123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365 |
- // Copyright 2013 The Rust Project Developers. See the COPYRIGHT
- // file at the top-level directory of this distribution and at
- // http://rust-lang.org/COPYRIGHT.
- //
- // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
- // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
- // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
- // option. This file may not be copied, modified, or distributed
- // except according to those terms.
- //! Complex numbers.
- use std::fmt;
- use std::num::{Zero, One};
- // FIXME #1284: handle complex NaN & infinity etc. This
- // probably doesn't map to C's _Complex correctly.
- /// A complex number in Cartesian form.
- #[deriving(PartialEq, Clone, Hash, Encodable, Decodable)]
- pub struct Complex<T> {
- /// Real portion of the complex number
- pub re: T,
- /// Imaginary portion of the complex number
- pub im: T
- }
- pub type Complex32 = Complex<f32>;
- pub type Complex64 = Complex<f64>;
- impl<T: Clone + Num> Complex<T> {
- /// Create a new Complex
- #[inline]
- pub fn new(re: T, im: T) -> Complex<T> {
- Complex { re: re, im: im }
- }
- /// Returns the square of the norm (since `T` doesn't necessarily
- /// have a sqrt function), i.e. `re^2 + im^2`.
- #[inline]
- pub fn norm_sqr(&self) -> T {
- self.re * self.re + self.im * self.im
- }
- /// Returns the complex conjugate. i.e. `re - i im`
- #[inline]
- pub fn conj(&self) -> Complex<T> {
- Complex::new(self.re.clone(), -self.im)
- }
- /// Multiplies `self` by the scalar `t`.
- #[inline]
- pub fn scale(&self, t: T) -> Complex<T> {
- Complex::new(self.re * t, self.im * t)
- }
- /// Divides `self` by the scalar `t`.
- #[inline]
- pub fn unscale(&self, t: T) -> Complex<T> {
- Complex::new(self.re / t, self.im / t)
- }
- /// Returns `1/self`
- #[inline]
- pub fn inv(&self) -> Complex<T> {
- let norm_sqr = self.norm_sqr();
- Complex::new(self.re / norm_sqr,
- -self.im / norm_sqr)
- }
- }
- impl<T: Clone + FloatMath> Complex<T> {
- /// Calculate |self|
- #[inline]
- pub fn norm(&self) -> T {
- self.re.hypot(self.im)
- }
- }
- impl<T: Clone + FloatMath> Complex<T> {
- /// Calculate the principal Arg of self.
- #[inline]
- pub fn arg(&self) -> T {
- self.im.atan2(self.re)
- }
- /// Convert to polar form (r, theta), such that `self = r * exp(i
- /// * theta)`
- #[inline]
- pub fn to_polar(&self) -> (T, T) {
- (self.norm(), self.arg())
- }
- /// Convert a polar representation into a complex number.
