123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344 |
- use std::mem;
- use std::ops::Neg;
- use std::num::FpCategory;
- // Used for default implementation of `epsilon`
- use std::f32;
- use {Num, NumCast};
- // FIXME: these doctests aren't actually helpful, because they're using and
- // testing the inherent methods directly, not going through `Float`.
- pub trait Float
- : Num
- + Copy
- + NumCast
- + PartialOrd
- + Neg<Output = Self>
- {
- /// Returns the `NaN` value.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let nan: f32 = Float::nan();
- ///
- /// assert!(nan.is_nan());
- /// ```
- fn nan() -> Self;
- /// Returns the infinite value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let infinity: f32 = Float::infinity();
- ///
- /// assert!(infinity.is_infinite());
- /// assert!(!infinity.is_finite());
- /// assert!(infinity > f32::MAX);
- /// ```
- fn infinity() -> Self;
- /// Returns the negative infinite value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let neg_infinity: f32 = Float::neg_infinity();
- ///
- /// assert!(neg_infinity.is_infinite());
- /// assert!(!neg_infinity.is_finite());
- /// assert!(neg_infinity < f32::MIN);
- /// ```
- fn neg_infinity() -> Self;
- /// Returns `-0.0`.
- ///
- /// ```
- /// use num_traits::{Zero, Float};
- ///
- /// let inf: f32 = Float::infinity();
- /// let zero: f32 = Zero::zero();
- /// let neg_zero: f32 = Float::neg_zero();
- ///
- /// assert_eq!(zero, neg_zero);
- /// assert_eq!(7.0f32/inf, zero);
- /// assert_eq!(zero * 10.0, zero);
- /// ```
- fn neg_zero() -> Self;
- /// Returns the smallest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::min_value();
- ///
- /// assert_eq!(x, f64::MIN);
- /// ```
- fn min_value() -> Self;
- /// Returns the smallest positive, normalized value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::min_positive_value();
- ///
- /// assert_eq!(x, f64::MIN_POSITIVE);
- /// ```
- fn min_positive_value() -> Self;
- /// Returns epsilon, a small positive value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::epsilon();
- ///
- /// assert_eq!(x, f64::EPSILON);
- /// ```
- ///
- /// # Panics
- ///
- /// The default implementation will panic if `f32::EPSILON` cannot
- /// be cast to `Self`.
- fn epsilon() -> Self {
- Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON")
- }
- /// Returns the largest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::max_value();
- /// assert_eq!(x, f64::MAX);
- /// ```
- fn max_value() -> Self;
- /// Returns `true` if this value is `NaN` and false otherwise.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let nan = f64::NAN;
- /// let f = 7.0;
- ///
- /// assert!(nan.is_nan());
- /// assert!(!f.is_nan());
- /// ```
- fn is_nan(self) -> bool;
- /// Returns `true` if this value is positive infinity or negative infinity and
- /// false otherwise.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let f = 7.0f32;
- /// let inf: f32 = Float::infinity();
- /// let neg_inf: f32 = Float::neg_infinity();
- /// let nan: f32 = f32::NAN;
- ///
- /// assert!(!f.is_infinite());
- /// assert!(!nan.is_infinite());
- ///
- /// assert!(inf.is_infinite());
- /// assert!(neg_inf.is_infinite());
- /// ```
- fn is_infinite(self) -> bool;
- /// Returns `true` if this number is neither infinite nor `NaN`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let f = 7.0f32;
- /// let inf: f32 = Float::infinity();
- /// let neg_inf: f32 = Float::neg_infinity();
- /// let nan: f32 = f32::NAN;
- ///
- /// assert!(f.is_finite());
- ///
- /// assert!(!nan.is_finite());
- /// assert!(!inf.is_finite());
- /// assert!(!neg_inf.is_finite());
- /// ```
- fn is_finite(self) -> bool;
- /// Returns `true` if the number is neither zero, infinite,
- /// [subnormal][subnormal], or `NaN`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
- /// let max = f32::MAX;
- /// let lower_than_min = 1.0e-40_f32;
- /// let zero = 0.0f32;
- ///
- /// assert!(min.is_normal());
- /// assert!(max.is_normal());
- ///
- /// assert!(!zero.is_normal());
- /// assert!(!f32::NAN.is_normal());
- /// assert!(!f32::INFINITY.is_normal());
- /// // Values between `0` and `min` are Subnormal.
