- impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T> where
- T: Clone + Integer
- {
- type Output = Ratio<T>;
- #[inline]
- fn $method(self, other: Ratio<T>) -> Ratio<T> {
- self.$method(&other)
- }
- }
- }
- }
- macro_rules! forward_val_ref_binop {
- (impl $imp:ident, $method:ident) => {
- impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T> where
- T: Clone + Integer
- {
- type Output = Ratio<T>;
- #[inline]
- fn $method(self, other: &Ratio<T>) -> Ratio<T> {
- (&self).$method(other)
- }
- }
- }
- }
- macro_rules! forward_all_binop {
- (impl $imp:ident, $method:ident) => {
- forward_val_val_binop!(impl $imp, $method);
- forward_ref_val_binop!(impl $imp, $method);
- forward_val_ref_binop!(impl $imp, $method);
- };
- }
- /* Arithmetic */
- forward_all_binop!(impl Mul, mul);
- // a/b * c/d = (a*c)/(b*d)
- impl<'a, 'b, T> Mul<&'b Ratio<T>> for &'a Ratio<T>
- where T: Clone + Integer
- {
- type Output = Ratio<T>;
- #[inline]
- fn mul(self, rhs: &Ratio<T>) -> Ratio<T> {
- Ratio::new(self.numer.clone() * rhs.numer.clone(), self.denom.clone() * rhs.denom.clone())
- }
- }
- forward_all_binop!(impl Div, div);
- // (a/b) / (c/d) = (a*d)/(b*c)
- impl<'a, 'b, T> Div<&'b Ratio<T>> for &'a Ratio<T>
- where T: Clone + Integer
- {
- type Output = Ratio<T>;
- #[inline]
- fn div(self, rhs: &Ratio<T>) -> Ratio<T> {
- Ratio::new(self.numer.clone() * rhs.denom.clone(), self.denom.clone() * rhs.numer.clone())
- }
- }
- // Abstracts the a/b `op` c/d = (a*d `op` b*d) / (b*d) pattern
- macro_rules! arith_impl {
- (impl $imp:ident, $method:ident) => {
- forward_all_binop!(impl $imp, $method);
- impl<'a, 'b, T: Clone + Integer>
- $imp<&'b Ratio<T>> for &'a Ratio<T> {
- type Output = Ratio<T>;
- #[inline]
- fn $method(self, rhs: &Ratio<T>) -> Ratio<T> {
- Ratio::new((self.numer.clone() * rhs.denom.clone()).$method(self.denom.clone() * rhs.numer.clone()),
- self.denom.clone() * rhs.denom.clone())
- }
- }
- }
- }
- // a/b + c/d = (a*d + b*c)/(b*d)
- arith_impl!(impl Add, add);
- // a/b - c/d = (a*d - b*c)/(b*d)
- arith_impl!(impl Sub, sub);
- // a/b % c/d = (a*d % b*c)/(b*d)
- arith_impl!(impl Rem, rem);
- impl<T> Neg for Ratio<T>
- where T: Clone + Integer + Neg<Output = T>
- {
- type Output = Ratio<T>;
- #[inline]
- fn neg(self) -> Ratio<T> {
- Ratio::new_raw(-self.numer, self.denom)
- }
- }
- impl<'a, T> Neg for &'a Ratio<T>
- where T: Clone + Integer + Neg<Output = T>
- {
- type Output = Ratio<T>;
- #[inline]
- fn neg(self) -> Ratio<T> {
- -self.clone()
- }
- }
- /* Constants */
- impl<T: Clone + Integer>
- Zero for Ratio<T> {
- #[inline]
- fn zero() -> Ratio<T> {
- Ratio::new_raw(Zero::zero(), One::one())
- }
- #[inline]
- fn is_zero(&self) -> bool {
- self.numer.is_zero()
- }
- }
- impl<T: Clone + Integer>
- One for Ratio<T> {
- #[inline]
- fn one() -> Ratio<T> {
- Ratio::new_raw(One::one(), One::one())
- }
- }
- impl<T: Clone + Integer> Num for Ratio<T> {
- type FromStrRadixErr = ParseRatioError;
- /// Parses `numer/denom` where the numbers are in base `radix`.
- fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> {
- let split: Vec<&str> = s.splitn(2, '/').collect();
- if split.len() < 2 {
- Err(ParseRatioError{kind: RatioErrorKind::ParseError})
- } else {
- let a_result: Result<T, _> = T::from_str_radix(
- split[0],
- radix).map_err(|_| ParseRatioError{kind: RatioErrorKind::ParseError});
- a_result.and_then(|a| {
- let b_result: Result<T, _> =
- T::from_str_radix(split[1], radix).map_err(
- |_| ParseRatioError{kind: RatioErrorKind::ParseError});
- b_result.and_then(|b| if b.is_zero() {
- Err(ParseRatioError{kind: RatioErrorKind::ZeroDenominator})
- } else {
- Ok(Ratio::new(a.clone(), b.clone()))
- })
- })
- }
- }
- }
- impl<T: Clone + Integer + Signed> Signed for Ratio<T> {
- #[inline]
- fn abs(&self) -> Ratio<T> {
- if self.is_negative() { -self.clone() } else { self.clone() }
- }
- #[inline]
- fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> {
- if *self <= *other { Zero::zero() } else { self - other }
- }
- #[inline]
- fn signum(&self) -> Ratio<T> {
- if self.is_positive() {
- Self::one()
- } else if self.is_zero() {
- Self::zero()
- } else {
- - Self::one()
- }
- }
- #[inline]
- fn is_positive(&self) -> bool { !self.is_negative() }
- #[inline]
- fn is_negative(&self) -> bool {
- self.numer.is_negative() ^ self.denom.is_negative()
- }
- }
- /* String conversions */
- impl<T> fmt::Display for Ratio<T> where
- T: fmt::Display + Eq + One
- {
- /// Renders as `numer/denom`. If denom=1, renders as numer.
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- if self.denom == One::one() {
- write!(f, "{}", self.numer)
- } else {
- write!(f, "{}/{}", self.numer, self.denom)
- }
- }
- }
- impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> {
- type Err = ParseRatioError;
- /// Parses `numer/denom` or just `numer`.
- fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> {
- let mut split = s.splitn(2, '/');
- let n = try!(split.next().ok_or(
- ParseRatioError{kind: RatioErrorKind::ParseError}));
- let num = try!(FromStr::from_str(n).map_err(
- |_| ParseRatioError{kind: RatioErrorKind::ParseError}));
- let d = split.next().unwrap_or("1");
- let den = try!(FromStr::from_str(d).map_err(
- |_| ParseRatioError{kind: RatioErrorKind::ParseError}));
- if Zero::is_zero(&den) {
- Err(ParseRatioError{kind: RatioErrorKind::ZeroDenominator})
- } else {
- Ok(Ratio::new(num, den))
- }
- }
- }
- // FIXME: Bubble up specific errors
- #[derive(Copy, Clone, Debug, PartialEq)]
- pub struct ParseRatioError { kind: RatioErrorKind }
- #[derive(Copy, Clone, Debug, PartialEq)]
- enum RatioErrorKind {
- ParseError,
- ZeroDenominator,
- }
- impl fmt::Display for ParseRatioError {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- self.description().fmt(f)
- }
- }
- impl Error for ParseRatioError {
- fn description(&self) -> &str { self.kind.description() }
- }
- impl RatioErrorKind {
- fn description(&self) -> &'static str {
- match *self {
- RatioErrorKind::ParseError => "failed to parse integer",
- RatioErrorKind::ZeroDenominator => "zero value denominator",
- }
- }
- }
- #[cfg(test)]
- mod test {
- use super::{Ratio, Rational};
- #[cfg(feature = "bigint")]
- use super::BigRational;
- use std::str::FromStr;
- use std::i32;
- use {Zero, One, Signed, FromPrimitive, Float};
- pub const _0 : Rational = Ratio { numer: 0, denom: 1};
- pub const _1 : Rational = Ratio { numer: 1, denom: 1};
- pub const _2: Rational = Ratio { numer: 2, denom: 1};
- pub const _1_2: Rational = Ratio { numer: 1, denom: 2};
- pub const _3_2: Rational = Ratio { numer: 3, denom: 2};
- pub const _NEG1_2: Rational = Ratio { numer: -1, denom: 2};
- pub const _1_3: Rational = Ratio { numer: 1, denom: 3};
- pub const _NEG1_3: Rational = Ratio { numer: -1, denom: 3};
- pub const _2_3: Rational = Ratio { numer: 2, denom: 3};
- pub const _NEG2_3: Rational = Ratio { numer: -2, denom: 3};
- #[cfg(feature = "bigint")]
- pub fn to_big(n: Rational) -> BigRational {
- Ratio::new(
- FromPrimitive::from_isize(n.numer).unwrap(),
- FromPrimitive::from_isize(n.denom).unwrap()
- )
- }
- #[cfg(not(feature = "bigint"))]
- pub fn to_big(n: Rational) -> Rational {
- Ratio::new(
- FromPrimitive::from_isize(n.numer).unwrap(),
- FromPrimitive::from_isize(n.denom).unwrap()
- )
- }
- #[test]
- fn test_test_constants() {
- // check our constants are what Ratio::new etc. would make.
