123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568 |
- use core::ops::{BitAnd, BitOr, BitXor, Not, Shl, Shr};
- use bounds::Bounded;
- use ops::checked::*;
- use ops::saturating::Saturating;
- use {Num, NumCast};
- /// Generic trait for primitive integers.
- ///
- /// The `PrimInt` trait is an abstraction over the builtin primitive integer types (e.g., `u8`,
- /// `u32`, `isize`, `i128`, ...). It inherits the basic numeric traits and extends them with
- /// bitwise operators and non-wrapping arithmetic.
- ///
- /// The trait explicitly inherits `Copy`, `Eq`, `Ord`, and `Sized`. The intention is that all
- /// types implementing this trait behave like primitive types that are passed by value by default
- /// and behave like builtin integers. Furthermore, the types are expected to expose the integer
- /// value in binary representation and support bitwise operators. The standard bitwise operations
- /// (e.g., bitwise-and, bitwise-or, right-shift, left-shift) are inherited and the trait extends
- /// these with introspective queries (e.g., `PrimInt::count_ones()`, `PrimInt::leading_zeros()`),
- /// bitwise combinators (e.g., `PrimInt::rotate_left()`), and endianness converters (e.g.,
- /// `PrimInt::to_be()`).
- ///
- /// All `PrimInt` types are expected to be fixed-width binary integers. The width can be queried
- /// via `T::zero().count_zeros()`. The trait currently lacks a way to query the width at
- /// compile-time.
- ///
- /// While a default implementation for all builtin primitive integers is provided, the trait is in
- /// no way restricted to these. Other integer types that fulfil the requirements are free to
- /// implement the trait was well.
- ///
- /// This trait and many of the method names originate in the unstable `core::num::Int` trait from
- /// the rust standard library. The original trait was never stabilized and thus removed from the
- /// standard library.
- pub trait PrimInt:
- Sized
- + Copy
- + Num
- + NumCast
- + Bounded
- + PartialOrd
- + Ord
- + Eq
- + Not<Output = Self>
- + BitAnd<Output = Self>
- + BitOr<Output = Self>
- + BitXor<Output = Self>
- + Shl<usize, Output = Self>
- + Shr<usize, Output = Self>
- + CheckedAdd<Output = Self>
- + CheckedSub<Output = Self>
- + CheckedMul<Output = Self>
- + CheckedDiv<Output = Self>
- + Saturating
- {
- /// Returns the number of ones in the binary representation of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0b01001100u8;
- ///
- /// assert_eq!(n.count_ones(), 3);
- /// ```
- fn count_ones(self) -> u32;
- /// Returns the number of zeros in the binary representation of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0b01001100u8;
- ///
- /// assert_eq!(n.count_zeros(), 5);
- /// ```
- fn count_zeros(self) -> u32;
- /// Returns the number of leading ones in the binary representation
- /// of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0xF00Du16;
- ///
- /// assert_eq!(n.leading_ones(), 4);
- /// ```
- fn leading_ones(self) -> u32 {
- (!self).leading_zeros()
- }
- /// Returns the number of leading zeros in the binary representation
- /// of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0b0101000u16;
- ///
- /// assert_eq!(n.leading_zeros(), 10);
- /// ```
- fn leading_zeros(self) -> u32;
- /// Returns the number of trailing ones in the binary representation
- /// of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0xBEEFu16;
- ///
- /// assert_eq!(n.trailing_ones(), 4);
- /// ```
- fn trailing_ones(self) -> u32 {
- (!self).trailing_zeros()
- }
- /// Returns the number of trailing zeros in the binary representation
- /// of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0b0101000u16;
- ///
- /// assert_eq!(n.trailing_zeros(), 3);
- /// ```
- fn trailing_zeros(self) -> u32;
- /// Shifts the bits to the left by a specified amount, `n`, wrapping
- /// the truncated bits to the end of the resulting integer.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- /// let m = 0x3456789ABCDEF012u64;
- ///
- /// assert_eq!(n.rotate_left(12), m);
- /// ```
- fn rotate_left(self, n: u32) -> Self;
- /// Shifts the bits to the right by a specified amount, `n`, wrapping
- /// the truncated bits to the beginning of the resulting integer.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- /// let m = 0xDEF0123456789ABCu64;
- ///
- /// assert_eq!(n.rotate_right(12), m);
- /// ```
- fn rotate_right(self, n: u32) -> Self;
- /// Shifts the bits to the left by a specified amount, `n`, filling
- /// zeros in the least significant bits.
