float.rs 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594
  1. use core::mem;
  2. use core::ops::Neg;
  3. use core::num::FpCategory;
  4. // Used for default implementation of `epsilon`
  5. #[cfg(feature = "std")]
  6. use std::f32;
  7. use {Num, ToPrimitive};
  8. #[cfg(feature = "std")]
  9. use NumCast;
  10. /// Generic trait for floating point numbers that works with `no_std`.
  11. ///
  12. /// This trait implements a subset of the `Float` trait.
  13. pub trait FloatCore: Num + Neg<Output = Self> + PartialOrd + Copy {
  14. /// Returns positive infinity.
  15. fn infinity() -> Self;
  16. /// Returns negative infinity.
  17. fn neg_infinity() -> Self;
  18. /// Returns NaN.
  19. fn nan() -> Self;
  20. /// Returns `true` if the number is NaN.
  21. #[inline]
  22. fn is_nan(self) -> bool {
  23. self != self
  24. }
  25. /// Returns `true` if the number is infinite.
  26. #[inline]
  27. fn is_infinite(self) -> bool {
  28. self == Self::infinity() || self == Self::neg_infinity()
  29. }
  30. /// Returns `true` if the number is neither infinite or NaN.
  31. #[inline]
  32. fn is_finite(self) -> bool {
  33. !(self.is_nan() || self.is_infinite())
  34. }
  35. /// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
  36. #[inline]
  37. fn is_normal(self) -> bool {
  38. self.classify() == FpCategory::Normal
  39. }
  40. /// Returns the floating point category of the number. If only one property
  41. /// is going to be tested, it is generally faster to use the specific
  42. /// predicate instead.
  43. fn classify(self) -> FpCategory;
  44. /// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the
  45. /// number is `FloatCore::nan()`.
  46. #[inline]
  47. fn abs(self) -> Self {
  48. if self.is_sign_positive() {
  49. return self;
  50. }
  51. if self.is_sign_negative() {
  52. return -self;
  53. }
  54. Self::nan()
  55. }
  56. /// Returns a number that represents the sign of `self`.
  57. ///
  58. /// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()`
  59. /// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()`
  60. /// - `FloatCore::nan()` if the number is `FloatCore::nan()`
  61. #[inline]
  62. fn signum(self) -> Self {
  63. if self.is_sign_positive() {
  64. return Self::one();
  65. }
  66. if self.is_sign_negative() {
  67. return -Self::one();
  68. }
  69. Self::nan()
  70. }
  71. /// Returns `true` if `self` is positive, including `+0.0` and
  72. /// `FloatCore::infinity()`.
  73. #[inline]
  74. fn is_sign_positive(self) -> bool {
  75. self > Self::zero() || (Self::one() / self) == Self::infinity()
  76. }
  77. /// Returns `true` if `self` is negative, including `-0.0` and
  78. /// `FloatCore::neg_infinity()`.
  79. #[inline]
  80. fn is_sign_negative(self) -> bool {
  81. self < Self::zero() || (Self::one() / self) == Self::neg_infinity()
  82. }
  83. /// Returns the minimum of the two numbers.
  84. ///
  85. /// If one of the arguments is NaN, then the other argument is returned.
  86. #[inline]
  87. fn min(self, other: Self) -> Self {
  88. if self.is_nan() {
  89. return other;
  90. }
  91. if other.is_nan() {
  92. return self;
  93. }
  94. if self < other { self } else { other }
  95. }
  96. /// Returns the maximum of the two numbers.
  97. ///
  98. /// If one of the arguments is NaN, then the other argument is returned.
  99. #[inline]
  100. fn max(self, other: Self) -> Self {
  101. if self.is_nan() {
  102. return other;
  103. }
  104. if other.is_nan() {
  105. return self;
  106. }
  107. if self > other { self } else { other }
  108. }
  109. /// Returns the reciprocal (multiplicative inverse) of the number.
  110. #[inline]
  111. fn recip(self) -> Self {
  112. Self::one() / self
  113. }
  114. /// Raise a number to an integer power.
  115. ///
  116. /// Using this function is generally faster than using `powf`
  117. #[inline]
  118. fn powi(mut self, mut exp: i32) -> Self {
  119. if exp < 0 {
  120. exp = -exp;
  121. self = self.recip();
  122. }
  123. // It should always be possible to convert a positive `i32` to a `usize`.
  124. super::pow(self, exp.to_usize().unwrap())
  125. }
  126. /// Converts to degrees, assuming the number is in radians.
  127. fn to_degrees(self) -> Self;
  128. /// Converts to radians, assuming the number is in degrees.
  129. fn to_radians(self) -> Self;
  130. }
  131. impl FloatCore for f32 {
  132. #[inline]
  133. fn infinity() -> Self {
  134. ::core::f32::INFINITY
  135. }
  136. #[inline]
  137. fn neg_infinity() -> Self {
  138. ::core::f32::NEG_INFINITY
  139. }
  140. #[inline]
  141. fn nan() -> Self {
  142. ::core::f32::NAN
  143. }
  144. #[inline]
  145. fn classify(self) -> FpCategory {
  146. const EXP_MASK: u32 = 0x7f800000;
  147. const MAN_MASK: u32 = 0x007fffff;
  148. let bits: u32 = unsafe { mem::transmute(self) };
  149. match (bits & MAN_MASK, bits & EXP_MASK) {
  150. (0, 0) => FpCategory::Zero,
  151. (_, 0) => FpCategory::Subnormal,
  152. (0, EXP_MASK) => FpCategory::Infinite,
  153. (_, EXP_MASK) => FpCategory::Nan,
  154. _ => FpCategory::Normal,
  155. }
  156. }
  157. #[inline]
  158. fn to_degrees(self) -> Self {
  159. self * (180.0 / ::core::f32::consts::PI)
  160. }
  161. #[inline]
  162. fn to_radians(self) -> Self {
  163. self * (::core::f32::consts::PI / 180.0)
  164. }
  165. }
  166. impl FloatCore for f64 {
  167. #[inline]
  168. fn infinity() -> Self {
  169. ::core::f64::INFINITY
  170. }
  171. #[inline]
  172. fn neg_infinity() -> Self {
  173. ::core::f64::NEG_INFINITY
  174. }
  175. #[inline]
  176. fn nan() -> Self {
  177. ::core::f64::NAN
  178. }
  179. #[inline]
  180. fn classify(self) -> FpCategory {
  181. const EXP_MASK: u64 = 0x7ff0000000000000;
  182. const MAN_MASK: u64 = 0x000fffffffffffff;
  183. let bits: u64 = unsafe { mem::transmute(self) };
  184. match (bits & MAN_MASK, bits & EXP_MASK) {
  185. (0, 0) => FpCategory::Zero,
  186. (_, 0) => FpCategory::Subnormal,
  187. (0, EXP_MASK) => FpCategory::Infinite,
  188. (_, EXP_MASK) => FpCategory::Nan,
  189. _ => FpCategory::Normal,
  190. }
  191. }
  192. #[inline]
  193. fn to_degrees(self) -> Self {
  194. self * (180.0 / ::core::f64::consts::PI)
  195. }
  196. #[inline]
  197. fn to_radians(self) -> Self {
  198. self * (::core::f64::consts::PI / 180.0)
  199. }
  200. }
  201. // FIXME: these doctests aren't actually helpful, because they're using and
  202. // testing the inherent methods directly, not going through `Float`.