- /// assert!(!lower_than_min.is_normal());
- /// ```
- /// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
- fn is_normal(self) -> bool;
- /// Returns the floating point category of the number. If only one property
- /// is going to be tested, it is generally faster to use the specific
- /// predicate instead.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::num::FpCategory;
- /// use std::f32;
- ///
- /// let num = 12.4f32;
- /// let inf = f32::INFINITY;
- ///
- /// assert_eq!(num.classify(), FpCategory::Normal);
- /// assert_eq!(inf.classify(), FpCategory::Infinite);
- /// ```
- fn classify(self) -> FpCategory;
- /// Returns the largest integer less than or equal to a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.99;
- /// let g = 3.0;
- ///
- /// assert_eq!(f.floor(), 3.0);
- /// assert_eq!(g.floor(), 3.0);
- /// ```
- fn floor(self) -> Self;
- /// Returns the smallest integer greater than or equal to a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.01;
- /// let g = 4.0;
- ///
- /// assert_eq!(f.ceil(), 4.0);
- /// assert_eq!(g.ceil(), 4.0);
- /// ```
- fn ceil(self) -> Self;
- /// Returns the nearest integer to a number. Round half-way cases away from
- /// `0.0`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.3;
- /// let g = -3.3;
- ///
- /// assert_eq!(f.round(), 3.0);
- /// assert_eq!(g.round(), -3.0);
- /// ```
- fn round(self) -> Self;
- /// Return the integer part of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.3;
- /// let g = -3.7;
- ///
- /// assert_eq!(f.trunc(), 3.0);
- /// assert_eq!(g.trunc(), -3.0);
- /// ```
- fn trunc(self) -> Self;
- /// Returns the fractional part of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- /// let abs_difference_x = (x.fract() - 0.5).abs();
- /// let abs_difference_y = (y.fract() - (-0.5)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn fract(self) -> Self;
- /// Computes the absolute value of `self`. Returns `Float::nan()` if the
- /// number is `Float::nan()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- ///
- /// let abs_difference_x = (x.abs() - x).abs();
- /// let abs_difference_y = (y.abs() - (-y)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- ///
- /// assert!(f64::NAN.abs().is_nan());
- /// ```
- fn abs(self) -> Self;
- /// Returns a number that represents the sign of `self`.
- ///
- /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
- /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
- /// - `Float::nan()` if the number is `Float::nan()`
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = 3.5;
- ///
- /// assert_eq!(f.signum(), 1.0);
- /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
- ///
- /// assert!(f64::NAN.signum().is_nan());
- /// ```
- fn signum(self) -> Self;
- /// Returns `true` if `self` is positive, including `+0.0`,
- /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let neg_nan: f64 = -f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(f.is_sign_positive());
- /// assert!(!g.is_sign_positive());
- /// assert!(!neg_nan.is_sign_positive());
- /// ```
- fn is_sign_positive(self) -> bool;
- /// Returns `true` if `self` is negative, including `-0.0`,
- /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let nan: f64 = f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(!f.is_sign_negative());
- /// assert!(g.is_sign_negative());
- /// assert!(!nan.is_sign_negative());
- /// ```
- fn is_sign_negative(self) -> bool;
- /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
- /// error. This produces a more accurate result with better performance than
- /// a separate multiplication operation followed by an add.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let m = 10.0;
- /// let x = 4.0;
- /// let b = 60.0;
- ///
- /// // 100.0
- /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn mul_add(self, a: Self, b: Self) -> Self;
- /// Take the reciprocal (inverse) of a number, `1/x`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.recip() - (1.0/x)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn recip(self) -> Self;
- /// Raise a number to an integer power.