- ///
- /// This is bitwise equivalent to signed `Shl`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- /// let m = 0x3456789ABCDEF000u64;
- ///
- /// assert_eq!(n.signed_shl(12), m);
- /// ```
- fn signed_shl(self, n: u32) -> Self;
- /// Shifts the bits to the right by a specified amount, `n`, copying
- /// the "sign bit" in the most significant bits even for unsigned types.
- ///
- /// This is bitwise equivalent to signed `Shr`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0xFEDCBA9876543210u64;
- /// let m = 0xFFFFEDCBA9876543u64;
- ///
- /// assert_eq!(n.signed_shr(12), m);
- /// ```
- fn signed_shr(self, n: u32) -> Self;
- /// Shifts the bits to the left by a specified amount, `n`, filling
- /// zeros in the least significant bits.
- ///
- /// This is bitwise equivalent to unsigned `Shl`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFi64;
- /// let m = 0x3456789ABCDEF000i64;
- ///
- /// assert_eq!(n.unsigned_shl(12), m);
- /// ```
- fn unsigned_shl(self, n: u32) -> Self;
- /// Shifts the bits to the right by a specified amount, `n`, filling
- /// zeros in the most significant bits.
- ///
- /// This is bitwise equivalent to unsigned `Shr`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = -8i8; // 0b11111000
- /// let m = 62i8; // 0b00111110
- ///
- /// assert_eq!(n.unsigned_shr(2), m);
- /// ```
- fn unsigned_shr(self, n: u32) -> Self;
- /// Reverses the byte order of the integer.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- /// let m = 0xEFCDAB8967452301u64;
- ///
- /// assert_eq!(n.swap_bytes(), m);
- /// ```
- fn swap_bytes(self) -> Self;
- /// Reverses the order of bits in the integer.
- ///
- /// The least significant bit becomes the most significant bit, second least-significant bit
- /// becomes second most-significant bit, etc.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x12345678u32;
- /// let m = 0x1e6a2c48u32;
- ///
- /// assert_eq!(n.reverse_bits(), m);
- /// assert_eq!(0u32.reverse_bits(), 0);
- /// ```
- fn reverse_bits(self) -> Self {
- reverse_bits_fallback(self)
- }
- /// Convert an integer from big endian to the target's endianness.
- ///
- /// On big endian this is a no-op. On little endian the bytes are swapped.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- ///
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(u64::from_be(n), n)
- /// } else {
- /// assert_eq!(u64::from_be(n), n.swap_bytes())
- /// }
- /// ```
- fn from_be(x: Self) -> Self;
- /// Convert an integer from little endian to the target's endianness.
- ///
- /// On little endian this is a no-op. On big endian the bytes are swapped.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- ///
- /// if cfg!(target_endian = "little") {
- /// assert_eq!(u64::from_le(n), n)
- /// } else {
- /// assert_eq!(u64::from_le(n), n.swap_bytes())
- /// }
- /// ```
- fn from_le(x: Self) -> Self;
- /// Convert `self` to big endian from the target's endianness.
- ///
- /// On big endian this is a no-op. On little endian the bytes are swapped.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- ///
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(n.to_be(), n)
- /// } else {
- /// assert_eq!(n.to_be(), n.swap_bytes())
- /// }
- /// ```
- fn to_be(self) -> Self;
- /// Convert `self` to little endian from the target's endianness.