  203. /// Generic trait for floating point numbers
  204. ///
  205. /// This trait is only available with the `std` feature.
  206. #[cfg(feature = "std")]
  207. pub trait Float
  208. : Num
  209. + Copy
  210. + NumCast
  211. + PartialOrd
  212. + Neg<Output = Self>
  213. {
  214. /// Returns the `NaN` value.
  215. ///
  216. /// ```
  217. /// use num_traits::Float;
  218. ///
  219. /// let nan: f32 = Float::nan();
  220. ///
  221. /// assert!(nan.is_nan());
  222. /// ```
  223. fn nan() -> Self;
  224. /// Returns the infinite value.
  225. ///
  226. /// ```
  227. /// use num_traits::Float;
  228. /// use std::f32;
  229. ///
  230. /// let infinity: f32 = Float::infinity();
  231. ///
  232. /// assert!(infinity.is_infinite());
  233. /// assert!(!infinity.is_finite());
  234. /// assert!(infinity > f32::MAX);
  235. /// ```
  236. fn infinity() -> Self;
  237. /// Returns the negative infinite value.
  238. ///
  239. /// ```
  240. /// use num_traits::Float;
  241. /// use std::f32;
  242. ///
  243. /// let neg_infinity: f32 = Float::neg_infinity();
  244. ///
  245. /// assert!(neg_infinity.is_infinite());
  246. /// assert!(!neg_infinity.is_finite());
  247. /// assert!(neg_infinity < f32::MIN);
  248. /// ```
  249. fn neg_infinity() -> Self;
  250. /// Returns `-0.0`.
  251. ///
  252. /// ```
  253. /// use num_traits::{Zero, Float};
  254. ///
  255. /// let inf: f32 = Float::infinity();
  256. /// let zero: f32 = Zero::zero();
  257. /// let neg_zero: f32 = Float::neg_zero();
  258. ///
  259. /// assert_eq!(zero, neg_zero);
  260. /// assert_eq!(7.0f32/inf, zero);
  261. /// assert_eq!(zero * 10.0, zero);
  262. /// ```
  263. fn neg_zero() -> Self;
  264. /// Returns the smallest finite value that this type can represent.
  265. ///
  266. /// ```
  267. /// use num_traits::Float;
  268. /// use std::f64;
  269. ///
  270. /// let x: f64 = Float::min_value();
  271. ///
  272. /// assert_eq!(x, f64::MIN);
  273. /// ```
  274. fn min_value() -> Self;
  275. /// Returns the smallest positive, normalized value that this type can represent.
  276. ///
  277. /// ```
  278. /// use num_traits::Float;
  279. /// use std::f64;
  280. ///
  281. /// let x: f64 = Float::min_positive_value();
  282. ///
  283. /// assert_eq!(x, f64::MIN_POSITIVE);
  284. /// ```
  285. fn min_positive_value() -> Self;
  286. /// Returns epsilon, a small positive value.
  287. ///
  288. /// ```
  289. /// use num_traits::Float;
  290. /// use std::f64;
  291. ///
  292. /// let x: f64 = Float::epsilon();
  293. ///
  294. /// assert_eq!(x, f64::EPSILON);
  295. /// ```
  296. ///
  297. /// # Panics
  298. ///
  299. /// The default implementation will panic if `f32::EPSILON` cannot
  300. /// be cast to `Self`.
  301. fn epsilon() -> Self {
  302. Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON")
  303. }
  304. /// Returns the largest finite value that this type can represent.
  305. ///
  306. /// ```
  307. /// use num_traits::Float;
  308. /// use std::f64;
  309. ///
  310. /// let x: f64 = Float::max_value();
  311. /// assert_eq!(x, f64::MAX);
  312. /// ```
  313. fn max_value() -> Self;
  314. /// Returns `true` if this value is `NaN` and false otherwise.
  315. ///
  316. /// ```
  317. /// use num_traits::Float;
  318. /// use std::f64;
  319. ///
  320. /// let nan = f64::NAN;
  321. /// let f = 7.0;
  322. ///
  323. /// assert!(nan.is_nan());
  324. /// assert!(!f.is_nan());
  325. /// ```
  326. fn is_nan(self) -> bool;
  327. /// Returns `true` if this value is positive infinity or negative infinity and
  328. /// false otherwise.
  329. ///
  330. /// ```
  331. /// use num_traits::Float;
  332. /// use std::f32;
  333. ///
  334. /// let f = 7.0f32;
  335. /// let inf: f32 = Float::infinity();
  336. /// let neg_inf: f32 = Float::neg_infinity();
  337. /// let nan: f32 = f32::NAN;
  338. ///
  339. /// assert!(!f.is_infinite());
  340. /// assert!(!nan.is_infinite());
  341. ///
  342. /// assert!(inf.is_infinite());
  343. /// assert!(neg_inf.is_infinite());
  344. /// ```
  345. fn is_infinite(self) -> bool;
  346. /// Returns `true` if this number is neither infinite nor `NaN`.
