interpreter.rs 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. // SPDX-License-Identifier: (Apache-2.0 OR MIT)
  2. // Derived from uBPF <https://github.com/iovisor/ubpf>
  3. // Copyright 2015 Big Switch Networks, Inc
  4. // (uBPF: VM architecture, parts of the interpreter, originally in C)
  5. // Copyright 2016 6WIND S.A. <quentin.monnet@6wind.com>
  6. // (Translation to Rust, MetaBuff/multiple classes addition, hashmaps for helpers)
  7. use std::collections::HashMap;
  8. use std::io::{Error, ErrorKind};
  9. use ebpf;
  10. fn check_mem(addr: u64, len: usize, access_type: &str, insn_ptr: usize,
  11. mbuff: &[u8], mem: &[u8], stack: &[u8]) -> Result<(), Error> {
  12. if let Some(addr_end) = addr.checked_add(len as u64) {
  13. if mbuff.as_ptr() as u64 <= addr && addr_end <= mbuff.as_ptr() as u64 + mbuff.len() as u64 {
  14. return Ok(())
  15. }
  16. if mem.as_ptr() as u64 <= addr && addr_end <= mem.as_ptr() as u64 + mem.len() as u64 {
  17. return Ok(())
  18. }
  19. if stack.as_ptr() as u64 <= addr && addr_end <= stack.as_ptr() as u64 + stack.len() as u64 {
  20. return Ok(())
  21. }
  22. }
  23. Err(Error::new(ErrorKind::Other, format!(
  24. "Error: out of bounds memory {} (insn #{:?}), addr {:#x}, size {:?}\nmbuff: {:#x}/{:#x}, mem: {:#x}/{:#x}, stack: {:#x}/{:#x}",
  25. access_type, insn_ptr, addr, len,
  26. mbuff.as_ptr() as u64, mbuff.len(),
  27. mem.as_ptr() as u64, mem.len(),
  28. stack.as_ptr() as u64, stack.len()
  29. )))
  30. }
  31. #[allow(unknown_lints)]
  32. #[allow(cyclomatic_complexity)]
  33. pub fn execute_program(prog_: Option<&[u8]>, mem: &[u8], mbuff: &[u8], helpers: &HashMap<u32, ebpf::Helper>) -> Result<u64, Error> {
  34. const U32MAX: u64 = u32::MAX as u64;
  35. let prog = match prog_ {
  36. Some(prog) => prog,
  37. None => Err(Error::new(ErrorKind::Other,
  38. "Error: No program set, call prog_set() to load one"))?,
  39. };
  40. let stack = vec![0u8;ebpf::STACK_SIZE];
  41. // R1 points to beginning of memory area, R10 to stack
  42. let mut reg: [u64;11] = [
  43. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, stack.as_ptr() as u64 + stack.len() as u64
  44. ];
  45. if !mbuff.is_empty() {
  46. reg[1] = mbuff.as_ptr() as u64;
  47. }
  48. else if !mem.is_empty() {
  49. reg[1] = mem.as_ptr() as u64;
  50. }
  51. let check_mem_load = | addr: u64, len: usize, insn_ptr: usize | {
  52. check_mem(addr, len, "load", insn_ptr, mbuff, mem, &stack)
  53. };
  54. let check_mem_store = | addr: u64, len: usize, insn_ptr: usize | {
  55. check_mem(addr, len, "store", insn_ptr, mbuff, mem, &stack)
  56. };
  57. // Loop on instructions
  58. let mut insn_ptr:usize = 0;
  59. while insn_ptr * ebpf::INSN_SIZE < prog.len() {
  60. let insn = ebpf::get_insn(prog, insn_ptr);
  61. insn_ptr += 1;
  62. let _dst = insn.dst as usize;
  63. let _src = insn.src as usize;
  64. let mut do_jump = || {
  65. insn_ptr = (insn_ptr as i16 + insn.off) as usize;
  66. };
  67. match insn.opc {
  68. // BPF_LD class
  69. // LD_ABS_* and LD_IND_* are supposed to load pointer to data from metadata buffer.
  70. // Since this pointer is constant, and since we already know it (mem), do not
  71. // bother re-fetching it, just use mem already.