- ///
- /// On little endian this is a no-op. On big endian the bytes are swapped.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- ///
- /// if cfg!(target_endian = "little") {
- /// assert_eq!(n.to_le(), n)
- /// } else {
- /// assert_eq!(n.to_le(), n.swap_bytes())
- /// }
- /// ```
- fn to_le(self) -> Self;
- /// Raises self to the power of `exp`, using exponentiation by squaring.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// assert_eq!(2i32.pow(4), 16);
- /// ```
- fn pow(self, exp: u32) -> Self;
- }
- fn one_per_byte<P: PrimInt>() -> P {
- // i8, u8: return 0x01
- // i16, u16: return 0x0101 = (0x01 << 8) | 0x01
- // i32, u32: return 0x01010101 = (0x0101 << 16) | 0x0101
- // ...
- let mut ret = P::one();
- let mut shift = 8;
- let mut b = ret.count_zeros() >> 3;
- while b != 0 {
- ret = (ret << shift) | ret;
- shift <<= 1;
- b >>= 1;
- }
- ret
- }
- fn reverse_bits_fallback<P: PrimInt>(i: P) -> P {
- let rep_01: P = one_per_byte();
- let rep_03 = (rep_01 << 1) | rep_01;
- let rep_05 = (rep_01 << 2) | rep_01;
- let rep_0f = (rep_03 << 2) | rep_03;
- let rep_33 = (rep_03 << 4) | rep_03;
- let rep_55 = (rep_05 << 4) | rep_05;
- // code above only used to determine rep_0f, rep_33, rep_55;
- // optimizer should be able to do it in compile time
- let mut ret = i.swap_bytes();
- ret = ((ret & rep_0f) << 4) | ((ret >> 4) & rep_0f);
- ret = ((ret & rep_33) << 2) | ((ret >> 2) & rep_33);
- ret = ((ret & rep_55) << 1) | ((ret >> 1) & rep_55);
- ret
- }
- macro_rules! prim_int_impl {
- ($T:ty, $S:ty, $U:ty) => {
- impl PrimInt for $T {
- #[inline]
- fn count_ones(self) -> u32 {
- <$T>::count_ones(self)
- }
- #[inline]
- fn count_zeros(self) -> u32 {
- <$T>::count_zeros(self)
- }
- #[cfg(has_leading_trailing_ones)]
- #[inline]
- fn leading_ones(self) -> u32 {
- <$T>::leading_ones(self)
- }
- #[inline]
- fn leading_zeros(self) -> u32 {
- <$T>::leading_zeros(self)
- }
- #[cfg(has_leading_trailing_ones)]
- #[inline]
- fn trailing_ones(self) -> u32 {
- <$T>::trailing_ones(self)
- }
- #[inline]
- fn trailing_zeros(self) -> u32 {
- <$T>::trailing_zeros(self)
- }
- #[inline]
- fn rotate_left(self, n: u32) -> Self {
- <$T>::rotate_left(self, n)
- }
- #[inline]
- fn rotate_right(self, n: u32) -> Self {
- <$T>::rotate_right(self, n)
- }
- #[inline]
- fn signed_shl(self, n: u32) -> Self {
- ((self as $S) << n) as $T
- }
- #[inline]
- fn signed_shr(self, n: u32) -> Self {
- ((self as $S) >> n) as $T
- }
- #[inline]
- fn unsigned_shl(self, n: u32) -> Self {
- ((self as $U) << n) as $T
- }
- #[inline]
- fn unsigned_shr(self, n: u32) -> Self {
- ((self as $U) >> n) as $T
- }
- #[inline]
- fn swap_bytes(self) -> Self {
- <$T>::swap_bytes(self)
- }
- #[cfg(has_reverse_bits)]
- #[inline]
