| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983 | // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT// file at the top-level directory of this distribution and at// http://rust-lang.org/COPYRIGHT.//// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your// option. This file may not be copied, modified, or distributed// except according to those terms.//! Rational numbersuse Integer;use std::cmp;use std::error::Error;use std::fmt;use std::ops::{Add, Div, Mul, Neg, Rem, Sub};use std::str::FromStr;#[cfg(feature = "bigint")]use bigint::{BigInt, BigUint, Sign};use traits::{FromPrimitive, Float, PrimInt};use {Num, Signed, Zero, One};/// Represents the ratio between 2 numbers.#[derive(Copy, Clone, Hash, Debug)]#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]#[allow(missing_docs)]pub struct Ratio<T> {    numer: T,    denom: T}/// Alias for a `Ratio` of machine-sized integers.pub type Rational = Ratio<isize>;pub type Rational32 = Ratio<i32>;pub type Rational64 = Ratio<i64>;#[cfg(feature = "bigint")]/// Alias for arbitrary precision rationals.pub type BigRational = Ratio<BigInt>;impl<T: Clone + Integer> Ratio<T> {    /// Creates a ratio representing the integer `t`.    #[inline]    pub fn from_integer(t: T) -> Ratio<T> {        Ratio::new_raw(t, One::one())    }    /// Creates a ratio without checking for `denom == 0` or reducing.    #[inline]    pub fn new_raw(numer: T, denom: T) -> Ratio<T> {        Ratio { numer: numer, denom: denom }    }    /// Create a new Ratio. Fails if `denom == 0`.    #[inline]    pub fn new(numer: T, denom: T) -> Ratio<T> {        if denom == Zero::zero() {            panic!("denominator == 0");        }        let mut ret = Ratio::new_raw(numer, denom);        ret.reduce();        ret    }    /// Converts to an integer.    #[inline]    pub fn to_integer(&self) -> T {        self.trunc().numer    }    /// Gets an immutable reference to the numerator.    #[inline]    pub fn numer<'a>(&'a self) -> &'a T {        &self.numer    }    /// Gets an immutable reference to the denominator.    #[inline]    pub fn denom<'a>(&'a self) -> &'a T {        &self.denom    }    /// Returns true if the rational number is an integer (denominator is 1).    #[inline]    pub fn is_integer(&self) -> bool {        self.denom == One::one()    }    /// Put self into lowest terms, with denom > 0.    fn reduce(&mut self) {        let g : T = self.numer.gcd(&self.denom);        // FIXME(#5992): assignment operator overloads        // self.numer /= g;        self.numer = self.numer.clone() / g.clone();        // FIXME(#5992): assignment operator overloads        // self.denom /= g;        self.denom = self.denom.clone() / g;        // keep denom positive!        if self.denom < T::zero() {            self.numer = T::zero() - self.numer.clone();            self.denom = T::zero() - self.denom.clone();        }    }    /// Returns a `reduce`d copy of self.    pub fn reduced(&self) -> Ratio<T> {        let mut ret = self.clone();        ret.reduce();        ret    }    /// Returns the reciprocal.    #[inline]    pub fn recip(&self) -> Ratio<T> {        Ratio::new_raw(self.denom.clone(), self.numer.clone())    }    /// Rounds towards minus infinity.    #[inline]    pub fn floor(&self) -> Ratio<T> {        if *self < Zero::zero() {            let one: T = One::one();            Ratio::from_integer((self.numer.clone() - self.denom.clone() + one) / self.denom.clone())        } else {            Ratio::from_integer(self.numer.clone() / self.denom.clone())        }    }    /// Rounds towards plus infinity.    #[inline]    pub fn ceil(&self) -> Ratio<T> {        if *self < Zero::zero() {            Ratio::from_integer(self.numer.clone() / self.denom.clone())        } else {            let one: T = One::one();            Ratio::from_integer((self.numer.clone() + self.denom.clone() - one) / self.denom.clone())        }    }    /// Rounds to the nearest integer. Rounds half-way cases away from zero.    #[inline]    pub fn round(&self) -> Ratio<T> {        let zero: Ratio<T> = Zero::zero();        let one: T = One::one();        let two: T = one.clone() + one.clone();        // Find unsigned fractional part of rational number        let mut fractional = self.fract();        if fractional < zero { fractional = zero - fractional };        // The algorithm compares the unsigned fractional part with 1/2, that        // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use        // a >= (b/2)+1. This avoids overflow issues.        let half_or_larger = if fractional.denom().is_even() {            *fractional.numer() >= fractional.denom().clone() / two.clone()        } else {            *fractional.numer() >= (fractional.denom().clone() / two.clone()) + one.clone()        };        if half_or_larger {            let one: Ratio<T> = One::one();            if *self >= Zero::zero() {                self.trunc() + one            } else {                self.trunc() - one            }        } else {            self.trunc()        }    }    /// Rounds towards zero.    #[inline]    pub fn trunc(&self) -> Ratio<T> {        Ratio::from_integer(self.numer.clone() / self.denom.clone())    }    /// Returns the fractional part of a number.    #[inline]    pub fn fract(&self) -> Ratio<T> {        Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone())    }}impl<T: Clone + Integer + PrimInt> Ratio<T> {    /// Raises the ratio to the power of an exponent    #[inline]    pub fn pow(&self, expon: i32) -> Ratio<T> {        match expon.cmp(&0) {            cmp::Ordering::Equal => One::one(),            cmp::Ordering::Less => self.recip().pow(-expon),            cmp::Ordering::Greater => Ratio::new_raw(self.numer.pow(expon as u32),                                                     self.denom.pow(expon as u32)),        }    }}#[cfg(feature = "bigint")]impl Ratio<BigInt> {    /// Converts a float into a rational number.    pub fn from_float<T: Float>(f: T) -> Option<BigRational> {        if !f.is_finite() {            return None;        }        let (mantissa, exponent, sign) = f.integer_decode();        let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus };        if exponent < 0 {            let one: BigInt = One::one();            let denom: BigInt = one << ((-exponent) as usize);            let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();            Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom))        } else {            let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();            numer = numer << (exponent as usize);            Some(Ratio::from_integer(BigInt::from_biguint(bigint_sign, numer)))        }    }}/* Comparisons */// Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy// for those multiplications to overflow fixed-size integers, so we need to take care.impl<T: Clone + Integer> Ord for Ratio<T> {    #[inline]    fn cmp(&self, other: &Self) -> cmp::Ordering {        // With equal denominators, the numerators can be directly compared        if self.denom == other.denom {            let ord = self.numer.cmp(&other.numer);            return if self.denom < T::zero() { ord.reverse() } else { ord };        }        // With equal numerators, the denominators can be inversely compared        if self.numer == other.numer {            let ord = self.denom.cmp(&other.denom);            return if self.numer < T::zero() { ord } else { ord.reverse() };        }        // Unfortunately, we don't have CheckedMul to try.  That could sometimes avoid all the        // division below, or even always avoid it for BigInt and BigUint.        // FIXME- future breaking change to add Checked* to Integer?        // Compare as floored integers and remainders        let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom);        let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom);        match self_int.cmp(&other_int) {            cmp::Ordering::Greater => cmp::Ordering::Greater,            cmp::Ordering::Less => cmp::Ordering::Less,            cmp::Ordering::Equal => {                match (self_rem.is_zero(), other_rem.is_zero()) {                    (true, true) => cmp::Ordering::Equal,                    (true, false) => cmp::Ordering::Less,                    (false, true) => cmp::Ordering::Greater,                    (false, false) => {                        // Compare the reciprocals of the remaining fractions in reverse                        let self_recip = Ratio::new_raw(self.denom.clone(), self_rem);                        let other_recip = Ratio::new_raw(other.denom.clone(), other_rem);                        self_recip.cmp(&other_recip).reverse()                    }                }            },        }    }}impl<T: Clone + Integer> PartialOrd for Ratio<T> {    #[inline]    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {        Some(self.cmp(other))    }}impl<T: Clone + Integer> PartialEq for Ratio<T> {    #[inline]    fn eq(&self, other: &Self) -> bool {        self.cmp(other) == cmp::Ordering::Equal    }}impl<T: Clone + Integer> Eq for Ratio<T> {}macro_rules! forward_val_val_binop {    (impl $imp:ident, $method:ident) => {        impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> {            type Output = Ratio<T>;            #[inline]            fn $method(self, other: Ratio<T>) -> Ratio<T> {                (&self).$method(&other)            }        }    }}macro_rules! forward_ref_val_binop {    (impl $imp:ident, $method:ident) => {        impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T> where            T: Clone + Integer        {            type Output = Ratio<T>;            #[inline]            fn $method(self, other: Ratio<T>) -> Ratio<T> {                self.$method(&other)            }        }    }}macro_rules! forward_val_ref_binop {    (impl $imp:ident, $method:ident) => {        impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T> where            T: Clone + Integer        {            type Output = Ratio<T>;            #[inline]            fn $method(self, other: &Ratio<T>) -> Ratio<T> {                (&self).$method(other)            }        }    }}macro_rules! forward_all_binop {    (impl $imp:ident, $method:ident) => {        forward_val_val_binop!(impl $imp, $method);        forward_ref_val_binop!(impl $imp, $method);        forward_val_ref_binop!(impl $imp, $method);    };}/* Arithmetic */forward_all_binop!(impl Mul, mul);// a/b * c/d = (a*c)/(b*d)impl<'a, 'b, T> Mul<&'b Ratio<T>> for &'a Ratio<T>    where T: Clone + Integer{        type Output = Ratio<T>;    #[inline]    fn mul(self, rhs: &Ratio<T>) -> Ratio<T> {        Ratio::new(self.numer.clone() * rhs.numer.clone(), self.denom.clone() * rhs.denom.clone())    }}forward_all_binop!(impl Div, div);// (a/b) / (c/d) = (a*d)/(b*c)impl<'a, 'b, T> Div<&'b Ratio<T>> for &'a Ratio<T>    where T: Clone + Integer{    type Output = Ratio<T>;    #[inline]    fn div(self, rhs: &Ratio<T>) -> Ratio<T> {        Ratio::new(self.numer.clone() * rhs.denom.clone(), self.denom.clone() * rhs.numer.clone())    }}// Abstracts the a/b `op` c/d = (a*d `op` b*d) / (b*d) patternmacro_rules! arith_impl {    (impl $imp:ident, $method:ident) => {        forward_all_binop!(impl $imp, $method);        impl<'a, 'b, T: Clone + Integer>            $imp<&'b Ratio<T>> for &'a Ratio<T> {            type Output = Ratio<T>;            #[inline]            fn $method(self, rhs: &Ratio<T>) -> Ratio<T> {                Ratio::new((self.numer.clone() * rhs.denom.clone()).$method(self.denom.clone() * rhs.numer.clone()),                           self.denom.clone() * rhs.denom.clone())            }        }    }}// a/b + c/d = (a*d + b*c)/(b*d)arith_impl!(impl Add, add);// a/b - c/d = (a*d - b*c)/(b*d)arith_impl!(impl Sub, sub);// a/b % c/d = (a*d % b*c)/(b*d)arith_impl!(impl Rem, rem);impl<T> Neg for Ratio<T>    where T: Clone + Integer + Neg<Output = T>{    type Output = Ratio<T>;    #[inline]    fn neg(self) -> Ratio<T> {        Ratio::new_raw(-self.numer, self.denom)    }}impl<'a, T> Neg for &'a Ratio<T>    where T: Clone + Integer + Neg<Output = T>{    type Output = Ratio<T>;    #[inline]    fn neg(self) -> Ratio<T> {        -self.clone()    }}/* Constants */impl<T: Clone + Integer>    Zero for Ratio<T> {    #[inline]    fn zero() -> Ratio<T> {        Ratio::new_raw(Zero::zero(), One::one())    }    #[inline]    fn is_zero(&self) -> bool {        self.numer.is_zero()    }}impl<T: Clone + Integer>    One for Ratio<T> {    #[inline]    fn one() -> Ratio<T> {        Ratio::new_raw(One::one(), One::one())    }}impl<T: Clone + Integer> Num for Ratio<T> {    type FromStrRadixErr = ParseRatioError;    /// Parses `numer/denom` where the numbers are in base `radix`.    fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> {        let split: Vec<&str> = s.splitn(2, '/').collect();        if split.len() < 2 {            Err(ParseRatioError{kind: RatioErrorKind::ParseError})        } else {            let a_result: Result<T, _> = T::from_str_radix(                split[0],                radix).map_err(|_| ParseRatioError{kind: RatioErrorKind::ParseError});            a_result.and_then(|a| {                let b_result: Result<T, _>  =                    T::from_str_radix(split[1], radix).map_err(                        |_| ParseRatioError{kind: RatioErrorKind::ParseError});                b_result.and_then(|b| if b.is_zero() {                    Err(ParseRatioError{kind: RatioErrorKind::ZeroDenominator})                } else {                    Ok(Ratio::new(a.clone(), b.clone()))                })            })        }    }}impl<T: Clone + Integer + Signed> Signed for Ratio<T> {    #[inline]    fn abs(&self) -> Ratio<T> {        if self.is_negative() { -self.clone() } else { self.clone() }    }    #[inline]    fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> {        if *self <= *other { Zero::zero() } else { self - other }    }    #[inline]    fn signum(&self) -> Ratio<T> {        if self.is_positive() {            Self::one()        } else if self.is_zero() {            Self::zero()        } else {            - Self::one()        }    }    #[inline]    fn is_positive(&self) -> bool { !self.is_negative() }    #[inline]    fn is_negative(&self) -> bool {        self.numer.is_negative() ^ self.denom.is_negative()    }}/* String conversions */impl<T> fmt::Display for Ratio<T> where    T: fmt::Display + Eq + One{    /// Renders as `numer/denom`. If denom=1, renders as numer.    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {        if self.denom == One::one() {            write!(f, "{}", self.numer)        } else {            write!(f, "{}/{}", self.numer, self.denom)        }    }}impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> {    type Err = ParseRatioError;    /// Parses `numer/denom` or just `numer`.    fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> {        let mut split = s.splitn(2, '/');        let n = try!(split.next().ok_or(            ParseRatioError{kind: RatioErrorKind::ParseError}));        let num = try!(FromStr::from_str(n).map_err(            |_| ParseRatioError{kind: RatioErrorKind::ParseError}));        let d = split.next().unwrap_or("1");        let den = try!(FromStr::from_str(d).map_err(            |_| ParseRatioError{kind: RatioErrorKind::ParseError}));        if Zero::is_zero(&den) {            Err(ParseRatioError{kind: RatioErrorKind::ZeroDenominator})        } else {            Ok(Ratio::new(num, den))        }    }}// FIXME: Bubble up specific errors#[derive(Copy, Clone, Debug, PartialEq)]pub struct ParseRatioError { kind: RatioErrorKind }#[derive(Copy, Clone, Debug, PartialEq)]enum RatioErrorKind {    ParseError,    ZeroDenominator,}impl fmt::Display for ParseRatioError {    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {        self.description().fmt(f)    }}impl Error for ParseRatioError {    fn description(&self) -> &str { self.kind.description() }}impl RatioErrorKind {    fn description(&self) -> &'static str {        match *self {            RatioErrorKind::ParseError => "failed to parse integer",            RatioErrorKind::ZeroDenominator => "zero value denominator",        }    }}#[cfg(test)]mod test {    use super::{Ratio, Rational};    #[cfg(feature = "bigint")]    use super::BigRational;    use std::str::FromStr;    use std::i32;    use {Zero, One, Signed, FromPrimitive, Float};    pub const _0 : Rational = Ratio { numer: 0, denom: 1};    pub const _1 : Rational = Ratio { numer: 1, denom: 1};    pub const _2: Rational = Ratio { numer: 2, denom: 1};    pub const _1_2: Rational = Ratio { numer: 1, denom: 2};    pub const _3_2: Rational = Ratio { numer: 3, denom: 2};    