  72. ebpf::LD_ABS_B => reg[0] = unsafe {
  73. let x = (mem.as_ptr() as u64 + (insn.imm as u32) as u64) as *const u8;
  74. check_mem_load(x as u64, 8, insn_ptr)?;
  75. x.read_unaligned() as u64
  76. },
  77. ebpf::LD_ABS_H => reg[0] = unsafe {
  78. let x = (mem.as_ptr() as u64 + (insn.imm as u32) as u64) as *const u16;
  79. check_mem_load(x as u64, 8, insn_ptr)?;
  80. x.read_unaligned() as u64
  81. },
  82. ebpf::LD_ABS_W => reg[0] = unsafe {
  83. let x = (mem.as_ptr() as u64 + (insn.imm as u32) as u64) as *const u32;
  84. check_mem_load(x as u64, 8, insn_ptr)?;
  85. x.read_unaligned() as u64
  86. },
  87. ebpf::LD_ABS_DW => reg[0] = unsafe {
  88. let x = (mem.as_ptr() as u64 + (insn.imm as u32) as u64) as *const u64;
  89. check_mem_load(x as u64, 8, insn_ptr)?;
  90. x.read_unaligned()
  91. },
  92. ebpf::LD_IND_B => reg[0] = unsafe {
  93. let x = (mem.as_ptr() as u64 + reg[_src] + (insn.imm as u32) as u64) as *const u8;
  94. check_mem_load(x as u64, 8, insn_ptr)?;
  95. x.read_unaligned() as u64
  96. },
  97. ebpf::LD_IND_H => reg[0] = unsafe {
  98. let x = (mem.as_ptr() as u64 + reg[_src] + (insn.imm as u32) as u64) as *const u16;
  99. check_mem_load(x as u64, 8, insn_ptr)?;
  100. x.read_unaligned() as u64
  101. },
  102. ebpf::LD_IND_W => reg[0] = unsafe {
  103. let x = (mem.as_ptr() as u64 + reg[_src] + (insn.imm as u32) as u64) as *const u32;
  104. check_mem_load(x as u64, 8, insn_ptr)?;
  105. x.read_unaligned() as u64
  106. },
  107. ebpf::LD_IND_DW => reg[0] = unsafe {
  108. let x = (mem.as_ptr() as u64 + reg[_src] + (insn.imm as u32) as u64) as *const u64;
  109. check_mem_load(x as u64, 8, insn_ptr)?;
  110. x.read_unaligned()
  111. },
  112. ebpf::LD_DW_IMM => {
  113. let next_insn = ebpf::get_insn(prog, insn_ptr);
  114. insn_ptr += 1;
  115. reg[_dst] = ((insn.imm as u32) as u64) + ((next_insn.imm as u64) << 32);
  116. },
  117. // BPF_LDX class
  118. ebpf::LD_B_REG => reg[_dst] = unsafe {
  119. #[allow(clippy::cast_ptr_alignment)]
  120. let x = (reg[_src] as *const u8).offset(insn.off as isize) as *const u8;
  121. check_mem_load(x as u64, 1, insn_ptr)?;
  122. x.read_unaligned() as u64
  123. },
  124. ebpf::LD_H_REG => reg[_dst] = unsafe {
  125. #[allow(clippy::cast_ptr_alignment)]
  126. let x = (reg[_src] as *const u8).offset(insn.off as isize) as *const u16;
  127. check_mem_load(x as u64, 2, insn_ptr)?;
  128. x.read_unaligned() as u64
  129. },
  130. ebpf::LD_W_REG => reg[_dst] = unsafe {
  131. #[allow(clippy::cast_ptr_alignment)]
  132. let x = (reg[_src] as *const u8).offset(insn.off as isize) as *const u32;