- assert_eq!(_0, Zero::zero());
- assert_eq!(_1, One::one());
- assert_eq!(_2, Ratio::from_integer(2));
- assert_eq!(_1_2, Ratio::new(1,2));
- assert_eq!(_3_2, Ratio::new(3,2));
- assert_eq!(_NEG1_2, Ratio::new(-1,2));
- }
- #[test]
- fn test_new_reduce() {
- let one22 = Ratio::new(2,2);
- assert_eq!(one22, One::one());
- }
- #[test]
- #[should_panic]
- fn test_new_zero() {
- let _a = Ratio::new(1,0);
- }
- #[test]
- fn test_cmp() {
- assert!(_0 == _0 && _1 == _1);
- assert!(_0 != _1 && _1 != _0);
- assert!(_0 < _1 && !(_1 < _0));
- assert!(_1 > _0 && !(_0 > _1));
- assert!(_0 <= _0 && _1 <= _1);
- assert!(_0 <= _1 && !(_1 <= _0));
- assert!(_0 >= _0 && _1 >= _1);
- assert!(_1 >= _0 && !(_0 >= _1));
- }
- #[test]
- fn test_to_integer() {
- assert_eq!(_0.to_integer(), 0);
- assert_eq!(_1.to_integer(), 1);
- assert_eq!(_2.to_integer(), 2);
- assert_eq!(_1_2.to_integer(), 0);
- assert_eq!(_3_2.to_integer(), 1);
- assert_eq!(_NEG1_2.to_integer(), 0);
- }
- #[test]
- fn test_numer() {
- assert_eq!(_0.numer(), &0);
- assert_eq!(_1.numer(), &1);
- assert_eq!(_2.numer(), &2);
- assert_eq!(_1_2.numer(), &1);
- assert_eq!(_3_2.numer(), &3);
- assert_eq!(_NEG1_2.numer(), &(-1));
- }
- #[test]
- fn test_denom() {
- assert_eq!(_0.denom(), &1);
- assert_eq!(_1.denom(), &1);
- assert_eq!(_2.denom(), &1);
- assert_eq!(_1_2.denom(), &2);
- assert_eq!(_3_2.denom(), &2);
- assert_eq!(_NEG1_2.denom(), &2);
- }
- #[test]
- fn test_is_integer() {
- assert!(_0.is_integer());
- assert!(_1.is_integer());
- assert!(_2.is_integer());
- assert!(!_1_2.is_integer());
- assert!(!_3_2.is_integer());
- assert!(!_NEG1_2.is_integer());
- }
- #[test]
- fn test_show() {
- assert_eq!(format!("{}", _2), "2".to_string());
- assert_eq!(format!("{}", _1_2), "1/2".to_string());
- assert_eq!(format!("{}", _0), "0".to_string());
- assert_eq!(format!("{}", Ratio::from_integer(-2)), "-2".to_string());
- }
- mod arith {
- use super::{_0, _1, _2, _1_2, _3_2, _NEG1_2, to_big};
- use super::super::{Ratio, Rational};
- #[test]
- fn test_add() {
- fn test(a: Rational, b: Rational, c: Rational) {
- assert_eq!(a + b, c);
- assert_eq!(to_big(a) + to_big(b), to_big(c));
- }
- test(_1, _1_2, _3_2);
- test(_1, _1, _2);
- test(_1_2, _3_2, _2);
- test(_1_2, _NEG1_2, _0);
- }
- #[test]
- fn test_sub() {
- fn test(a: Rational, b: Rational, c: Rational) {
- assert_eq!(a - b, c);
- assert_eq!(to_big(a) - to_big(b), to_big(c))
- }
- test(_1, _1_2, _1_2);
- test(_3_2, _1_2, _1);
- test(_1, _NEG1_2, _3_2);
- }
- #[test]
- fn test_mul() {
- fn test(a: Rational, b: Rational, c: Rational) {
- assert_eq!(a * b, c);
- assert_eq!(to_big(a) * to_big(b), to_big(c))
- }
- test(_1, _1_2, _1_2);
- test(_1_2, _3_2, Ratio::new(3,4));
- test(_1_2, _NEG1_2, Ratio::new(-1, 4));
- }
- #[test]
- fn test_div() {
- fn test(a: Rational, b: Rational, c: Rational) {
- assert_eq!(a / b, c);
- assert_eq!(to_big(a) / to_big(b), to_big(c))
- }
- test(_1, _1_2, _2);
- test(_3_2, _1_2, _1 + _2);