  347. ///
  348. /// ```
  349. /// use num_traits::Float;
  350. /// use std::f32;
  351. ///
  352. /// let f = 7.0f32;
  353. /// let inf: f32 = Float::infinity();
  354. /// let neg_inf: f32 = Float::neg_infinity();
  355. /// let nan: f32 = f32::NAN;
  356. ///
  357. /// assert!(f.is_finite());
  358. ///
  359. /// assert!(!nan.is_finite());
  360. /// assert!(!inf.is_finite());
  361. /// assert!(!neg_inf.is_finite());
  362. /// ```
  363. fn is_finite(self) -> bool;
  364. /// Returns `true` if the number is neither zero, infinite,
  365. /// [subnormal][subnormal], or `NaN`.
  366. ///
  367. /// ```
  368. /// use num_traits::Float;
  369. /// use std::f32;
  370. ///
  371. /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
  372. /// let max = f32::MAX;
  373. /// let lower_than_min = 1.0e-40_f32;
  374. /// let zero = 0.0f32;
  375. ///
  376. /// assert!(min.is_normal());
  377. /// assert!(max.is_normal());
  378. ///
  379. /// assert!(!zero.is_normal());
  380. /// assert!(!f32::NAN.is_normal());
  381. /// assert!(!f32::INFINITY.is_normal());
  382. /// // Values between `0` and `min` are Subnormal.
  383. /// assert!(!lower_than_min.is_normal());
  384. /// ```
  385. /// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
  386. fn is_normal(self) -> bool;
  387. /// Returns the floating point category of the number. If only one property
  388. /// is going to be tested, it is generally faster to use the specific
  389. /// predicate instead.
  390. ///
  391. /// ```
  392. /// use num_traits::Float;
  393. /// use std::num::FpCategory;
  394. /// use std::f32;
  395. ///
  396. /// let num = 12.4f32;
  397. /// let inf = f32::INFINITY;
  398. ///
  399. /// assert_eq!(num.classify(), FpCategory::Normal);
  400. /// assert_eq!(inf.classify(), FpCategory::Infinite);
  401. /// ```
  402. fn classify(self) -> FpCategory;
  403. /// Returns the largest integer less than or equal to a number.
  404. ///
  405. /// ```
  406. /// use num_traits::Float;
  407. ///
  408. /// let f = 3.99;
  409. /// let g = 3.0;
  410. ///
  411. /// assert_eq!(f.floor(), 3.0);
  412. /// assert_eq!(g.floor(), 3.0);
  413. /// ```
  414. fn floor(self) -> Self;
  415. /// Returns the smallest integer greater than or equal to a number.
  416. ///
  417. /// ```
  418. /// use num_traits::Float;
  419. ///
  420. /// let f = 3.01;
  421. /// let g = 4.0;
  422. ///
  423. /// assert_eq!(f.ceil(), 4.0);
  424. /// assert_eq!(g.ceil(), 4.0);
  425. /// ```
  426. fn ceil(self) -> Self;
  427. /// Returns the nearest integer to a number. Round half-way cases away from
  428. /// `0.0`.
  429. ///
  430. /// ```
  431. /// use num_traits::Float;
  432. ///
  433. /// let f = 3.3;
  434. /// let g = -3.3;
  435. ///
  436. /// assert_eq!(f.round(), 3.0);
  437. /// assert_eq!(g.round(), -3.0);
  438. /// ```
  439. fn round(self) -> Self;
  440. /// Return the integer part of a number.
  441. ///
  442. /// ```
  443. /// use num_traits::Float;
  444. ///
  445. /// let f = 3.3;
  446. /// let g = -3.7;
  447. ///
  448. /// assert_eq!(f.trunc(), 3.0);
  449. /// assert_eq!(g.trunc(), -3.0);
  450. /// ```
  451. fn trunc(self) -> Self;
  452. /// Returns the fractional part of a number.
  453. ///
  454. /// ```
  455. /// use num_traits::Float;
  456. ///
  457. /// let x = 3.5;
  458. /// let y = -3.5;
  459. /// let abs_difference_x = (x.fract() - 0.5).abs();
  460. /// let abs_difference_y = (y.fract() - (-0.5)).abs();
  461. ///
  462. /// assert!(abs_difference_x < 1e-10);
  463. /// assert!(abs_difference_y < 1e-10);
  464. /// ```
  465. fn fract(self) -> Self;
  466. /// Computes the absolute value of `self`. Returns `Float::nan()` if the
  467. /// number is `Float::nan()`.
  468. ///
  469. /// ```
  470. /// use num_traits::Float;
  471. /// use std::f64;
  472. ///
  473. /// let x = 3.5;
  474. /// let y = -3.5;
  475. ///
  476. /// let abs_difference_x = (x.abs() - x).abs();
  477. /// let abs_difference_y = (y.abs() - (-y)).abs();
  478. ///
  479. /// assert!(abs_difference_x < 1e-10);
  480. /// assert!(abs_difference_y < 1e-10);
  481. ///
  482. /// assert!(f64::NAN.abs().is_nan());
  483. /// ```
  484. fn abs(self) -> Self;
  485. /// Returns a number that represents the sign of `self`.
  486. ///
  487. /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
  488. /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
  489. /// - `Float::nan()` if the number is `Float::nan()`
  490. ///
  491. /// ```
  492. /// use num_traits::Float;
  493. /// use std::f64;
  494. ///
  495. /// let f = 3.5;
  496. ///
  497. /// assert_eq!(f.signum(), 1.0);
  498. /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
  499. ///
  500. /// assert!(f64::NAN.signum().is_nan());
  501. /// ```
  502. fn signum(self) -> Self;
  503. /// Returns `true` if `self` is positive, including `+0.0`,
  504. /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`.
  505. ///
  506. /// ```
  507. /// use num_traits::Float;
  508. /// use std::f64;
  509. ///
  510. /// let neg_nan: f64 = -f64::NAN;
  511. ///
  512. /// let f = 7.0;
  513. /// let g = -7.0;
  514. ///
  515. /// assert!(f.is_sign_positive());
  516. /// assert!(!g.is_sign_positive());
  517. /// assert!(!neg_nan.is_sign_positive());
  518. /// ```
  519. fn is_sign_positive(self) -> bool;
  520. /// Returns `true` if `self` is negative, including `-0.0`,
  521. /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`.