- fn reverse_bits(self) -> Self {
- <$T>::reverse_bits(self)
- }
- #[inline]
- fn from_be(x: Self) -> Self {
- <$T>::from_be(x)
- }
- #[inline]
- fn from_le(x: Self) -> Self {
- <$T>::from_le(x)
- }
- #[inline]
- fn to_be(self) -> Self {
- <$T>::to_be(self)
- }
- #[inline]
- fn to_le(self) -> Self {
- <$T>::to_le(self)
- }
- #[inline]
- fn pow(self, exp: u32) -> Self {
- <$T>::pow(self, exp)
- }
- }
- };
- }
- // prim_int_impl!(type, signed, unsigned);
- prim_int_impl!(u8, i8, u8);
- prim_int_impl!(u16, i16, u16);
- prim_int_impl!(u32, i32, u32);
- prim_int_impl!(u64, i64, u64);
- #[cfg(has_i128)]
- prim_int_impl!(u128, i128, u128);
- prim_int_impl!(usize, isize, usize);
- prim_int_impl!(i8, i8, u8);
- prim_int_impl!(i16, i16, u16);
- prim_int_impl!(i32, i32, u32);
- prim_int_impl!(i64, i64, u64);
- #[cfg(has_i128)]
- prim_int_impl!(i128, i128, u128);
- prim_int_impl!(isize, isize, usize);
- #[cfg(test)]
- mod tests {
- use int::PrimInt;
- #[test]
- pub fn reverse_bits() {
- use core::{i16, i32, i64, i8};
- assert_eq!(
- PrimInt::reverse_bits(0x0123_4567_89ab_cdefu64),
- 0xf7b3_d591_e6a2_c480
- );
- assert_eq!(PrimInt::reverse_bits(0i8), 0);
- assert_eq!(PrimInt::reverse_bits(-1i8), -1);
- assert_eq!(PrimInt::reverse_bits(1i8), i8::MIN);
- assert_eq!(PrimInt::reverse_bits(i8::MIN), 1);
- assert_eq!(PrimInt::reverse_bits(-2i8), i8::MAX);
- assert_eq!(PrimInt::reverse_bits(i8::MAX), -2);
- assert_eq!(PrimInt::reverse_bits(0i16), 0);
- assert_eq!(PrimInt::reverse_bits(-1i16), -1);
- assert_eq!(PrimInt::reverse_bits(1i16), i16::MIN);
- assert_eq!(PrimInt::reverse_bits(i16::MIN), 1);
- assert_eq!(PrimInt::reverse_bits(-2i16), i16::MAX);
- assert_eq!(PrimInt::reverse_bits(i16::MAX), -2);
- assert_eq!(PrimInt::reverse_bits(0i32), 0);
- assert_eq!(PrimInt::reverse_bits(-1i32), -1);
- assert_eq!(PrimInt::reverse_bits(1i32), i32::MIN);
- assert_eq!(PrimInt::reverse_bits(i32::MIN), 1);
- assert_eq!(PrimInt::reverse_bits(-2i32), i32::MAX);
- assert_eq!(PrimInt::reverse_bits(i32::MAX), -2);
- assert_eq!(PrimInt::reverse_bits(0i64), 0);
- assert_eq!(PrimInt::reverse_bits(-1i64), -1);
- assert_eq!(PrimInt::reverse_bits(1i64), i64::MIN);
- assert_eq!(PrimInt::reverse_bits(i64::MIN), 1);
- assert_eq!(PrimInt::reverse_bits(-2i64), i64::MAX);
- assert_eq!(PrimInt::reverse_bits(i64::MAX), -2);
- }
- #[test]
- #[cfg(has_i128)]
- pub fn reverse_bits_i128() {
- use core::i128;
- assert_eq!(PrimInt::reverse_bits(0i128), 0);
- assert_eq!(PrimInt::reverse_bits(-1i128), -1);
- assert_eq!(PrimInt::reverse_bits(1i128), i128::MIN);
- assert_eq!(PrimInt::reverse_bits(i128::MIN), 1);
- assert_eq!(PrimInt::reverse_bits(-2i128), i128::MAX);
- assert_eq!(PrimInt::reverse_bits(i128::MAX), -2);
- }
- }
|