  133. check_mem_load(x as u64, 4, insn_ptr)?;
  134. x.read_unaligned() as u64
  135. },
  136. ebpf::LD_DW_REG => reg[_dst] = unsafe {
  137. #[allow(clippy::cast_ptr_alignment)]
  138. let x = (reg[_src] as *const u8).offset(insn.off as isize) as *const u64;
  139. check_mem_load(x as u64, 8, insn_ptr)?;
  140. x.read_unaligned()
  141. },
  142. // BPF_ST class
  143. ebpf::ST_B_IMM => unsafe {
  144. let x = (reg[_dst] as *const u8).offset(insn.off as isize) as *mut u8;
  145. check_mem_store(x as u64, 1, insn_ptr)?;
  146. x.write_unaligned(insn.imm as u8);
  147. },
  148. ebpf::ST_H_IMM => unsafe {
  149. #[allow(clippy::cast_ptr_alignment)]
  150. let x = (reg[_dst] as *const u8).offset(insn.off as isize) as *mut u16;
  151. check_mem_store(x as u64, 2, insn_ptr)?;
  152. x.write_unaligned(insn.imm as u16);
  153. },
  154. ebpf::ST_W_IMM => unsafe {
  155. #[allow(clippy::cast_ptr_alignment)]
  156. let x = (reg[_dst] as *const u8).offset(insn.off as isize) as *mut u32;
  157. check_mem_store(x as u64, 4, insn_ptr)?;
  158. x.write_unaligned(insn.imm as u32);
  159. },
  160. ebpf::ST_DW_IMM => unsafe {
  161. #[allow(clippy::cast_ptr_alignment)]
  162. let x = (reg[_dst] as *const u8).offset(insn.off as isize) as *mut u64;
  163. check_mem_store(x as u64, 8, insn_ptr)?;
  164. x.write_unaligned(insn.imm as u64);
  165. },
  166. // BPF_STX class
  167. ebpf::ST_B_REG => unsafe {
  168. let x = (reg[_dst] as *const u8).offset(insn.off as isize) as *mut u8;
  169. check_mem_store(x as u64, 1, insn_ptr)?;
  170. x.write_unaligned(reg[_src] as u8);
  171. },
  172. ebpf::ST_H_REG => unsafe {
  173. #[allow(clippy::cast_ptr_alignment)]
  174. let x = (reg[_dst] as *const u8).offset(insn.off as isize) as *mut u16;
  175. check_mem_store(x as u64, 2, insn_ptr)?;
  176. x.write_unaligned(reg[_src] as u16);
  177. },
  178. ebpf::ST_W_REG => unsafe {
  179. #[allow(clippy::cast_ptr_alignment)]
  180. let x = (reg[_dst] as *const u8).offset(insn.off as isize) as *mut u32;
  181. check_mem_store(x as u64, 4, insn_ptr)?;
  182. x.write_unaligned(reg[_src] as u32);
  183. },
  184. ebpf::ST_DW_REG => unsafe {
  185. #[allow(clippy::cast_ptr_alignment)]
  186. let x = (reg[_dst] as *const u8).offset(insn.off as isize) as *mut u64;
  187. check_mem_store(x as u64, 8, insn_ptr)?;
  188. x.write_unaligned(reg[_src]);
  189. },
  190. ebpf::ST_W_XADD => unimplemented!(),
  191. ebpf::ST_DW_XADD => unimplemented!(),
  192. // BPF_ALU class
  193. // TODO Check how overflow works in kernel. Should we &= U32MAX all src register value
  194. // before we do the operation?