pub const _NEG1_2: Rational = Ratio { numer: -1, denom: 2};    pub const _1_3: Rational = Ratio { numer: 1, denom: 3};    pub const _NEG1_3: Rational = Ratio { numer: -1, denom: 3};    pub const _2_3: Rational = Ratio { numer: 2, denom: 3};    pub const _NEG2_3: Rational = Ratio { numer: -2, denom: 3};    #[cfg(feature = "bigint")]    pub fn to_big(n: Rational) -> BigRational {        Ratio::new(            FromPrimitive::from_isize(n.numer).unwrap(),            FromPrimitive::from_isize(n.denom).unwrap()        )    }    #[cfg(not(feature = "bigint"))]    pub fn to_big(n: Rational) -> Rational {        Ratio::new(            FromPrimitive::from_isize(n.numer).unwrap(),            FromPrimitive::from_isize(n.denom).unwrap()        )    }    #[test]    fn test_test_constants() {        // check our constants are what Ratio::new etc. would make.        assert_eq!(_0, Zero::zero());        assert_eq!(_1, One::one());        assert_eq!(_2, Ratio::from_integer(2));        assert_eq!(_1_2, Ratio::new(1,2));        assert_eq!(_3_2, Ratio::new(3,2));        assert_eq!(_NEG1_2, Ratio::new(-1,2));    }    #[test]    fn test_new_reduce() {        let one22 = Ratio::new(2,2);        assert_eq!(one22, One::one());    }    #[test]    #[should_panic]    fn test_new_zero() {        let _a = Ratio::new(1,0);    }    #[test]    fn test_cmp() {        assert!(_0 == _0 && _1 == _1);        assert!(_0 != _1 && _1 != _0);        assert!(_0 < _1 && !(_1 < _0));        assert!(_1 > _0 && !(_0 > _1));        assert!(_0 <= _0 && _1 <= _1);        assert!(_0 <= _1 && !(_1 <= _0));        assert!(_0 >= _0 && _1 >= _1);        assert!(_1 >= _0 && !(_0 >= _1));    }    #[test]    fn test_cmp_overflow() {        use std::cmp::Ordering;        // issue #7 example:        let big = Ratio::new(128u8, 1);        let small = big.recip();        assert!(big > small);        // try a few that are closer together        // (some matching numer, some matching denom, some neither)        let ratios = vec![            Ratio::new(125_i8, 127_i8),            Ratio::new(63_i8, 64_i8),            Ratio::new(124_i8, 125_i8),            Ratio::new(125_i8, 126_i8),            Ratio::new(126_i8, 127_i8),            Ratio::new(127_i8, 126_i8),        ];        fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) {            println!("comparing {} and {}", a, b);            assert_eq!(a.cmp(&b), ord);            assert_eq!(b.cmp(&a), ord.reverse());        }        for (i, &a) in ratios.iter().enumerate() {            check_cmp(a, a, Ordering::Equal);            check_cmp(-a, a, Ordering::Less);            for &b in &ratios[i+1..] {                check_cmp(a, b, Ordering::Less);                check_cmp(-a, -b, Ordering::Greater);                check_cmp(a.recip(), b.recip(), Ordering::Greater);                check_cmp(-a.recip(), -b.recip(), Ordering::Less);            }        }    }    #[test]    fn test_to_integer() {        assert_eq!(_0.to_integer(), 0);        assert_eq!(_1.to_integer(), 1);        assert_eq!(_2.to_integer(), 2);        assert_eq!(_1_2.to_integer(), 0);        assert_eq!(_3_2.to_integer(), 1);        assert_eq!(_NEG1_2.to_integer(), 0);    }    #[test]    fn test_numer() {        assert_eq!(_0.numer(), &0);        assert_eq!(_1.numer(), &1);        assert_eq!(_2.numer(), &2);        assert_eq!(_1_2.numer(), &1);        assert_eq!(_3_2.numer(), &3);        assert_eq!(_NEG1_2.numer(), &(-1));    }    #[test]    fn test_denom() {        assert_eq!(_0.denom(), &1);        assert_eq!(_1.denom(), &1);        assert_eq!(_2.denom(), &1);        assert_eq!(_1_2.denom(), &2);        assert_eq!(_3_2.denom(), &2);        assert_eq!(_NEG1_2.denom(), &2);    }    #[test]    fn test_is_integer() {        assert!(_0.is_integer());        assert!(_1.is_integer());        assert!(_2.is_integer());        assert!(!_1_2.is_integer());        assert!(!_3_2.is_integer());        assert!(!_NEG1_2.is_integer());    }    #[test]    fn test_show() {        assert_eq!(format!("{}", _2), "2".to_string());        assert_eq!(format!("{}", _1_2), "1/2".to_string());        assert_eq!(format!("{}", _0), "0".to_string());        assert_eq!