- ///
- /// Using this function is generally faster than using `powf`
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powi(2) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powi(self, n: i32) -> Self;
- /// Raise a number to a floating point power.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powf(2.0) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powf(self, n: Self) -> Self;
- /// Take the square root of a number.
- ///
- /// Returns NaN if `self` is a negative number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let positive = 4.0;
- /// let negative = -4.0;
- ///
- /// let abs_difference = (positive.sqrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// assert!(negative.sqrt().is_nan());
- /// ```
- fn sqrt(self) -> Self;
- /// Returns `e^(self)`, (the exponential function).
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp(self) -> Self;
- /// Returns `2^(self)`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 2.0;
- ///
- /// // 2^2 - 4 == 0
- /// let abs_difference = (f.exp2() - 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp2(self) -> Self;
- /// Returns the natural logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln(self) -> Self;
- /// Returns the logarithm of the number with respect to an arbitrary base.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let ten = 10.0;
- /// let two = 2.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
- ///
- /// assert!(abs_difference_10 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn log(self, base: Self) -> Self;
- /// Returns the base 2 logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let two = 2.0;
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference = (two.log2() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log2(self) -> Self;
- /// Returns the base 10 logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let ten = 10.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference = (ten.log10() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log10(self) -> Self;
- /// Converts radians to degrees.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = consts::PI;
- ///
- /// let abs_difference = (angle.to_degrees() - 180.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- #[inline]
- fn to_degrees(self) -> Self {
- let halfpi = Self::zero().acos();
- let ninety = Self::from(90u8).unwrap();
- self * ninety / halfpi
- }
- /// Converts degrees to radians.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = 180.0_f64;
- ///
- /// let abs_difference = (angle.to_radians() - consts::PI).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- #[inline]
- fn to_radians(self) -> Self {
- let halfpi = Self::zero().acos();
- let ninety = Self::from(90u8).unwrap();
- self * halfpi / ninety
- }
- /// Returns the maximum of the two numbers.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.max(y), y);
- /// ```
- fn max(self, other: Self) -> Self;
- /// Returns the minimum of the two numbers.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.min(y), x);
- /// ```
- fn min(self, other: Self) -> Self;
- /// The positive difference of two numbers.
- ///
- /// * If `self <= other`: `0:0`
- /// * Else: `self - other`
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 3.0;
- /// let y = -3.0;
- ///
- /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
- /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn abs_sub(self, other: Self) -> Self;
- /// Take the cubic root of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 8.0;
- ///
- /// // x^(1/3) - 2 == 0
- /// let abs_difference = (x.cbrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cbrt(self) -> Self;
- /// Calculate the length of the hypotenuse of a right-angle triangle given
- /// legs of length `x` and `y`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let y = 3.0;
- ///
- /// // sqrt(x^2 + y^2)
- /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn hypot(self, other: Self) -> Self;
- /// Computes the sine of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/2.0;