  195. // Cf ((0x11 << 32) - (0x1 << 32)) as u32 VS ((0x11 << 32) as u32 - (0x1 << 32) as u32
  196. ebpf::ADD32_IMM => reg[_dst] = (reg[_dst] as i32).wrapping_add(insn.imm) as u64, //((reg[_dst] & U32MAX) + insn.imm as u64) & U32MAX,
  197. ebpf::ADD32_REG => reg[_dst] = (reg[_dst] as i32).wrapping_add(reg[_src] as i32) as u64, //((reg[_dst] & U32MAX) + (reg[_src] & U32MAX)) & U32MAX,
  198. ebpf::SUB32_IMM => reg[_dst] = (reg[_dst] as i32).wrapping_sub(insn.imm) as u64,
  199. ebpf::SUB32_REG => reg[_dst] = (reg[_dst] as i32).wrapping_sub(reg[_src] as i32) as u64,
  200. ebpf::MUL32_IMM => reg[_dst] = (reg[_dst] as i32).wrapping_mul(insn.imm) as u64,
  201. ebpf::MUL32_REG => reg[_dst] = (reg[_dst] as i32).wrapping_mul(reg[_src] as i32) as u64,
  202. ebpf::DIV32_IMM if insn.imm as u32 == 0 => reg[_dst] = 0,
  203. ebpf::DIV32_IMM => reg[_dst] = (reg[_dst] as u32 / insn.imm as u32) as u64,
  204. ebpf::DIV32_REG if reg[_src] as u32 == 0 => reg[_dst] = 0,
  205. ebpf::DIV32_REG => reg[_dst] = (reg[_dst] as u32 / reg[_src] as u32) as u64,
  206. ebpf::OR32_IMM => reg[_dst] = (reg[_dst] as u32 | insn.imm as u32) as u64,
  207. ebpf::OR32_REG => reg[_dst] = (reg[_dst] as u32 | reg[_src] as u32) as u64,
  208. ebpf::AND32_IMM => reg[_dst] = (reg[_dst] as u32 & insn.imm as u32) as u64,
  209. ebpf::AND32_REG => reg[_dst] = (reg[_dst] as u32 & reg[_src] as u32) as u64,
  210. ebpf::LSH32_IMM => reg[_dst] = (reg[_dst] as u32).wrapping_shl(insn.imm as u32) as u64,
  211. ebpf::LSH32_REG => reg[_dst] = (reg[_dst] as u32).wrapping_shl(reg[_src] as u32) as u64,
  212. ebpf::RSH32_IMM => reg[_dst] = (reg[_dst] as u32).wrapping_shr(insn.imm as u32) as u64,
  213. ebpf::RSH32_REG => reg[_dst] = (reg[_dst] as u32).wrapping_shr(reg[_src] as u32) as u64,
  214. ebpf::NEG32 => { reg[_dst] = (reg[_dst] as i32).wrapping_neg() as u64; reg[_dst] &= U32MAX; },
  215. ebpf::MOD32_IMM if insn.imm as u32 == 0 => (),
  216. ebpf::MOD32_IMM => reg[_dst] = (reg[_dst] as u32 % insn.imm as u32) as u64,
  217. ebpf::MOD32_REG if reg[_src] as u32 == 0 => (),
  218. ebpf::MOD32_REG => reg[_dst] = (reg[_dst] as u32 % reg[_src] as u32) as u64,
  219. ebpf::XOR32_IMM => reg[_dst] = (reg[_dst] as u32 ^ insn.imm as u32) as u64,
  220. ebpf::XOR32_REG => reg[_dst] = (reg[_dst] as u32 ^ reg[_src] as u32) as u64,
  221. ebpf::MOV32_IMM => reg[_dst] = insn.imm as u32 as u64,
  222. ebpf::MOV32_REG => reg[_dst] = (reg[_src] as u32) as u64,
  223. ebpf::ARSH32_IMM => { reg[_dst] = (reg[_dst] as i32).wrapping_shr(insn.imm as u32) as u64; reg[_dst] &= U32MAX; },
  224. ebpf::ARSH32_REG => { reg[_dst] = (reg[_dst] as i32).wrapping_shr(reg[_src] as u32) as u64; reg[_dst] &= U32MAX; },
  225. ebpf::LE => {
  226. reg[_dst] = match insn.imm {
  227. 16 => (reg[_dst] as u16).to_le() as u64,
  228. 32 => (reg[_dst] as u32).to_le() as u64,
  229. 64 => reg[_dst].to_le(),
  230. _ => unreachable!(),
  231. };
  232. },
  233. ebpf::BE => {
  234. reg[_dst] = match insn.imm {
  235. 16 => (reg[_dst] as u16).to_be() as u64,