(format!("{}", Ratio::from_integer(-2)), "-2".to_string());    }    mod arith {        use super::{_0, _1, _2, _1_2, _3_2, _NEG1_2, to_big};        use super::super::{Ratio, Rational};        #[test]        fn test_add() {            fn test(a: Rational, b: Rational, c: Rational) {                assert_eq!(a + b, c);                assert_eq!(to_big(a) + to_big(b), to_big(c));            }            test(_1, _1_2, _3_2);            test(_1, _1, _2);            test(_1_2, _3_2, _2);            test(_1_2, _NEG1_2, _0);        }        #[test]        fn test_sub() {            fn test(a: Rational, b: Rational, c: Rational) {                assert_eq!(a - b, c);                assert_eq!(to_big(a) - to_big(b), to_big(c))            }            test(_1, _1_2, _1_2);            test(_3_2, _1_2, _1);            test(_1, _NEG1_2, _3_2);        }        #[test]        fn test_mul() {            fn test(a: Rational, b: Rational, c: Rational) {                assert_eq!(a * b, c);                assert_eq!(to_big(a) * to_big(b), to_big(c))            }            test(_1, _1_2, _1_2);            test(_1_2, _3_2, Ratio::new(3,4));            test(_1_2, _NEG1_2, Ratio::new(-1, 4));        }        #[test]        fn test_div() {            fn test(a: Rational, b: Rational, c: Rational) {                assert_eq!(a / b, c);                assert_eq!(to_big(a) / to_big(b), to_big(c))            }            test(_1, _1_2, _2);            test(_3_2, _1_2, _1 + _2);            test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2);        }        #[test]        fn test_rem() {            fn test(a: Rational, b: Rational, c: Rational) {                assert_eq!(a % b, c);                assert_eq!(to_big(a) % to_big(b), to_big(c))            }            test(_3_2, _1, _1_2);            test(_2, _NEG1_2, _0);            test(_1_2, _2,  _1_2);        }        #[test]        fn test_neg() {            fn test(a: Rational, b: Rational) {                assert_eq!(-a, b);                assert_eq!(-to_big(a), to_big(b))            }            test(_0, _0);            test(_1_2, _NEG1_2);            test(-_1, _1);        }        #[test]        fn test_zero() {            assert_eq!(_0 + _0, _0);            assert_eq!(_0 * _0, _0);            assert_eq!(_0 * _1, _0);            assert_eq!(_0 / _NEG1_2, _0);            assert_eq!(_0 - _0, _0);        }        #[test]        #[should_panic]        fn test_div_0() {            let _a =  _1 / _0;        }    }    #[test]    fn test_round() {        assert_eq!(_1_3.ceil(), _1);        assert_eq!(_1_3.floor(), _0);        assert_eq!(_1_3.round(), _0);        assert_eq!(_1_3.trunc(), _0);        assert_eq!(_NEG1_3.ceil(), _0);        assert_eq!(_NEG1_3.floor(), -_1);        assert_eq!(_NEG1_3.round(), _0);        assert_eq!(_NEG1_3.trunc(), _0);        assert_eq!(_2_3.ceil(), _1);        assert_eq!(_2_3.floor(), _0);        assert_eq!(_2_3.round(), _1);        assert_eq!(_2_3.trunc(), _0);        assert_eq!(_NEG2_3.ceil(), _0);        assert_eq!(_NEG2_3.floor(), -_1);        assert_eq!(_NEG2_3.round(), -_1);        assert_eq!(_NEG2_3.trunc(), _0);        assert_eq!(_1_2.ceil(), _1);        assert_eq!(_1_2.floor(), _0);        assert_eq!(_1_2.round(), _1);        assert_eq!(_1_2.trunc(), _0);        assert_eq!(_NEG1_2.ceil(), _0);        assert_eq!(_NEG1_2.floor(), -_1);        assert_eq!(_NEG1_2.round(), -_1);        assert_eq!(_NEG1_2.trunc(), _0);        assert_eq!(_1.ceil(), _1);        assert_eq!(_1.floor(), _1);        assert_eq!(_1.round(), _1);        assert_eq!(_1.trunc(), _1);        // Overflow checks        let _neg1 = Ratio::from_integer(-1);        let _large_rat1 = Ratio::new(i32::MAX, i32::MAX-1);        let _large_rat2 = Ratio::new(i32::MAX-1, i32::MAX);        let _large_rat3 = Ratio::new(i32::MIN+2, i32::MIN+1);        let _large_rat4 = Ratio::new(i32::MIN+1, i32::MIN+2);        let _large_rat5 = Ratio::new(i32::MIN+2, i32::MAX);        let _large_rat6 = Ratio::new(i32::MAX, i32::MIN+2);        let _large_rat7 = Ratio::new(1, i32::MIN+1);        let _large_rat8 = Ratio::new(1, i32::MAX);        assert_eq!(_large_rat1.round(), One::one());        assert_eq!