- ///
- /// let abs_difference = (x.sin() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sin(self) -> Self;
- /// Computes the cosine of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = 2.0*f64::consts::PI;
- ///
- /// let abs_difference = (x.cos() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cos(self) -> Self;
- /// Computes the tangent of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let abs_difference = (x.tan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-14);
- /// ```
- fn tan(self) -> Self;
- /// Computes the arcsine of a number. Return value is in radians in
- /// the range [-pi/2, pi/2] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 2.0;
- ///
- /// // asin(sin(pi/2))
- /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn asin(self) -> Self;
- /// Computes the arccosine of a number. Return value is in radians in
- /// the range [0, pi] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 4.0;
- ///
- /// // acos(cos(pi/4))
- /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn acos(self) -> Self;
- /// Computes the arctangent of a number. Return value is in radians in the
- /// range [-pi/2, pi/2];
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 1.0;
- ///
- /// // atan(tan(1))
- /// let abs_difference = (f.tan().atan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn atan(self) -> Self;
- /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
- ///
- /// * `x = 0`, `y = 0`: `0`
- /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
- /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
- /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let pi = f64::consts::PI;
- /// // All angles from horizontal right (+x)
- /// // 45 deg counter-clockwise
- /// let x1 = 3.0;
- /// let y1 = -3.0;
- ///
- /// // 135 deg clockwise
- /// let x2 = -3.0;
- /// let y2 = 3.0;
- ///
- /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
- /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
- ///
- /// assert!(abs_difference_1 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn atan2(self, other: Self) -> Self;
- /// Simultaneously computes the sine and cosine of the number, `x`. Returns
- /// `(sin(x), cos(x))`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let f = x.sin_cos();
- ///
- /// let abs_difference_0 = (f.0 - x.sin()).abs();
- /// let abs_difference_1 = (f.1 - x.cos()).abs();
- ///
- /// assert!(abs_difference_0 < 1e-10);
- /// assert!(abs_difference_0 < 1e-10);
- /// ```
- fn sin_cos(self) -> (Self, Self);
- /// Returns `e^(self) - 1` in a way that is accurate even if the
- /// number is close to zero.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 7.0;
- ///
- /// // e^(ln(7)) - 1
- /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp_m1(self) -> Self;
- /// Returns `ln(1+n)` (natural logarithm) more accurately than if
- /// the operations were performed separately.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::E - 1.0;
- ///
- /// // ln(1 + (e - 1)) == ln(e) == 1
- /// let abs_difference = (x.ln_1p() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln_1p(self) -> Self;
- /// Hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.sinh();
- /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
- /// let g = (e*e - 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sinh(self) -> Self;
- /// Hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- /// let f = x.cosh();
- /// // Solving cosh() at 1 gives this result
- /// let g = (e*e + 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// // Same result
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn cosh(self) -> Self;
- /// Hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.tanh();
- /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
- /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn tanh(self) -> Self;
- /// Inverse hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let f = x.sinh().asinh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn asinh(self) -> Self;