- #[inline]
- pub fn from_polar(r: &T, theta: &T) -> Complex<T> {
- Complex::new(*r * theta.cos(), *r * theta.sin())
- }
- }
- /* arithmetic */
- // (a + i b) + (c + i d) == (a + c) + i (b + d)
- impl<T: Clone + Num> Add<Complex<T>, Complex<T>> for Complex<T> {
- #[inline]
- fn add(&self, other: &Complex<T>) -> Complex<T> {
- Complex::new(self.re + other.re, self.im + other.im)
- }
- }
- // (a + i b) - (c + i d) == (a - c) + i (b - d)
- impl<T: Clone + Num> Sub<Complex<T>, Complex<T>> for Complex<T> {
- #[inline]
- fn sub(&self, other: &Complex<T>) -> Complex<T> {
- Complex::new(self.re - other.re, self.im - other.im)
- }
- }
- // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
- impl<T: Clone + Num> Mul<Complex<T>, Complex<T>> for Complex<T> {
- #[inline]
- fn mul(&self, other: &Complex<T>) -> Complex<T> {
- Complex::new(self.re*other.re - self.im*other.im,
- self.re*other.im + self.im*other.re)
- }
- }
- // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
- // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
- impl<T: Clone + Num> Div<Complex<T>, Complex<T>> for Complex<T> {
- #[inline]
- fn div(&self, other: &Complex<T>) -> Complex<T> {
- let norm_sqr = other.norm_sqr();
- Complex::new((self.re*other.re + self.im*other.im) / norm_sqr,
- (self.im*other.re - self.re*other.im) / norm_sqr)
- }
- }
- impl<T: Clone + Num> Neg<Complex<T>> for Complex<T> {
- #[inline]
- fn neg(&self) -> Complex<T> {
- Complex::new(-self.re, -self.im)
- }
- }
- /* constants */
- impl<T: Clone + Num> Zero for Complex<T> {
- #[inline]
- fn zero() -> Complex<T> {
- Complex::new(Zero::zero(), Zero::zero())
- }
- #[inline]
- fn is_zero(&self) -> bool {
- self.re.is_zero() && self.im.is_zero()
- }
- }
- impl<T: Clone + Num> One for Complex<T> {
- #[inline]
- fn one() -> Complex<T> {
- Complex::new(One::one(), Zero::zero())
- }
- }
- /* string conversions */
- impl<T: fmt::Show + Num + PartialOrd> fmt::Show for Complex<T> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- if self.im < Zero::zero() {
- write!(f, "{}-{}i", self.re, -self.im)
- } else {
- write!(f, "{}+{}i", self.re, self.im)
- }
- }
- }
- #[cfg(test)]
- mod test {
- #![allow(non_upper_case_globals)]
- use super::{Complex64, Complex};
- use std::num::{Zero, One, Float};
- use std::hash::hash;
- pub const _0_0i : Complex64 = Complex { re: 0.0, im: 0.0 };
- pub const _1_0i : Complex64 = Complex { re: 1.0, im: 0.0 };
- pub const _1_1i : Complex64 = Complex { re: 1.0, im: 1.0 };
- pub const _0_1i : Complex64 = Complex { re: 0.0, im: 1.0 };
- pub const _neg1_1i : Complex64 = Complex { re: -1.0, im: 1.0 };
- pub const _05_05i : Complex64 = Complex { re: 0.5, im: 0.5 };
- pub const all_consts : [Complex64, .. 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i];
- #[test]
- fn test_consts() {
- // check our constants are what Complex::new creates
- fn test(c : Complex64, r : f64, i: f64) {
- assert_eq!(c, Complex::new(r,i));
- }
- test(_0_0i, 0.0, 0.0);
- test(_1_0i, 1.0, 0.0);
- test(_1_1i, 1.0, 1.0);
- test(_neg1_1i, -1.0, 1.0);
- test(_05_05i, 0.5, 0.5);
- assert_eq!(_0_0i, Zero::zero());
- assert_eq!(_1_0i, One::one());
- }
- #[test]
- #[cfg_attr(target_arch = "x86", ignore)]
- // FIXME #7158: (maybe?) currently failing on x86.
- fn test_norm() {
- fn test(c: Complex64, ns: f64) {
- assert_eq!(c.norm_sqr(), ns);
- assert_eq!(c.norm(), ns.sqrt())
- }
- test(_0_0i, 0.0);
- test(_1_0i, 1.0);
- test(_1_1i, 2.0);
- test(_neg1_1i, 2.0);
- test(_05_05i, 0.5);
- }
- #[test]
- fn test_scale_unscale() {
- assert_eq!(_05_05i.scale(2.0), _1_1i);
- assert_eq!(_1_1i.unscale(2.0), _05_05i);
- for &c in all_consts.iter() {
- assert_eq!(c.scale(2.0).unscale(2.0), c);
- }
- }
- #[test]
- fn test_conj() {
- for &c in all_consts.iter() {
- assert_eq!(c.conj(), Complex::new(c.re, -c.im));
- assert_eq!(c.conj().conj(), c);
- }
- }
- #[test]
- fn test_inv() {
- assert_eq!(_1_1i.inv(), _05_05i.conj());
- assert_eq!(_1_0i.inv(), _1_0i.inv());
- }
- #[test]
- #[should_fail]
- fn test_divide_by_zero_natural() {
- let n = Complex::new(2i, 3i);
- let d = Complex::new(0, 0);
- let _x = n / d;
- }
- #[test]
- #[should_fail]
- #[ignore]
- fn test_inv_zero() {
- // FIXME #5736: should this really fail, or just NaN?