  236. 32 => (reg[_dst] as u32).to_be() as u64,
  237. 64 => reg[_dst].to_be(),
  238. _ => unreachable!(),
  239. };
  240. },
  241. // BPF_ALU64 class
  242. ebpf::ADD64_IMM => reg[_dst] = reg[_dst].wrapping_add(insn.imm as u64),
  243. ebpf::ADD64_REG => reg[_dst] = reg[_dst].wrapping_add(reg[_src]),
  244. ebpf::SUB64_IMM => reg[_dst] = reg[_dst].wrapping_sub(insn.imm as u64),
  245. ebpf::SUB64_REG => reg[_dst] = reg[_dst].wrapping_sub(reg[_src]),
  246. ebpf::MUL64_IMM => reg[_dst] = reg[_dst].wrapping_mul(insn.imm as u64),
  247. ebpf::MUL64_REG => reg[_dst] = reg[_dst].wrapping_mul(reg[_src]),
  248. ebpf::DIV64_IMM if insn.imm == 0 => reg[_dst] = 0,
  249. ebpf::DIV64_IMM => reg[_dst] /= insn.imm as u64,
  250. ebpf::DIV64_REG if reg[_src] == 0 => reg[_dst] = 0,
  251. ebpf::DIV64_REG => reg[_dst] /= reg[_src],
  252. ebpf::OR64_IMM => reg[_dst] |= insn.imm as u64,
  253. ebpf::OR64_REG => reg[_dst] |= reg[_src],
  254. ebpf::AND64_IMM => reg[_dst] &= insn.imm as u64,
  255. ebpf::AND64_REG => reg[_dst] &= reg[_src],
  256. ebpf::LSH64_IMM => reg[_dst] <<= insn.imm as u64,
  257. ebpf::LSH64_REG => reg[_dst] <<= reg[_src],
  258. ebpf::RSH64_IMM => reg[_dst] >>= insn.imm as u64,
  259. ebpf::RSH64_REG => reg[_dst] >>= reg[_src],
  260. ebpf::NEG64 => reg[_dst] = -(reg[_dst] as i64) as u64,
  261. ebpf::MOD64_IMM if insn.imm == 0 => (),
  262. ebpf::MOD64_IMM => reg[_dst] %= insn.imm as u64,
  263. ebpf::MOD64_REG if reg[_src] == 0 => (),
  264. ebpf::MOD64_REG => reg[_dst] %= reg[_src],
  265. ebpf::XOR64_IMM => reg[_dst] ^= insn.imm as u64,
  266. ebpf::XOR64_REG => reg[_dst] ^= reg[_src],
  267. ebpf::MOV64_IMM => reg[_dst] = insn.imm as u64,
  268. ebpf::MOV64_REG => reg[_dst] = reg[_src],
  269. ebpf::ARSH64_IMM => reg[_dst] = (reg[_dst] as i64 >> insn.imm) as u64,
  270. ebpf::ARSH64_REG => reg[_dst] = (reg[_dst] as i64 >> reg[_src]) as u64,
  271. // BPF_JMP class
  272. // TODO: check this actually works as expected for signed / unsigned ops
  273. ebpf::JA => do_jump(),
  274. ebpf::JEQ_IMM => if reg[_dst] == insn.imm as u64 { do_jump(); },
  275. ebpf::JEQ_REG => if reg[_dst] == reg[_src] { do_jump(); },
  276. ebpf::JGT_IMM => if reg[_dst] > insn.imm as u64 { do_jump(); },
  277. ebpf::JGT_REG => if reg[_dst] > reg[_src] { do_jump(); },
  278. ebpf::JGE_IMM => if reg[_dst] >= insn.imm as u64 { do_jump(); },
  279. ebpf::JGE_REG => if reg[_dst] >= reg[_src] { do_jump(); },
  280. ebpf::JLT_IMM => if reg[_dst] < insn.imm as u64 { do_jump(); },
  281. ebpf::JLT_REG => if reg[_dst] < reg[_src] { do_jump(); },
  282. ebpf::JLE_IMM => if reg[_dst] <= insn.imm as u64 { do_jump(); },
  283. ebpf::JLE_REG => if reg[_dst] <= reg[_src] { do_jump(); },
  284. ebpf::JSET_IMM => if reg[_dst] & insn.imm as u64 != 0 { do_jump(); },
  285. ebpf::JSET_REG => if reg[_dst] & reg[_src] != 0 { do_jump(); },
  286. ebpf::JNE_IMM => if reg[_dst] != insn.imm as u64 { do_jump(); },
  287. ebpf::JNE_REG => if reg[_dst] != reg[_src] { do_jump(); },