  522. ///
  523. /// ```
  524. /// use num_traits::Float;
  525. /// use std::f64;
  526. ///
  527. /// let nan: f64 = f64::NAN;
  528. ///
  529. /// let f = 7.0;
  530. /// let g = -7.0;
  531. ///
  532. /// assert!(!f.is_sign_negative());
  533. /// assert!(g.is_sign_negative());
  534. /// assert!(!nan.is_sign_negative());
  535. /// ```
  536. fn is_sign_negative(self) -> bool;
  537. /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
  538. /// error. This produces a more accurate result with better performance than
  539. /// a separate multiplication operation followed by an add.
  540. ///
  541. /// ```
  542. /// use num_traits::Float;
  543. ///
  544. /// let m = 10.0;
  545. /// let x = 4.0;
  546. /// let b = 60.0;
  547. ///
  548. /// // 100.0
  549. /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
  550. ///
  551. /// assert!(abs_difference < 1e-10);
  552. /// ```
  553. fn mul_add(self, a: Self, b: Self) -> Self;
  554. /// Take the reciprocal (inverse) of a number, `1/x`.
  555. ///
  556. /// ```
  557. /// use num_traits::Float;
  558. ///
  559. /// let x = 2.0;
  560. /// let abs_difference = (x.recip() - (1.0/x)).abs();
  561. ///
  562. /// assert!(abs_difference < 1e-10);
  563. /// ```
  564. fn recip(self) -> Self;
  565. /// Raise a number to an integer power.
  566. ///
  567. /// Using this function is generally faster than using `powf`
  568. ///
  569. /// ```
  570. /// use num_traits::Float;
  571. ///
  572. /// let x = 2.0;
  573. /// let abs_difference = (x.powi(2) - x*x).abs();
  574. ///
  575. /// assert!(abs_difference < 1e-10);
  576. /// ```
  577. fn powi(self, n: i32) -> Self;
  578. /// Raise a number to a floating point power.
  579. ///
  580. /// ```
  581. /// use num_traits::Float;
  582. ///
  583. /// let x = 2.0;
  584. /// let abs_difference = (x.powf(2.0) - x*x).abs();
  585. ///
  586. /// assert!(abs_difference < 1e-10);
  587. /// ```
  588. fn powf(self, n: Self) -> Self;
  589. /// Take the square root of a number.
  590. ///
  591. /// Returns NaN if `self` is a negative number.
  592. ///
  593. /// ```
  594. /// use num_traits::Float;
  595. ///
  596. /// let positive = 4.0;
  597. /// let negative = -4.0;
  598. ///
  599. /// let abs_difference = (positive.sqrt() - 2.0).abs();
  600. ///
  601. /// assert!(abs_difference < 1e-10);
  602. /// assert!(negative.sqrt().is_nan());
  603. /// ```
  604. fn sqrt(self) -> Self;
  605. /// Returns `e^(self)`, (the exponential function).
  606. ///
  607. /// ```
  608. /// use num_traits::Float;
  609. ///
  610. /// let one = 1.0;
  611. /// // e^1
  612. /// let e = one.exp();
  613. ///
  614. /// // ln(e) - 1 == 0
  615. /// let abs_difference = (e.ln() - 1.0).abs();
  616. ///
  617. /// assert!(abs_difference < 1e-10);
  618. /// ```
  619. fn exp(self) -> Self;
  620. /// Returns `2^(self)`.
  621. ///
  622. /// ```
  623. /// use num_traits::Float;
  624. ///
  625. /// let f = 2.0;
  626. ///
  627. /// // 2^2 - 4 == 0
  628. /// let abs_difference = (f.exp2() - 4.0).abs();
  629. ///
  630. /// assert!(abs_difference < 1e-10);
  631. /// ```
  632. fn exp2(self) -> Self;
  633. /// Returns the natural logarithm of the number.
  634. ///
  635. /// ```
  636. /// use num_traits::Float;
  637. ///
  638. /// let one = 1.0;
  639. /// // e^1
  640. /// let e = one.exp();
  641. ///
  642. /// // ln(e) - 1 == 0
  643. /// let abs_difference = (e.ln() - 1.0).abs();
  644. ///
  645. /// assert!(abs_difference < 1e-10);
  646. /// ```
  647. fn ln(self) -> Self;
  648. /// Returns the logarithm of the number with respect to an arbitrary base.
  649. ///
  650. /// ```
  651. /// use num_traits::Float;
  652. ///
  653. /// let ten = 10.0;
  654. /// let two = 2.0;
  655. ///
  656. /// // log10(10) - 1 == 0
  657. /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
  658. ///
  659. /// // log2(2) - 1 == 0
  660. /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
  661. ///
  662. /// assert!(abs_difference_10 < 1e-10);
  663. /// assert!(abs_difference_2 < 1e-10);
  664. /// ```
  665. fn log(self, base: Self) -> Self;
  666. /// Returns the base 2 logarithm of the number.
  667. ///
  668. /// ```
  669. /// use num_traits::Float;
  670. ///
  671. /// let two = 2.0;
  672. ///
  673. /// // log2(2) - 1 == 0
  674. /// let abs_difference = (two.log2() - 1.0).abs();
  675. ///
  676. /// assert!(abs_difference < 1e-10);
  677. /// ```
  678. fn log2(self) -> Self;
  679. /// Returns the base 10 logarithm of the number.
  680. ///
  681. /// ```
  682. /// use num_traits::Float;
  683. ///
  684. /// let ten = 10.0;
  685. ///
  686. /// // log10(10) - 1 == 0
  687. /// let abs_difference = (ten.log10() - 1.0).abs();
  688. ///
  689. /// assert!(abs_difference < 1e-10);
  690. /// ```
  691. fn log10(self) -> Self;
  692. /// Converts radians to degrees.
  693. ///
  694. /// ```
  695. /// use std::f64::consts;
  696. ///
  697. /// let angle = consts::PI;
  698. ///
  699. /// let abs_difference = (angle.to_degrees() - 180.0).abs();
  700. ///
  701. /// assert!(abs_difference < 1e-10);
  702. /// ```
  703. #[inline]
  704. fn to_degrees(self) -> Self {
  705. let halfpi = Self::zero().acos();
  706. let ninety = Self::from(90u8).unwrap();
  707. self * ninety / halfpi
  708. }
  709. /// Converts degrees to radians.