- test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2);
- }
- #[test]
- fn test_rem() {
- fn test(a: Rational, b: Rational, c: Rational) {
- assert_eq!(a % b, c);
- assert_eq!(to_big(a) % to_big(b), to_big(c))
- }
- test(_3_2, _1, _1_2);
- test(_2, _NEG1_2, _0);
- test(_1_2, _2, _1_2);
- }
- #[test]
- fn test_neg() {
- fn test(a: Rational, b: Rational) {
- assert_eq!(-a, b);
- assert_eq!(-to_big(a), to_big(b))
- }
- test(_0, _0);
- test(_1_2, _NEG1_2);
- test(-_1, _1);
- }
- #[test]
- fn test_zero() {
- assert_eq!(_0 + _0, _0);
- assert_eq!(_0 * _0, _0);
- assert_eq!(_0 * _1, _0);
- assert_eq!(_0 / _NEG1_2, _0);
- assert_eq!(_0 - _0, _0);
- }
- #[test]
- #[should_panic]
- fn test_div_0() {
- let _a = _1 / _0;
- }
- }
- #[test]
- fn test_round() {
- assert_eq!(_1_3.ceil(), _1);
- assert_eq!(_1_3.floor(), _0);
- assert_eq!(_1_3.round(), _0);
- assert_eq!(_1_3.trunc(), _0);
- assert_eq!(_NEG1_3.ceil(), _0);
- assert_eq!(_NEG1_3.floor(), -_1);
- assert_eq!(_NEG1_3.round(), _0);
- assert_eq!(_NEG1_3.trunc(), _0);
- assert_eq!(_2_3.ceil(), _1);
- assert_eq!(_2_3.floor(), _0);
- assert_eq!(_2_3.round(), _1);
- assert_eq!(_2_3.trunc(), _0);
- assert_eq!(_NEG2_3.ceil(), _0);
- assert_eq!(_NEG2_3.floor(), -_1);
- assert_eq!(_NEG2_3.round(), -_1);
- assert_eq!(_NEG2_3.trunc(), _0);
- assert_eq!(_1_2.ceil(), _1);
- assert_eq!(_1_2.floor(), _0);
- assert_eq!(_1_2.round(), _1);
- assert_eq!(_1_2.trunc(), _0);
- assert_eq!(_NEG1_2.ceil(), _0);
- assert_eq!(_NEG1_2.floor(), -_1);
- assert_eq!(_NEG1_2.round(), -_1);
- assert_eq!(_NEG1_2.trunc(), _0);
- assert_eq!(_1.ceil(), _1);
- assert_eq!(_1.floor(), _1);
- assert_eq!(_1.round(), _1);
- assert_eq!(_1.trunc(), _1);
- // Overflow checks
- let _neg1 = Ratio::from_integer(-1);
- let _large_rat1 = Ratio::new(i32::MAX, i32::MAX-1);
- let _large_rat2 = Ratio::new(i32::MAX-1, i32::MAX);
- let _large_rat3 = Ratio::new(i32::MIN+2, i32::MIN+1);
- let _large_rat4 = Ratio::new(i32::MIN+1, i32::MIN+2);
- let _large_rat5 = Ratio::new(i32::MIN+2, i32::MAX);
- let _large_rat6 = Ratio::new(i32::MAX, i32::MIN+2);
- let _large_rat7 = Ratio::new(1, i32::MIN+1);
- let _large_rat8 = Ratio::new(1, i32::MAX);
- assert_eq!(_large_rat1.round(), One::one());
- assert_eq!(_large_rat2.round(), One::one());
- assert_eq!(_large_rat3.round(), One::one());
- assert_eq!(_large_rat4.round(), One::one());
- assert_eq!(_large_rat5.round(), _neg1);
- assert_eq!(_large_rat6.round(), _neg1);
- assert_eq!(_large_rat7.round(), Zero::zero());
- assert_eq!(_large_rat8.round(), Zero::zero());
- }
- #[test]
- fn test_fract() {
- assert_eq!(_1.fract(), _0);
- assert_eq!(_NEG1_2.fract(), _NEG1_2);
- assert_eq!(_1_2.fract(), _1_2);
- assert_eq!(_3_2.fract(), _1_2);
- }
- #[test]
- fn test_recip() {
- assert_eq!(_1 * _1.recip(), _1);
- assert_eq!(_2 * _2.recip(), _1);
- assert_eq!(_1_2 * _1_2.recip(), _1);
- assert_eq!(_3_2 * _3_2.recip(), _1);
- assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1);
- }