- _0_0i.inv();
- }
- #[test]
- fn test_arg() {
- fn test(c: Complex64, arg: f64) {
- assert!((c.arg() - arg).abs() < 1.0e-6)
- }
- test(_1_0i, 0.0);
- test(_1_1i, 0.25 * Float::pi());
- test(_neg1_1i, 0.75 * Float::pi());
- test(_05_05i, 0.25 * Float::pi());
- }
- #[test]
- fn test_polar_conv() {
- fn test(c: Complex64) {
- let (r, theta) = c.to_polar();
- assert!((c - Complex::from_polar(&r, &theta)).norm() < 1e-6);
- }
- for &c in all_consts.iter() { test(c); }
- }
- mod arith {
- use super::{_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i, _05_05i, all_consts};
- use std::num::Zero;
- #[test]
- fn test_add() {
- assert_eq!(_05_05i + _05_05i, _1_1i);
- assert_eq!(_0_1i + _1_0i, _1_1i);
- assert_eq!(_1_0i + _neg1_1i, _0_1i);
- for &c in all_consts.iter() {
- assert_eq!(_0_0i + c, c);
- assert_eq!(c + _0_0i, c);
- }
- }
- #[test]
- fn test_sub() {
- assert_eq!(_05_05i - _05_05i, _0_0i);
- assert_eq!(_0_1i - _1_0i, _neg1_1i);
- assert_eq!(_0_1i - _neg1_1i, _1_0i);
- for &c in all_consts.iter() {
- assert_eq!(c - _0_0i, c);
- assert_eq!(c - c, _0_0i);
- }
- }
- #[test]
- fn test_mul() {
- assert_eq!(_05_05i * _05_05i, _0_1i.unscale(2.0));
- assert_eq!(_1_1i * _0_1i, _neg1_1i);
- // i^2 & i^4
- assert_eq!(_0_1i * _0_1i, -_1_0i);
- assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i);
- for &c in all_consts.iter() {
- assert_eq!(c * _1_0i, c);
- assert_eq!(_1_0i * c, c);
- }
- }
- #[test]
- fn test_div() {
- assert_eq!(_neg1_1i / _0_1i, _1_1i);
- for &c in all_consts.iter() {
- if c != Zero::zero() {
- assert_eq!(c / c, _1_0i);
- }
- }
- }
- #[test]
- fn test_neg() {
- assert_eq!(-_1_0i + _0_1i, _neg1_1i);
- assert_eq!((-_0_1i) * _0_1i, _1_0i);
- for &c in all_consts.iter() {
- assert_eq!(-(-c), c);
- }
- }
- }
- #[test]
- fn test_to_string() {
- fn test(c : Complex64, s: String) {
- assert_eq!(c.to_string(), s);
- }
- test(_0_0i, "0+0i".to_string());
- test(_1_0i, "1+0i".to_string());
- test(_0_1i, "0+1i".to_string());
- test(_1_1i, "1+1i".to_string());
- test(_neg1_1i, "-1+1i".to_string());
- test(-_neg1_1i, "1-1i".to_string());
- test(_05_05i, "0.5+0.5i".to_string());
- }
- #[test]
- fn test_hash() {
- let a = Complex::new(0i32, 0i32);
- let b = Complex::new(1i32, 0i32);
- let c = Complex::new(0i32, 1i32);
- assert!(hash(&a) != hash(&b));
- assert!(hash(&b) != hash(&c));
- assert!(hash(&c) != hash(&a));
- }
- }
|