  710. ///
  711. /// ```
  712. /// use std::f64::consts;
  713. ///
  714. /// let angle = 180.0_f64;
  715. ///
  716. /// let abs_difference = (angle.to_radians() - consts::PI).abs();
  717. ///
  718. /// assert!(abs_difference < 1e-10);
  719. /// ```
  720. #[inline]
  721. fn to_radians(self) -> Self {
  722. let halfpi = Self::zero().acos();
  723. let ninety = Self::from(90u8).unwrap();
  724. self * halfpi / ninety
  725. }
  726. /// Returns the maximum of the two numbers.
  727. ///
  728. /// ```
  729. /// use num_traits::Float;
  730. ///
  731. /// let x = 1.0;
  732. /// let y = 2.0;
  733. ///
  734. /// assert_eq!(x.max(y), y);
  735. /// ```
  736. fn max(self, other: Self) -> Self;
  737. /// Returns the minimum of the two numbers.
  738. ///
  739. /// ```
  740. /// use num_traits::Float;
  741. ///
  742. /// let x = 1.0;
  743. /// let y = 2.0;
  744. ///
  745. /// assert_eq!(x.min(y), x);
  746. /// ```
  747. fn min(self, other: Self) -> Self;
  748. /// The positive difference of two numbers.
  749. ///
  750. /// * If `self <= other`: `0:0`
  751. /// * Else: `self - other`
  752. ///
  753. /// ```
  754. /// use num_traits::Float;
  755. ///
  756. /// let x = 3.0;
  757. /// let y = -3.0;
  758. ///
  759. /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
  760. /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
  761. ///
  762. /// assert!(abs_difference_x < 1e-10);
  763. /// assert!(abs_difference_y < 1e-10);
  764. /// ```
  765. fn abs_sub(self, other: Self) -> Self;
  766. /// Take the cubic root of a number.
  767. ///
  768. /// ```
  769. /// use num_traits::Float;
  770. ///
  771. /// let x = 8.0;
  772. ///
  773. /// // x^(1/3) - 2 == 0
  774. /// let abs_difference = (x.cbrt() - 2.0).abs();
  775. ///
  776. /// assert!(abs_difference < 1e-10);
  777. /// ```
  778. fn cbrt(self) -> Self;
  779. /// Calculate the length of the hypotenuse of a right-angle triangle given
  780. /// legs of length `x` and `y`.
  781. ///
  782. /// ```
  783. /// use num_traits::Float;
  784. ///
  785. /// let x = 2.0;
  786. /// let y = 3.0;
  787. ///
  788. /// // sqrt(x^2 + y^2)
  789. /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
  790. ///
  791. /// assert!(abs_difference < 1e-10);
  792. /// ```
  793. fn hypot(self, other: Self) -> Self;
  794. /// Computes the sine of a number (in radians).
  795. ///
  796. /// ```
  797. /// use num_traits::Float;
  798. /// use std::f64;
  799. ///
  800. /// let x = f64::consts::PI/2.0;
  801. ///
  802. /// let abs_difference = (x.sin() - 1.0).abs();
  803. ///
  804. /// assert!(abs_difference < 1e-10);
  805. /// ```
  806. fn sin(self) -> Self;
  807. /// Computes the cosine of a number (in radians).
  808. ///
  809. /// ```
  810. /// use num_traits::Float;
  811. /// use std::f64;
  812. ///
  813. /// let x = 2.0*f64::consts::PI;
  814. ///
  815. /// let abs_difference = (x.cos() - 1.0).abs();
  816. ///
  817. /// assert!(abs_difference < 1e-10);
  818. /// ```
  819. fn cos(self) -> Self;
  820. /// Computes the tangent of a number (in radians).
  821. ///
  822. /// ```
  823. /// use num_traits::Float;
  824. /// use std::f64;
  825. ///
  826. /// let x = f64::consts::PI/4.0;
  827. /// let abs_difference = (x.tan() - 1.0).abs();
  828. ///
  829. /// assert!(abs_difference < 1e-14);
  830. /// ```
  831. fn tan(self) -> Self;
  832. /// Computes the arcsine of a number. Return value is in radians in
  833. /// the range [-pi/2, pi/2] or NaN if the number is outside the range
  834. /// [-1, 1].
  835. ///
  836. /// ```
  837. /// use num_traits::Float;
  838. /// use std::f64;
  839. ///
  840. /// let f = f64::consts::PI / 2.0;
  841. ///
  842. /// // asin(sin(pi/2))
  843. /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
  844. ///
  845. /// assert!(abs_difference < 1e-10);
  846. /// ```
  847. fn asin(self) -> Self;
  848. /// Computes the arccosine of a number. Return value is in radians in
  849. /// the range [0, pi] or NaN if the number is outside the range
  850. /// [-1, 1].
  851. ///
  852. /// ```
  853. /// use num_traits::Float;
  854. /// use std::f64;
  855. ///
  856. /// let f = f64::consts::PI / 4.0;
  857. ///
  858. /// // acos(cos(pi/4))
  859. /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
  860. ///
  861. /// assert!(abs_difference < 1e-10);
  862. /// ```
  863. fn acos(self) -> Self;
  864. /// Computes the arctangent of a number. Return value is in radians in the
  865. /// range [-pi/2, pi/2];
  866. ///
  867. /// ```
  868. /// use num_traits::Float;
  869. ///
  870. /// let f = 1.0;
  871. ///
  872. /// // atan(tan(1))
  873. /// let abs_difference = (f.tan().atan() - 1.0).abs();
  874. ///
  875. /// assert!(abs_difference < 1e-10);
  876. /// ```
  877. fn atan(self) -> Self;
  878. /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
  879. ///
  880. /// * `x = 0`, `y = 0`: `0`
  881. /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
  882. /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
  883. /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
  884. ///
  885. /// ```
  886. /// use num_traits::Float;
  887. /// use std::f64;
  888. ///
  889. /// let pi = f64::consts::PI;
  890. /// // All angles from horizontal right (+x)
  891. /// // 45 deg counter-clockwise
  892. /// let x1 = 3.0;
  893. /// let y1 = -3.0;
  894. ///
  895. /// // 135 deg clockwise
  896. /// let x2 = -3.0;
  897. /// let y2 = 3.0;
  898. ///
  899. /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
  900. /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
  901. ///
  902. /// assert!(abs_difference_1 < 1e-10);
  903. /// assert!(abs_difference_2 < 1e-10);
  904. /// ```
  905. fn atan2(self, other: Self) -> Self;
  906. /// Simultaneously computes the sine and cosine of the number, `x`. Returns
  907. /// `(sin(x), cos(x))`.