- #[test]
- fn test_pow() {
- assert_eq!(_1_2.pow(2), Ratio::new(1, 4));
- assert_eq!(_1_2.pow(-2), Ratio::new(4, 1));
- assert_eq!(_1.pow(1), _1);
- assert_eq!(_NEG1_2.pow(2), _1_2.pow(2));
- assert_eq!(_NEG1_2.pow(3), -_1_2.pow(3));
- assert_eq!(_3_2.pow(0), _1);
- assert_eq!(_3_2.pow(-1), _3_2.recip());
- assert_eq!(_3_2.pow(3), Ratio::new(27, 8));
- }
- #[test]
- fn test_to_from_str() {
- fn test(r: Rational, s: String) {
- assert_eq!(FromStr::from_str(&s), Ok(r));
- assert_eq!(r.to_string(), s);
- }
- test(_1, "1".to_string());
- test(_0, "0".to_string());
- test(_1_2, "1/2".to_string());
- test(_3_2, "3/2".to_string());
- test(_2, "2".to_string());
- test(_NEG1_2, "-1/2".to_string());
- }
- #[test]
- fn test_from_str_fail() {
- fn test(s: &str) {
- let rational: Result<Rational, _> = FromStr::from_str(s);
- assert!(rational.is_err());
- }
- let xs = ["0 /1", "abc", "", "1/", "--1/2","3/2/1", "1/0"];
- for &s in xs.iter() {
- test(s);
- }
- }
- #[cfg(feature = "bigint")]
- #[test]
- fn test_from_float() {
- fn test<T: Float>(given: T, (numer, denom): (&str, &str)) {
- let ratio: BigRational = Ratio::from_float(given).unwrap();
- assert_eq!(ratio, Ratio::new(
- FromStr::from_str(numer).unwrap(),
- FromStr::from_str(denom).unwrap()));
- }
- // f32
- test(3.14159265359f32, ("13176795", "4194304"));
- test(2f32.powf(100.), ("1267650600228229401496703205376", "1"));
- test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1"));
- test(1.0 / 2f32.powf(100.), ("1", "1267650600228229401496703205376"));
- test(684729.48391f32, ("1369459", "2"));
- test(-8573.5918555f32, ("-4389679", "512"));
- // f64
- test(3.14159265359f64, ("3537118876014453", "1125899906842624"));
- test(2f64.powf(100.), ("1267650600228229401496703205376", "1"));
- test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1"));
- test(684729.48391f64, ("367611342500051", "536870912"));
- test(-8573.5918555f64, ("-4713381968463931", "549755813888"));
- test(1.0 / 2f64.powf(100.), ("1", "1267650600228229401496703205376"));
- }
- #[cfg(feature = "bigint")]
- #[test]
- fn test_from_float_fail() {
- use std::{f32, f64};
- assert_eq!(Ratio::from_float(f32::NAN), None);
- assert_eq!(Ratio::from_float(f32::INFINITY), None);
- assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None);
- assert_eq!(Ratio::from_float(f64::NAN), None);
- assert_eq!(Ratio::from_float(f64::INFINITY), None);
- assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None);
- }
- #[test]
- fn test_signed() {
- assert_eq!(_NEG1_2.abs(), _1_2);
- assert_eq!(_3_2.abs_sub(&_1_2), _1);
- assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero());
- assert_eq!(_1_2.signum(), One::one());
- assert_eq!(_NEG1_2.signum(), - ::one::<Ratio<isize>>());
- assert!(_NEG1_2.is_negative());
- assert!(! _NEG1_2.is_positive());
- assert!(! _1_2.is_negative());
- }
- #[test]
- fn test_hash() {
- assert!(::hash(&_0) != ::hash(&_1));
- assert!(::hash(&_0) != ::hash(&_3_2));
- }
- }
|