// Copyright 2016 6WIND S.A. // // Licensed under the Apache License, Version 2.0 or // the MIT license , at your option. This file may not be // copied, modified, or distributed except according to those terms. extern crate byteorder; extern crate elf; use std::path::PathBuf; extern crate rbpf; use rbpf::helpers; // The following example uses an ELF file that has been compiled from this C source code: // // ``` // #include // #include // #include // #include // // #define ETH_ALEN 6 // #define ETH_P_IP 0x0008 /* htons(0x0800) */ // #define TCP_HDR_LEN 20 // // #define BLOCKED_TCP_PORT 0x9999 // // struct eth_hdr { // unsigned char h_dest[ETH_ALEN]; // unsigned char h_source[ETH_ALEN]; // unsigned short h_proto; // }; // // #define SEC(NAME) __attribute__((section(NAME), used)) // SEC(".classifier") // int handle_ingress(struct __sk_buff *skb) // { // void *data = (void *)(long)skb->data; // void *data_end = (void *)(long)skb->data_end; // struct eth_hdr *eth = data; // struct iphdr *iph = data + sizeof(*eth); // struct tcphdr *tcp = data + sizeof(*eth) + sizeof(*iph); // // /* single length check */ // if (data + sizeof(*eth) + sizeof(*iph) + sizeof(*tcp) > data_end) // return 0; // if (eth->h_proto != ETH_P_IP) // return 0; // if (iph->protocol != IPPROTO_TCP) // return 0; // if (tcp->source == BLOCKED_TCP_PORT || tcp->dest == BLOCKED_TCP_PORT) // return -1; // return 0; // } // ``` // // It was compiled with the following command: // // ```bash // clang -O2 -emit-llvm -c block_a_port.c -o - | \ llc -march=bpf -filetype=obj -o block_a_port.o // ``` // // Once compiled, can be injected into Linux kernel, with tc for instance. Sadly, we need to bring // some modifications to the generated bytecode in order to run it: the three instructions with // opcode 0x61 load data from a packet area as 4-byte words, where we need to load it as 8-bytes // double words (0x79). The kernel does the same kind of translation before running the program, // but rbpf does not implement this. // // In addition, the offset at which the pointer to the packet data is stored must be changed: since // we use 8 bytes instead of 4 for the start and end addresses of the data packet, we cannot use // the offsets produced by clang (0x4c and 0x50), the addresses would overlap. Instead we can use, // for example, 0x40 and 0x50. // // These change were applied with the following script: // // ```bash // xxd block_a_port.o | sed ' // s/6112 5000 0000 0000/7912 5000 0000 0000/ ; // s/6111 4c00 0000 0000/7911 4000 0000 0000/ ; // s/6111 2200 0000 0000/7911 2200 0000 0000/' | xxd -r > block_a_port.tmp // mv block_a_port.tmp block_a_port.o // ``` // // The eBPF program was placed into the `.classifier` ELF section (see C code above), which means // that you can retrieve the raw bytecode with `readelf -x .classifier block_a_port.o` or with // `objdump -s -j .classifier block_a_port.o`. // // Once the bytecode has been edited, we can load the bytecode directly from the ELF object file. fn main() { let filename = "examples/block_a_port.o"; let path = PathBuf::from(filename); let file = match elf::File::open_path(&path) { Ok(f) => f, Err(e) => panic!("Error: {:?}", e), }; let text_scn = match file.get_section(".classifier") { Some(s) => s, None => panic!("Failed to look up .classifier section"), }; let ref prog = &text_scn.data; let mut packet1 = vec![ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x08, 0x00, // ethertype 0x45, 0x00, 0x00, 0x3b, // start ip_hdr 0xa6, 0xab, 0x40, 0x00, 0x40, 0x06, 0x96, 0x0f, 0x7f, 0x00, 0x00, 0x01, 0x7f, 0x00, 0x00, 0x01, // Program matches the next two bytes: 0x9999 returns 0xffffffff, else return 0. 0x99, 0x99, 0xc6, 0xcc, // start tcp_hdr 0xd1, 0xe5, 0xc4, 0x9d, 0xd4, 0x30, 0xb5, 0xd2, 0x80, 0x18, 0x01, 0x56, 0xfe, 0x2f, 0x00, 0x00, 0x01, 0x01, 0x08, 0x0a, // start data 0x00, 0x23, 0x75, 0x89, 0x00, 0x23, 0x63, 0x2d, 0x71, 0x64, 0x66, 0x73, 0x64, 0x66, 0x0au8 ]; let mut packet2 = vec![ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x08, 0x00, // ethertype 0x45, 0x00, 0x00, 0x3b, // start ip_hdr 0xa6, 0xab, 0x40, 0x00, 0x40, 0x06, 0x96, 0x0f, 0x7f, 0x00, 0x00, 0x01, 0x7f, 0x00, 0x00, 0x01, // Program matches the next two bytes: 0x9999 returns 0xffffffff, else return 0. 0x98, 0x76, 0xc6, 0xcc, // start tcp_hdr 0xd1, 0xe5, 0xc4, 0x9d, 0xd4, 0x30, 0xb5, 0xd2, 0x80, 0x18, 0x01, 0x56, 0xfe, 0x2f, 0x00, 0x00, 0x01, 0x01, 0x08, 0x0a, // start data 0x00, 0x23, 0x75, 0x89, 0x00, 0x23, 0x63, 0x2d, 0x71, 0x64, 0x66, 0x73, 0x64, 0x66, 0x0au8 ]; let mut vm = rbpf::EbpfVmFixedMbuff::new(&prog, 0x40, 0x50); vm.register_helper(helpers::BPF_TRACE_PRINTK_IDX, helpers::bpf_trace_printf); let res = vm.prog_exec(&mut packet1); println!("Packet #1, program returned: {:?} ({:#x})", res, res); assert_eq!(res, 0xffffffff); vm.jit_compile(); unsafe { let res = vm.prog_exec_jit(&mut packet2); println!("Packet #2, program returned: {:?} ({:#x})", res, res); assert_eq!(res, 0); } }