  908. ///
  909. /// ```
  910. /// use num_traits::Float;
  911. /// use std::f64;
  912. ///
  913. /// let x = f64::consts::PI/4.0;
  914. /// let f = x.sin_cos();
  915. ///
  916. /// let abs_difference_0 = (f.0 - x.sin()).abs();
  917. /// let abs_difference_1 = (f.1 - x.cos()).abs();
  918. ///
  919. /// assert!(abs_difference_0 < 1e-10);
  920. /// assert!(abs_difference_0 < 1e-10);
  921. /// ```
  922. fn sin_cos(self) -> (Self, Self);
  923. /// Returns `e^(self) - 1` in a way that is accurate even if the
  924. /// number is close to zero.
  925. ///
  926. /// ```
  927. /// use num_traits::Float;
  928. ///
  929. /// let x = 7.0;
  930. ///
  931. /// // e^(ln(7)) - 1
  932. /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
  933. ///
  934. /// assert!(abs_difference < 1e-10);
  935. /// ```
  936. fn exp_m1(self) -> Self;
  937. /// Returns `ln(1+n)` (natural logarithm) more accurately than if
  938. /// the operations were performed separately.
  939. ///
  940. /// ```
  941. /// use num_traits::Float;
  942. /// use std::f64;
  943. ///
  944. /// let x = f64::consts::E - 1.0;
  945. ///
  946. /// // ln(1 + (e - 1)) == ln(e) == 1
  947. /// let abs_difference = (x.ln_1p() - 1.0).abs();
  948. ///
  949. /// assert!(abs_difference < 1e-10);
  950. /// ```
  951. fn ln_1p(self) -> Self;
  952. /// Hyperbolic sine function.
  953. ///
  954. /// ```
  955. /// use num_traits::Float;
  956. /// use std::f64;
  957. ///
  958. /// let e = f64::consts::E;
  959. /// let x = 1.0;
  960. ///
  961. /// let f = x.sinh();
  962. /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
  963. /// let g = (e*e - 1.0)/(2.0*e);
  964. /// let abs_difference = (f - g).abs();
  965. ///
  966. /// assert!(abs_difference < 1e-10);
  967. /// ```
  968. fn sinh(self) -> Self;
  969. /// Hyperbolic cosine function.
  970. ///
  971. /// ```
  972. /// use num_traits::Float;
  973. /// use std::f64;
  974. ///
  975. /// let e = f64::consts::E;
  976. /// let x = 1.0;
  977. /// let f = x.cosh();
  978. /// // Solving cosh() at 1 gives this result
  979. /// let g = (e*e + 1.0)/(2.0*e);
  980. /// let abs_difference = (f - g).abs();
  981. ///
  982. /// // Same result
  983. /// assert!(abs_difference < 1.0e-10);
  984. /// ```
  985. fn cosh(self) -> Self;
  986. /// Hyperbolic tangent function.
  987. ///
  988. /// ```
  989. /// use num_traits::Float;
  990. /// use std::f64;
  991. ///
  992. /// let e = f64::consts::E;
  993. /// let x = 1.0;
  994. ///
  995. /// let f = x.tanh();
  996. /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
  997. /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
  998. /// let abs_difference = (f - g).abs();
  999. ///
  1000. /// assert!(abs_difference < 1.0e-10);
  1001. /// ```
  1002. fn tanh(self) -> Self;
  1003. /// Inverse hyperbolic sine function.
  1004. ///
  1005. /// ```
  1006. /// use num_traits::Float;
  1007. ///
  1008. /// let x = 1.0;
  1009. /// let f = x.sinh().asinh();
  1010. ///
  1011. /// let abs_difference = (f - x).abs();
  1012. ///
  1013. /// assert!(abs_difference < 1.0e-10);
  1014. /// ```
  1015. fn asinh(self) -> Self;
  1016. /// Inverse hyperbolic cosine function.
  1017. ///
  1018. /// ```
  1019. /// use num_traits::Float;
  1020. ///
  1021. /// let x = 1.0;
  1022. /// let f = x.cosh().acosh();
  1023. ///
  1024. /// let abs_difference = (f - x).abs();
  1025. ///
  1026. /// assert!(abs_difference < 1.0e-10);
  1027. /// ```
  1028. fn acosh(self) -> Self;
  1029. /// Inverse hyperbolic tangent function.
  1030. ///
  1031. /// ```
  1032. /// use num_traits::Float;
  1033. /// use std::f64;
  1034. ///
  1035. /// let e = f64::consts::E;
  1036. /// let f = e.tanh().atanh();
  1037. ///
  1038. /// let abs_difference = (f - e).abs();
  1039. ///
  1040. /// assert!(abs_difference < 1.0e-10);
  1041. /// ```
  1042. fn atanh(self) -> Self;
  1043. /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
  1044. /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
  1045. /// The floating point encoding is documented in the [Reference][floating-point].