- /// Inverse hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let f = x.cosh().acosh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn acosh(self) -> Self;
- /// Inverse hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let f = e.tanh().atanh();
- ///
- /// let abs_difference = (f - e).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn atanh(self) -> Self;
- /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
- /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
- /// The floating point encoding is documented in the [Reference][floating-point].
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let num = 2.0f32;
- ///
- /// // (8388608, -22, 1)
- /// let (mantissa, exponent, sign) = Float::integer_decode(num);
- /// let sign_f = sign as f32;
- /// let mantissa_f = mantissa as f32;
- /// let exponent_f = num.powf(exponent as f32);
- ///
- /// // 1 * 8388608 * 2^(-22) == 2
- /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- /// [floating-point]: ../../../../../reference.html#machine-types
- fn integer_decode(self) -> (u64, i16, i8);
- }
- macro_rules! float_impl {
- ($T:ident $decode:ident) => (
- impl Float for $T {
- #[inline]
- fn nan() -> Self {
- ::std::$T::NAN
- }
- #[inline]
- fn infinity() -> Self {
- ::std::$T::INFINITY
- }
- #[inline]
- fn neg_infinity() -> Self {
- ::std::$T::NEG_INFINITY
- }
- #[inline]
- fn neg_zero() -> Self {
- -0.0
- }
- #[inline]
- fn min_value() -> Self {
- ::std::$T::MIN
- }
- #[inline]
- fn min_positive_value() -> Self {
- ::std::$T::MIN_POSITIVE
- }
- #[inline]
- fn epsilon() -> Self {
- ::std::$T::EPSILON
- }
- #[inline]
- fn max_value() -> Self {
- ::std::$T::MAX
- }
- #[inline]
- fn is_nan(self) -> bool {
- <$T>::is_nan(self)
- }
- #[inline]
- fn is_infinite(self) -> bool {
- <$T>::is_infinite(self)
- }
- #[inline]
- fn is_finite(self) -> bool {
- <$T>::is_finite(self)
- }
- #[inline]
- fn is_normal(self) -> bool {
- <$T>::is_normal(self)
- }
- #[inline]
- fn classify(self) -> FpCategory {
- <$T>::classify(self)
- }
- #[inline]
- fn floor(self) -> Self {
- <$T>::floor(self)
- }
- #[inline]
- fn ceil(self) -> Self {
- <$T>::ceil(self)
- }
- #[inline]
- fn round(self) -> Self {
- <$T>::round(self)
- }
- #[inline]
- fn trunc(self) -> Self {
- <$T>::trunc(self)
- }
- #[inline]
- fn fract(self) -> Self {
- <$T>::fract(self)
- }
- #[inline]
- fn abs(self) -> Self {
- <$T>::abs(self)
- }
- #[inline]
- fn signum(self) -> Self {
- <$T>::signum(self)
- }
- #[inline]
- fn is_sign_positive(self) -> bool {
- <$T>::is_sign_positive(self)
- }
- #[inline]
- fn is_sign_negative(self) -> bool {
- <$T>::is_sign_negative(self)
- }
- #[inline]
- fn mul_add(self, a: Self, b: Self) -> Self {
- <$T>::mul_add(self, a, b)
- }
- #[inline]
- fn recip(self) -> Self {
- <$T>::recip(self)
- }
- #[inline]
- fn powi(self, n: i32) -> Self {
- <$T>::powi(self, n)
- }
- #[inline]
- fn powf(self, n: Self) -> Self {
- <$T>::powf(self, n)
- }
- #[inline]
- fn sqrt(self) -> Self {
- <$T>::sqrt(self)
- }
- #[inline]
- fn exp(self) -> Self {
- <$T>::exp(self)
- }
- #[inline]
- fn exp2(self) -> Self {
- <$T>::exp2(self)
- }
- #[inline]
- fn ln(self) -> Self {
- <$T>::ln(self)
- }
- #[inline]
- fn log(self, base: Self) -> Self {
- <$T>::log(self, base)
- }
- #[inline]
- fn log2(self) -> Self {
- <$T>::log2(self)
- }
- #[inline]
- fn log10(self) -> Self {
- <$T>::log10(self)
- }
- #[inline]
- fn to_degrees(self) -> Self {
- // NB: `f32` didn't stabilize this until 1.7
- // <$T>::to_degrees(self)
- self * (180. / ::std::$T::consts::PI)
- }
- #[inline]
- fn to_radians(self) -> Self {
- // NB: `f32` didn't stabilize this until 1.7
- // <$T>::to_radians(self)
- self * (::std::$T::consts::PI / 180.)
- }
- #[inline]
- fn max(self, other: Self) -> Self {
- <$T>::max(self, other)
- }
- #[inline]
- fn min(self, other: Self) -> Self {
- <$T>::min(self, other)
- }
- #[inline]
- #[allow(deprecated)]
- fn abs_sub(self, other: Self) -> Self {
- <$T>::abs_sub(self, other)
- }
- #[inline]
- fn cbrt(self) -> Self {
