load_elf.rs 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127
  1. // Copyright 2016 6WIND S.A. <quentin.monnet@6wind.com>
  2. //
  3. // Licensed under the Apache License, Version 2.0 <http://www.apache.org/licenses/LICENSE-2.0> or
  4. // the MIT license <http://opensource.org/licenses/MIT>, at your option. This file may not be
  5. // copied, modified, or distributed except according to those terms.
  6. extern crate byteorder;
  7. extern crate elf;
  8. use std::path::PathBuf;
  9. extern crate rbpf;
  10. use rbpf::helpers;
  11. // The following example uses an ELF file that has been compiled from the C program available in
  12. // `load_elf__block_a_port.c` in the same directory.
  13. //
  14. // It was compiled with the following command:
  15. //
  16. // ```bash
  17. // clang -O2 -emit-llvm -c load_elf__block_a_port.c -o - | \
  18. // llc -march=bpf -filetype=obj -o load_elf__block_a_port.o
  19. // ```
  20. //
  21. // Once compiled, this program can be injected into Linux kernel, with tc for instance. Sadly, we
  22. // need to bring some modifications to the generated bytecode in order to run it: the three
  23. // instructions with opcode 0x61 load data from a packet area as 4-byte words, where we need to
  24. // load it as 8-bytes double words (0x79). The kernel does the same kind of translation before
  25. // running the program, but rbpf does not implement this.
  26. //
  27. // In addition, the offset at which the pointer to the packet data is stored must be changed: since
  28. // we use 8 bytes instead of 4 for the start and end addresses of the data packet, we cannot use
  29. // the offsets produced by clang (0x4c and 0x50), the addresses would overlap. Instead we can use,
  30. // for example, 0x40 and 0x50.
  31. //
  32. // These change were applied with the following script:
  33. //
  34. // ```bash
  35. // xxd load_elf__block_a_port.o | sed '
  36. // s/6112 5000 0000 0000/7912 5000 0000 0000/ ;
  37. // s/6111 4c00 0000 0000/7911 4000 0000 0000/ ;
  38. // s/6111 2200 0000 0000/7911 2200 0000 0000/' | xxd -r > load_elf__block_a_port.tmp
  39. // mv load_elf__block_a_port.tmp load_elf__block_a_port.o
  40. // ```
  41. //
  42. // The eBPF program was placed into the `.classifier` ELF section (see C code above), which means
  43. // that you can retrieve the raw bytecode with `readelf -x .classifier load_elf__block_a_port.o` or
  44. // with `objdump -s -j .classifier load_elf__block_a_port.o`.
  45. //
  46. // Once the bytecode has been edited, we can load the bytecode directly from the ELF object file.
  47. fn main() {
  48. let filename = "examples/load_elf__block_a_port.o";
  49. let path = PathBuf::from(filename);
  50. let file = match elf::File::open_path(&path) {
  51. Ok(f) => f,
  52. Err(e) => panic!("Error: {:?}", e),
  53. };
  54. let text_scn = match file.get_section(".classifier") {
  55. Some(s) => s,
  56. None => panic!("Failed to look up .classifier section"),
  57. };
  58. let ref prog = &text_scn.data;
  59. let mut packet1 = vec![
  60. 0x01, 0x23, 0x45, 0x67, 0x89, 0xab,
  61. 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54,
  62. 0x08, 0x00, // ethertype
  63. 0x45, 0x00, 0x00, 0x3b, // start ip_hdr
  64. 0xa6, 0xab, 0x40, 0x00,
  65. 0x40, 0x06, 0x96, 0x0f,
  66. 0x7f, 0x00, 0x00, 0x01,
  67. 0x7f, 0x00, 0x00, 0x01,
  68. // Program matches the next two bytes: 0x9999 returns 0xffffffff, else return 0.
  69. 0x99, 0x99, 0xc6, 0xcc, // start tcp_hdr
  70. 0xd1, 0xe5, 0xc4, 0x9d,
  71. 0xd4, 0x30, 0xb5, 0xd2,
  72. 0x80, 0x18, 0x01, 0x56,
  73. 0xfe, 0x2f, 0x00, 0x00,
  74. 0x01, 0x01, 0x08, 0x0a, // start data
  75. 0x00, 0x23, 0x75, 0x89,
  76. 0x00, 0x23, 0x63, 0x2d,
  77. 0x71, 0x64, 0x66, 0x73,
  78. 0x64, 0x66, 0x0au8
  79. ];
  80. let mut packet2 = vec![
  81. 0x01, 0x23, 0x45, 0x67, 0x89, 0xab,
  82. 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54,
  83. 0x08, 0x00, // ethertype
  84. 0x45, 0x00, 0x00, 0x3b, // start ip_hdr
  85. 0xa6, 0xab, 0x40, 0x00,
  86. 0x40, 0x06, 0x96, 0x0f,
  87. 0x7f, 0x00, 0x00, 0x01,
  88. 0x7f, 0x00, 0x00, 0x01,
  89. // Program matches the next two bytes: 0x9999 returns 0xffffffff, else return 0.
  90. 0x98, 0x76, 0xc6, 0xcc, // start tcp_hdr
  91. 0xd1, 0xe5, 0xc4, 0x9d,
  92. 0xd4, 0x30, 0xb5, 0xd2,
  93. 0x80, 0x18, 0x01, 0x56,
  94. 0xfe, 0x2f, 0x00, 0x00,
  95. 0x01, 0x01, 0x08, 0x0a, // start data
  96. 0x00, 0x23, 0x75, 0x89,
  97. 0x00, 0x23, 0x63, 0x2d,
  98. 0x71, 0x64, 0x66, 0x73,
  99. 0x64, 0x66, 0x0au8
  100. ];
  101. let mut vm = rbpf::EbpfVmFixedMbuff::new(&prog, 0x40, 0x50);
  102. vm.register_helper(helpers::BPF_TRACE_PRINTK_IDX, helpers::bpf_trace_printf);
  103. let res = vm.prog_exec(&mut packet1);
  104. println!("Packet #1, program returned: {:?} ({:#x})", res, res);
  105. assert_eq!(res, 0xffffffff);
  106. vm.jit_compile();
  107. unsafe {
  108. let res = vm.prog_exec_jit(&mut packet2);
  109. println!("Packet #2, program returned: {:?} ({:#x})", res, res);
  110. assert_eq!(res, 0);
  111. }
  112. }