  1046. ///
  1047. /// ```
  1048. /// use num_traits::Float;
  1049. ///
  1050. /// let num = 2.0f32;
  1051. ///
  1052. /// // (8388608, -22, 1)
  1053. /// let (mantissa, exponent, sign) = Float::integer_decode(num);
  1054. /// let sign_f = sign as f32;
  1055. /// let mantissa_f = mantissa as f32;
  1056. /// let exponent_f = num.powf(exponent as f32);
  1057. ///
  1058. /// // 1 * 8388608 * 2^(-22) == 2
  1059. /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
  1060. ///
  1061. /// assert!(abs_difference < 1e-10);
  1062. /// ```
  1063. /// [floating-point]: ../../../../../reference.html#machine-types
  1064. fn integer_decode(self) -> (u64, i16, i8);
  1065. }
  1066. #[cfg(feature = "std")]
  1067. macro_rules! float_impl {
  1068. ($T:ident $decode:ident) => (
  1069. impl Float for $T {
  1070. #[inline]
  1071. fn nan() -> Self {
  1072. ::std::$T::NAN
  1073. }
  1074. #[inline]
  1075. fn infinity() -> Self {
  1076. ::std::$T::INFINITY
  1077. }
  1078. #[inline]
  1079. fn neg_infinity() -> Self {
  1080. ::std::$T::NEG_INFINITY
  1081. }
  1082. #[inline]
  1083. fn neg_zero() -> Self {
  1084. -0.0
  1085. }
  1086. #[inline]
  1087. fn min_value() -> Self {
  1088. ::std::$T::MIN
  1089. }
  1090. #[inline]
  1091. fn min_positive_value() -> Self {
  1092. ::std::$T::MIN_POSITIVE
  1093. }
  1094. #[inline]
  1095. fn epsilon() -> Self {
  1096. ::std::$T::EPSILON
  1097. }
  1098. #[inline]
  1099. fn max_value() -> Self {
  1100. ::std::$T::MAX
  1101. }
  1102. #[inline]
  1103. fn is_nan(self) -> bool {
  1104. <$T>::is_nan(self)
  1105. }
  1106. #[inline]
  1107. fn is_infinite(self) -> bool {
  1108. <$T>::is_infinite(self)
  1109. }
  1110. #[inline]
  1111. fn is_finite(self) -> bool {
  1112. <$T>::is_finite(self)
  1113. }
  1114. #[inline]
  1115. fn is_normal(self) -> bool {
  1116. <$T>::is_normal(self)
  1117. }
  1118. #[inline]
  1119. fn classify(self) -> FpCategory {
  1120. <$T>::classify(self)
  1121. }
  1122. #[inline]
  1123. fn floor(self) -> Self {
  1124. <$T>::floor(self)
  1125. }
  1126. #[inline]
  1127. fn ceil(self) -> Self {
  1128. <$T>::ceil(self)
  1129. }
  1130. #[inline]
  1131. fn round(self) -> Self {
  1132. <$T>::round(self)
  1133. }
  1134. #[inline]
  1135. fn trunc(self) -> Self {
  1136. <$T>::trunc(self)
  1137. }
  1138. #[inline]
  1139. fn fract(self) -> Self {
  1140. <$T>::fract(self)
  1141. }
  1142. #[inline]
  1143. fn abs(self) -> Self {
  1144. <$T>::abs(self)
  1145. }
  1146. #[inline]
  1147. fn signum(self) -> Self {
  1148. <$T>::signum(self)
  1149. }
  1150. #[inline]
  1151. fn is_sign_positive(self) -> bool {
  1152. <$T>::is_sign_positive(self)
  1153. }
  1154. #[inline]
  1155. fn is_sign_negative(self) -> bool {
  1156. <$T>::is_sign_negative(self)
  1157. }
  1158. #[inline]
  1159. fn mul_add(self, a: Self, b: Self) -> Self {
  1160. <$T>::mul_add(self, a, b)
  1161. }
  1162. #[inline]
  1163. fn recip(self) -> Self {
  1164. <$T>::recip(self)
  1165. }
  1166. #[inline]
  1167. fn powi(self, n: i32) -> Self {
  1168. <$T>::powi(self, n)
  1169. }
  1170. #[inline]
  1171. fn powf(self, n: Self) -> Self {
  1172. <$T>::powf(self, n)
  1173. }
  1174. #[inline]
  1175. fn sqrt(self) -> Self {
  1176. <$T>::sqrt(self)
  1177. }
  1178. #[inline]
  1179. fn exp(self) -> Self {
  1180. <$T>::exp(self)
  1181. }
  1182. #[inline]
  1183. fn exp2(self) -> Self {
  1184. <$T>::exp2(self)
  1185. }
  1186. #[inline]
  1187. fn ln(self) -> Self {
  1188. <$T>::ln(self)
  1189. }
  1190. #[inline]
  1191. fn log(self, base: Self) -> Self {
  1192. <$T>::log(self, base)
  1193. }
  1194. #[inline]
  1195. fn log2(self) -> Self {
  1196. <$T>::log2(self)
  1197. }
  1198. #[inline]
  1199. fn log10(self) -> Self {
  1200. <$T>::log10(self)
  1201. }
  1202. #[inline]
  1203. fn to_degrees(self) -> Self {
  1204. // NB: `f32` didn't stabilize this until 1.7
  1205. // <$T>::to_degrees(self)
  1206. self * (180. / ::std::$T::consts::PI)
  1207. }
  1208. #[inline]
  1209. fn to_radians(self) -> Self {
  1210. // NB: `f32` didn't stabilize this until 1.7
  1211. // <$T>::to_radians(self)
  1212. self * (::std::$T::consts::PI / 180.)