  288. ebpf::JSGT_IMM => if reg[_dst] as i64 > insn.imm as i64 { do_jump(); },
  289. ebpf::JSGT_REG => if reg[_dst] as i64 > reg[_src] as i64 { do_jump(); },
  290. ebpf::JSGE_IMM => if reg[_dst] as i64 >= insn.imm as i64 { do_jump(); },
  291. ebpf::JSGE_REG => if reg[_dst] as i64 >= reg[_src] as i64 { do_jump(); },
  292. ebpf::JSLT_IMM => if (reg[_dst] as i64) < insn.imm as i64 { do_jump(); },
  293. ebpf::JSLT_REG => if (reg[_dst] as i64) < reg[_src] as i64 { do_jump(); },
  294. ebpf::JSLE_IMM => if reg[_dst] as i64 <= insn.imm as i64 { do_jump(); },
  295. ebpf::JSLE_REG => if reg[_dst] as i64 <= reg[_src] as i64 { do_jump(); },
  296. // BPF_JMP32 class
  297. ebpf::JEQ_IMM32 => if reg[_dst] as u32 == insn.imm as u32 { do_jump(); },
  298. ebpf::JEQ_REG32 => if reg[_dst] as u32 == reg[_src] as u32 { do_jump(); },
  299. ebpf::JGT_IMM32 => if reg[_dst] as u32 > insn.imm as u32 { do_jump(); },
  300. ebpf::JGT_REG32 => if reg[_dst] as u32 > reg[_src] as u32 { do_jump(); },
  301. ebpf::JGE_IMM32 => if reg[_dst] as u32 >= insn.imm as u32 { do_jump(); },
  302. ebpf::JGE_REG32 => if reg[_dst] as u32 >= reg[_src] as u32 { do_jump(); },
  303. ebpf::JLT_IMM32 => if (reg[_dst] as u32) < insn.imm as u32 { do_jump(); },
  304. ebpf::JLT_REG32 => if (reg[_dst] as u32) < reg[_src] as u32 { do_jump(); },
  305. ebpf::JLE_IMM32 => if reg[_dst] as u32 <= insn.imm as u32 { do_jump(); },
  306. ebpf::JLE_REG32 => if reg[_dst] as u32 <= reg[_src] as u32 { do_jump(); },
  307. ebpf::JSET_IMM32 => if reg[_dst] as u32 & insn.imm as u32 != 0 { do_jump(); },
  308. ebpf::JSET_REG32 => if reg[_dst] as u32 & reg[_src] as u32 != 0 { do_jump(); },
  309. ebpf::JNE_IMM32 => if reg[_dst] as u32 != insn.imm as u32 { do_jump(); },
  310. ebpf::JNE_REG32 => if reg[_dst] as u32 != reg[_src] as u32 { do_jump(); },
  311. ebpf::JSGT_IMM32 => if reg[_dst] as i32 > insn.imm { do_jump(); },
  312. ebpf::JSGT_REG32 => if reg[_dst] as i32 > reg[_src] as i32 { do_jump(); },
  313. ebpf::JSGE_IMM32 => if reg[_dst] as i32 >= insn.imm { do_jump(); },
  314. ebpf::JSGE_REG32 => if reg[_dst] as i32 >= reg[_src] as i32 { do_jump(); },
  315. ebpf::JSLT_IMM32 => if (reg[_dst] as i32) < insn.imm { do_jump(); },
  316. ebpf::JSLT_REG32 => if (reg[_dst] as i32) < reg[_src] as i32 { do_jump(); },
  317. ebpf::JSLE_IMM32 => if reg[_dst] as i32 <= insn.imm { do_jump(); },
  318. ebpf::JSLE_REG32 => if reg[_dst] as i32 <= reg[_src] as i32 { do_jump(); },
  319. // Do not delegate the check to the verifier, since registered functions can be
  320. // changed after the program has been verified.
  321. ebpf::CALL => if let Some(function) = helpers.get(&(insn.imm as u32)) {
  322. reg[0] = function(reg[1], reg[2], reg[3], reg[4], reg[5]);
  323. } else {
  324. Err(Error::new(ErrorKind::Other, format!("Error: unknown helper function (id: {:#x})", insn.imm as u32)))?;
  325. },
  326. ebpf::TAIL_CALL => unimplemented!(),
  327. ebpf::EXIT => return Ok(reg[0]),
  328. _ => unreachable!()
  329. }
  330. }
  331. unreachable!()
  332. }