(_large_rat2.round(), One::one());        assert_eq!(_large_rat3.round(), One::one());        assert_eq!(_large_rat4.round(), One::one());        assert_eq!(_large_rat5.round(), _neg1);        assert_eq!(_large_rat6.round(), _neg1);        assert_eq!(_large_rat7.round(), Zero::zero());        assert_eq!(_large_rat8.round(), Zero::zero());    }    #[test]    fn test_fract() {        assert_eq!(_1.fract(), _0);        assert_eq!(_NEG1_2.fract(), _NEG1_2);        assert_eq!(_1_2.fract(), _1_2);        assert_eq!(_3_2.fract(), _1_2);    }    #[test]    fn test_recip() {        assert_eq!(_1 * _1.recip(), _1);        assert_eq!(_2 * _2.recip(), _1);        assert_eq!(_1_2 * _1_2.recip(), _1);        assert_eq!(_3_2 * _3_2.recip(), _1);        assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1);    }    #[test]    fn test_pow() {        assert_eq!(_1_2.pow(2), Ratio::new(1, 4));        assert_eq!(_1_2.pow(-2), Ratio::new(4, 1));        assert_eq!(_1.pow(1), _1);        assert_eq!(_NEG1_2.pow(2), _1_2.pow(2));        assert_eq!(_NEG1_2.pow(3), -_1_2.pow(3));        assert_eq!(_3_2.pow(0), _1);        assert_eq!(_3_2.pow(-1), _3_2.recip());        assert_eq!(_3_2.pow(3), Ratio::new(27, 8));    }    #[test]    fn test_to_from_str() {        fn test(r: Rational, s: String) {            assert_eq!(FromStr::from_str(&s), Ok(r));            assert_eq!(r.to_string(), s);        }        test(_1, "1".to_string());        test(_0, "0".to_string());        test(_1_2, "1/2".to_string());        test(_3_2, "3/2".to_string());        test(_2, "2".to_string());        test(_NEG1_2, "-1/2".to_string());    }    #[test]    fn test_from_str_fail() {        fn test(s: &str) {            let rational: Result<Rational, _> = FromStr::from_str(s);            assert!(rational.is_err());        }        let xs = ["0 /1", "abc", "", "1/", "--1/2","3/2/1", "1/0"];        for &s in xs.iter() {            test(s);        }    }    #[cfg(feature = "bigint")]    #[test]    fn test_from_float() {        fn test<T: Float>(given: T, (numer, denom): (&str, &str)) {            let ratio: BigRational = Ratio::from_float(given).unwrap();            assert_eq!(ratio, Ratio::new(                FromStr::from_str(numer).unwrap(),                FromStr::from_str(denom).unwrap()));        }        // f32        test(3.14159265359f32, ("13176795", "4194304"));        test(2f32.powf(100.), ("1267650600228229401496703205376", "1"));        test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1"));        test(1.0 / 2f32.powf(100.), ("1", "1267650600228229401496703205376"));        test(684729.48391f32, ("1369459", "2"));        test(-8573.5918555f32, ("-4389679", "512"));        // f64        test(3.14159265359f64, ("3537118876014453", "1125899906842624"));        test(2f64.powf(100.), ("1267650600228229401496703205376", "1"));        test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1"));        test(684729.48391f64, ("367611342500051", "536870912"));        test(-8573.5918555f64, ("-4713381968463931", "549755813888"));        test(1.0 / 2f64.powf(100.), ("1", "1267650600228229401496703205376"));    }    #[cfg(feature = "bigint")]    #[test]    fn test_from_float_fail() {        use std::{f32, f64};        assert_eq!(Ratio::from_float(f32::NAN), None);        assert_eq!(Ratio::from_float(f32::INFINITY), None);        assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None);        assert_eq!(Ratio::from_float(f64::NAN), None);        assert_eq!(Ratio::from_float(f64::INFINITY), None);        assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None);    }    #[test]    fn test_signed() {        assert_eq!(_NEG1_2.abs(), _1_2);        assert_eq!(_3_2.abs_sub(&_1_2), _1);        assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero());        assert_eq!(_1_2.signum(), One::one());        assert_eq!(_NEG1_2.signum(), - ::one::<Ratio<isize>>());        assert!(_NEG1_2.is_negative());        assert!(! _NEG1_2.is_positive());        assert!(! _1_2.is_negative());    }    #[test]    fn test_hash() {        assert!(::hash(&_0) != ::hash(&_1));        assert!(::hash(&_0) != ::hash(&_3_2));    }}
 |