  1213. }
  1214. #[inline]
  1215. fn max(self, other: Self) -> Self {
  1216. <$T>::max(self, other)
  1217. }
  1218. #[inline]
  1219. fn min(self, other: Self) -> Self {
  1220. <$T>::min(self, other)
  1221. }
  1222. #[inline]
  1223. #[allow(deprecated)]
  1224. fn abs_sub(self, other: Self) -> Self {
  1225. <$T>::abs_sub(self, other)
  1226. }
  1227. #[inline]
  1228. fn cbrt(self) -> Self {
  1229. <$T>::cbrt(self)
  1230. }
  1231. #[inline]
  1232. fn hypot(self, other: Self) -> Self {
  1233. <$T>::hypot(self, other)
  1234. }
  1235. #[inline]
  1236. fn sin(self) -> Self {
  1237. <$T>::sin(self)
  1238. }
  1239. #[inline]
  1240. fn cos(self) -> Self {
  1241. <$T>::cos(self)
  1242. }
  1243. #[inline]
  1244. fn tan(self) -> Self {
  1245. <$T>::tan(self)
  1246. }
  1247. #[inline]
  1248. fn asin(self) -> Self {
  1249. <$T>::asin(self)
  1250. }
  1251. #[inline]
  1252. fn acos(self) -> Self {
  1253. <$T>::acos(self)
  1254. }
  1255. #[inline]
  1256. fn atan(self) -> Self {
  1257. <$T>::atan(self)
  1258. }
  1259. #[inline]
  1260. fn atan2(self, other: Self) -> Self {
  1261. <$T>::atan2(self, other)
  1262. }
  1263. #[inline]
  1264. fn sin_cos(self) -> (Self, Self) {
  1265. <$T>::sin_cos(self)
  1266. }
  1267. #[inline]
  1268. fn exp_m1(self) -> Self {
  1269. <$T>::exp_m1(self)
  1270. }
  1271. #[inline]
  1272. fn ln_1p(self) -> Self {
  1273. <$T>::ln_1p(self)
  1274. }
  1275. #[inline]
  1276. fn sinh(self) -> Self {
  1277. <$T>::sinh(self)
  1278. }
  1279. #[inline]
  1280. fn cosh(self) -> Self {
  1281. <$T>::cosh(self)
  1282. }
  1283. #[inline]
  1284. fn tanh(self) -> Self {
  1285. <$T>::tanh(self)
  1286. }
  1287. #[inline]
  1288. fn asinh(self) -> Self {
  1289. <$T>::asinh(self)
  1290. }
  1291. #[inline]
  1292. fn acosh(self) -> Self {
  1293. <$T>::acosh(self)
  1294. }
  1295. #[inline]
  1296. fn atanh(self) -> Self {
  1297. <$T>::atanh(self)
  1298. }
  1299. #[inline]
  1300. fn integer_decode(self) -> (u64, i16, i8) {
  1301. $decode(self)
  1302. }
  1303. }
  1304. )
  1305. }
  1306. #[cfg(feature = "std")]
  1307. fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
  1308. let bits: u32 = unsafe { mem::transmute(f) };
  1309. let sign: i8 = if bits >> 31 == 0 {
  1310. 1
  1311. } else {
  1312. -1
  1313. };
  1314. let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
  1315. let mantissa = if exponent == 0 {
  1316. (bits & 0x7fffff) << 1
  1317. } else {
  1318. (bits & 0x7fffff) | 0x800000
  1319. };
  1320. // Exponent bias + mantissa shift
  1321. exponent -= 127 + 23;
  1322. (mantissa as u64, exponent, sign)
  1323. }
  1324. #[cfg(feature = "std")]
  1325. fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
  1326. let bits: u64 = unsafe { mem::transmute(f) };
  1327. let sign: i8 = if bits >> 63 == 0 {
  1328. 1
  1329. } else {
  1330. -1
  1331. };
  1332. let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
  1333. let mantissa = if exponent == 0 {
  1334. (bits & 0xfffffffffffff) << 1
  1335. } else {
  1336. (bits & 0xfffffffffffff) | 0x10000000000000
  1337. };
  1338. // Exponent bias + mantissa shift
  1339. exponent -= 1023 + 52;
  1340. (mantissa, exponent, sign)
  1341. }
  1342. #[cfg(feature = "std")]
  1343. float_impl!(f32 integer_decode_f32);
  1344. #[cfg(feature = "std")]
  1345. float_impl!(f64 integer_decode_f64);
  1346. macro_rules! float_const_impl {
  1347. ($(#[$doc:meta] $constant:ident,)+) => (
  1348. #[allow(non_snake_case)]
  1349. pub trait FloatConst {
  1350. $(#[$doc] fn $constant() -> Self;)+
  1351. }
  1352. float_const_impl! { @float f32, $($constant,)+ }
  1353. float_const_impl! { @float f64, $($constant,)+ }
  1354. );
  1355. (@float $T:ident, $($constant:ident,)+) => (
  1356. impl FloatConst for $T {
  1357. $(
  1358. #[inline]
  1359. fn $constant() -> Self {
  1360. ::core::$T::consts::$constant
  1361. }
  1362. )+
  1363. }
  1364. );
  1365. }
  1366. float_const_impl! {
  1367. #[doc = "Return Euler’s number."]
  1368. E,
  1369. #[doc = "Return `1.0 / π`."]
  1370. FRAC_1_PI,
  1371. #[doc = "Return `1.0 / sqrt(2.0)`."]
  1372. FRAC_1_SQRT_2,
  1373. #[doc = "Return `2.0 / π`."]
  1374. FRAC_2_PI,
  1375. #[doc = "Return `2.0 / sqrt(π)`."]
  1376. FRAC_2_SQRT_PI,
  1377. #[doc = "Return `π / 2.0`."]
  1378. FRAC_PI_2,
  1379. #[doc = "Return `π / 3.0`."]
  1380. FRAC_PI_3,
  1381. #[doc = "Return `π / 4.0`."]
  1382. FRAC_PI_4,
  1383. #[doc = "Return `π / 6.0`."]
  1384. FRAC_PI_6,
  1385. #[doc = "Return `π / 8.0`."]
  1386. FRAC_PI_8,
  1387. #[doc = "Return `ln(10.0)`."]
  1388. LN_10,
  1389. #[doc = "Return `ln(2.0)`."]
  1390. LN_2,
  1391. #[doc = "Return `log10(e)`."]
  1392. LOG10_E,
  1393. #[doc = "Return `log2(e)`."]
  1394. LOG2_E,
  1395. #[doc = "Return Archimedes’ constant."]
  1396. PI,
  1397. #[doc = "Return `sqrt(2.0)`."]
  1398. SQRT_2,
  1399. }
  1400. #[cfg(test)]
  1401. mod tests {
  1402. use core::f64::consts;
  1403. const DEG_RAD_PAIRS: [(f64, f64); 7] = [
  1404. (0.0, 0.),
  1405. (22.5, consts::FRAC_PI_8),
  1406. (30.0, consts::FRAC_PI_6),
  1407. (45.0, consts::FRAC_PI_4),
  1408. (60.0, consts::FRAC_PI_3),
  1409. (90.0, consts::FRAC_PI_2),
  1410. (180.0, consts::PI),
  1411. ];
  1412. #[test]
  1413. fn convert_deg_rad() {
  1414. use float::FloatCore;
  1415. for &(deg, rad) in &DEG_RAD_PAIRS {
  1416. assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6);
  1417. assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6);
  1418. let (deg, rad) = (deg as f32, rad as f32);
  1419. assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6);
  1420. assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6);
  1421. }
  1422. }
  1423. #[cfg(feature = "std")]
  1424. #[test]
  1425. fn convert_deg_rad_std() {
  1426. for &(deg, rad) in &DEG_RAD_PAIRS {
  1427. use Float;
  1428. assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
  1429. assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
  1430. let (deg, rad) = (deg as f32, rad as f32);
  1431. assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
  1432. assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
  1433. }
  1434. }
  1435. }