- <$T>::cbrt(self)
- }
- #[inline]
- fn hypot(self, other: Self) -> Self {
- <$T>::hypot(self, other)
- }
- #[inline]
- fn sin(self) -> Self {
- <$T>::sin(self)
- }
- #[inline]
- fn cos(self) -> Self {
- <$T>::cos(self)
- }
- #[inline]
- fn tan(self) -> Self {
- <$T>::tan(self)
- }
- #[inline]
- fn asin(self) -> Self {
- <$T>::asin(self)
- }
- #[inline]
- fn acos(self) -> Self {
- <$T>::acos(self)
- }
- #[inline]
- fn atan(self) -> Self {
- <$T>::atan(self)
- }
- #[inline]
- fn atan2(self, other: Self) -> Self {
- <$T>::atan2(self, other)
- }
- #[inline]
- fn sin_cos(self) -> (Self, Self) {
- <$T>::sin_cos(self)
- }
- #[inline]
- fn exp_m1(self) -> Self {
- <$T>::exp_m1(self)
- }
- #[inline]
- fn ln_1p(self) -> Self {
- <$T>::ln_1p(self)
- }
- #[inline]
- fn sinh(self) -> Self {
- <$T>::sinh(self)
- }
- #[inline]
- fn cosh(self) -> Self {
- <$T>::cosh(self)
- }
- #[inline]
- fn tanh(self) -> Self {
- <$T>::tanh(self)
- }
- #[inline]
- fn asinh(self) -> Self {
- <$T>::asinh(self)
- }
- #[inline]
- fn acosh(self) -> Self {
- <$T>::acosh(self)
- }
- #[inline]
- fn atanh(self) -> Self {
- <$T>::atanh(self)
- }
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- $decode(self)
- }
- }
- )
- }
- fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
- let bits: u32 = unsafe { mem::transmute(f) };
- let sign: i8 = if bits >> 31 == 0 {
- 1
- } else {
- -1
- };
- let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
- let mantissa = if exponent == 0 {
- (bits & 0x7fffff) << 1
- } else {
- (bits & 0x7fffff) | 0x800000
- };
- // Exponent bias + mantissa shift
- exponent -= 127 + 23;
- (mantissa as u64, exponent, sign)
- }
- fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
- let bits: u64 = unsafe { mem::transmute(f) };
- let sign: i8 = if bits >> 63 == 0 {
- 1
- } else {
- -1
- };
- let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
- let mantissa = if exponent == 0 {
- (bits & 0xfffffffffffff) << 1
- } else {
- (bits & 0xfffffffffffff) | 0x10000000000000
- };
- // Exponent bias + mantissa shift
- exponent -= 1023 + 52;
- (mantissa, exponent, sign)
- }
- float_impl!(f32 integer_decode_f32);
- float_impl!(f64 integer_decode_f64);
- macro_rules! float_const_impl {
- ($(#[$doc:meta] $constant:ident,)+) => (
- #[allow(non_snake_case)]
- pub trait FloatConst {
- $(#[$doc] fn $constant() -> Self;)+
- }
- float_const_impl! { @float f32, $($constant,)+ }
- float_const_impl! { @float f64, $($constant,)+ }
- );
- (@float $T:ident, $($constant:ident,)+) => (
- impl FloatConst for $T {
- $(
- #[inline]
- fn $constant() -> Self {
- ::std::$T::consts::$constant
- }
- )+
- }
- );
- }
- float_const_impl! {
- #[doc = "Return Euler’s number."]
- E,
- #[doc = "Return `1.0 / π`."]
- FRAC_1_PI,
- #[doc = "Return `1.0 / sqrt(2.0)`."]
- FRAC_1_SQRT_2,
- #[doc = "Return `2.0 / π`."]
- FRAC_2_PI,
- #[doc = "Return `2.0 / sqrt(π)`."]
- FRAC_2_SQRT_PI,
- #[doc = "Return `π / 2.0`."]
- FRAC_PI_2,
- #[doc = "Return `π / 3.0`."]
- FRAC_PI_3,
- #[doc = "Return `π / 4.0`."]
- FRAC_PI_4,
- #[doc = "Return `π / 6.0`."]
- FRAC_PI_6,
- #[doc = "Return `π / 8.0`."]
- FRAC_PI_8,
- #[doc = "Return `ln(10.0)`."]
- LN_10,
- #[doc = "Return `ln(2.0)`."]
- LN_2,
- #[doc = "Return `log10(e)`."]
- LOG10_E,
- #[doc = "Return `log2(e)`."]
- LOG2_E,
- #[doc = "Return Archimedes’ constant."]
- PI,
- #[doc = "Return `sqrt(2.0)`."]
- SQRT_2,
- }
- #[cfg(test)]
- mod tests {
- use Float;
- #[test]
- fn convert_deg_rad() {
- use std::f64::consts;
- const DEG_RAD_PAIRS: [(f64, f64); 7] = [
- (0.0, 0.),
- (22.5, consts::FRAC_PI_8),
- (30.0, consts::FRAC_PI_6),
- (45.0, consts::FRAC_PI_4),
- (60.0, consts::FRAC_PI_3),
- (90.0, consts::FRAC_PI_2),
- (180.0, consts::PI),
- ];
- for &(deg, rad) in &DEG_RAD_PAIRS {
- assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
- assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
- let (deg, rad) = (deg as f32, rad as f32);
- assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
- assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
- }
- }
- }
|