jit.rs 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872
  1. // Derived from uBPF <https://github.com/iovisor/ubpf>
  2. // Copyright 2015 Big Switch Networks, Inc
  3. // (uBPF: JIT algorithm, originally in C)
  4. // Copyright 2016 6WIND S.A. <quentin.monnet@6wind.com>
  5. // (Translation to Rust, MetaBuff addition)
  6. //
  7. // Licensed under the Apache License, Version 2.0 <http://www.apache.org/licenses/LICENSE-2.0> or
  8. // the MIT license <http://opensource.org/licenses/MIT>, at your option. This file may not be
  9. // copied, modified, or distributed except according to those terms.
  10. use std;
  11. use std::mem;
  12. use std::collections::HashMap;
  13. use std::fmt::{Error, Formatter};
  14. use std::ops::{Index, IndexMut};
  15. use ebpf;
  16. extern crate libc;
  17. const PAGE_SIZE: usize = 4096;
  18. // Special values for target_pc in struct Jump
  19. const TARGET_OFFSET: isize = ebpf::PROG_MAX_INSNS as isize;
  20. const TARGET_PC_EXIT: isize = TARGET_OFFSET + 1;
  21. const TARGET_PC_DIV_BY_ZERO: isize = TARGET_OFFSET + 2;
  22. enum OperandSize {
  23. S8 = 8,
  24. S16 = 16,
  25. S32 = 32,
  26. S64 = 64,
  27. }
  28. // Registers
  29. const RAX: u8 = 0;
  30. const RCX: u8 = 1;
  31. const RDX: u8 = 2;
  32. const RBX: u8 = 3;
  33. const RSP: u8 = 4;
  34. const RBP: u8 = 5;
  35. const RSI: u8 = 6;
  36. const RDI: u8 = 7;
  37. const R8: u8 = 8;
  38. const R9: u8 = 9;
  39. const R10: u8 = 10;
  40. const R11: u8 = 11;
  41. //const R12: u8 = 12;
  42. const R13: u8 = 13;
  43. const R14: u8 = 14;
  44. const R15: u8 = 15;
  45. const REGISTER_MAP_SIZE: usize = 11;
  46. const REGISTER_MAP: [u8;REGISTER_MAP_SIZE] = [
  47. RAX, // 0 return value
  48. RDI, // 1 arg 1
  49. RSI, // 2 arg 2
  50. RDX, // 3 arg 3
  51. R9, // 4 arg 4
  52. R8, // 5 arg 5
  53. RBX, // 6 callee-saved
  54. R13, // 7 callee-saved
  55. R14, // 8 callee-saved
  56. R15, // 9 callee-saved
  57. RBP, // 10 stack pointer
  58. // R10 and R11 are used to compute store a constant pointer to mem and to compute offset for
  59. // LD_ABS_* and LD_IND_* operations, so they are not mapped to any eBPF register.
  60. ];
  61. // Return the x86 register for the given eBPF register
  62. fn map_register(r: u8) -> u8 {
  63. assert!(r < REGISTER_MAP_SIZE as u8);
  64. REGISTER_MAP[(r % REGISTER_MAP_SIZE as u8) as usize]
  65. }
  66. macro_rules! emit_bytes {
  67. ( $jit:ident, $data:tt, $t:ty ) => {{
  68. let size = mem::size_of::<$t>() as usize;
  69. assert!($jit.offset + size <= $jit.contents.len());
  70. unsafe {
  71. let mut ptr = $jit.contents.as_ptr().offset($jit.offset as isize) as *mut $t;
  72. *ptr = $data as $t;
  73. }
  74. $jit.offset += size;
  75. }}
  76. }
  77. #[inline]
  78. fn emit1(jit: &mut JitMemory, data: u8) {
  79. emit_bytes!(jit, data, u8);
  80. }
  81. #[inline]
  82. fn emit2(jit: &mut JitMemory, data: u16) {
  83. emit_bytes!(jit, data, u16);
  84. }
  85. #[inline]
  86. fn emit4(jit: &mut JitMemory, data: u32) {
  87. emit_bytes!(jit, data, u32);
  88. }
  89. #[inline]
  90. fn emit8(jit: &mut JitMemory, data: u64) {
  91. emit_bytes!(jit, data, u64);
  92. }
  93. #[inline]
  94. fn emit_jump_offset(jit: &mut JitMemory, target_pc: isize) {
  95. let jump = Jump { offset_loc: jit.offset, target_pc: target_pc };
  96. jit.jumps.push(jump);
  97. emit4(jit, 0);
  98. }
  99. #[inline]
  100. fn emit_modrm(jit: &mut JitMemory, modrm: u8, r: u8, m: u8) {
  101. assert!((modrm | 0xc0) == 0xc0);
  102. emit1(jit, (modrm & 0xc0) | ((r & 0b111) << 3) | (m & 0b111));
  103. }
  104. #[inline]
  105. fn emit_modrm_reg2reg(jit: &mut JitMemory, r: u8, m: u8) {
  106. emit_modrm(jit, 0xc0, r, m);
  107. }
  108. #[inline]
  109. fn emit_modrm_and_displacement(jit: &mut JitMemory, r: u8, m: u8, d: i32) {
  110. if d == 0 && (m & 0b111) != RBP {
  111. emit_modrm(jit, 0x00, r, m);
  112. } else if d >= -128 && d <= 127 {
  113. emit_modrm(jit, 0x40, r, m);
  114. emit1(jit, d as u8);
  115. } else {
  116. emit_modrm(jit, 0x80, r, m);
  117. emit4(jit, d as u32);
  118. }
  119. }
  120. #[inline]
  121. fn emit_rex(jit: &mut JitMemory, w: u8, r: u8, x: u8, b: u8) {
  122. assert!((w | 1) == 1);
  123. assert!((r | 1) == 1);
  124. assert!((x | 1) == 1);
  125. assert!((b | 1) == 1);
  126. emit1(jit, 0x40 | (w << 3) | (r << 2) | (x << 1) | b);
  127. }
  128. // Emits a REX prefix with the top bit of src and dst.
  129. // Skipped if no bits would be set.
  130. #[inline]
  131. fn emit_basic_rex(jit: &mut JitMemory, w: u8, src: u8, dst: u8) {
  132. if w != 0 || (src & 0b1000) != 0 || (dst & 0b1000) != 0 {
  133. let is_masked = | val, mask | { match val & mask {
  134. 0 => 0,
  135. _ => 1
  136. }};
  137. emit_rex(jit, w, is_masked(src, 8), 0, is_masked(dst, 8));
  138. }
  139. }
  140. #[inline]
  141. fn emit_push(jit: &mut JitMemory, r: u8) {
  142. emit_basic_rex(jit, 0, 0, r);
  143. emit1(jit, 0x50 | (r & 0b111));
  144. }
  145. #[inline]
  146. fn emit_pop(jit: &mut JitMemory, r: u8) {
  147. emit_basic_rex(jit, 0, 0, r);
  148. emit1(jit, 0x58 | (r & 0b111));
  149. }
  150. // REX prefix and ModRM byte
  151. // We use the MR encoding when there is a choice
  152. // 'src' is often used as an opcode extension
  153. #[inline]
  154. fn emit_alu32(jit: &mut JitMemory, op: u8, src: u8, dst: u8) {
  155. emit_basic_rex(jit, 0, src, dst);
  156. emit1(jit, op);
  157. emit_modrm_reg2reg(jit, src, dst);
  158. }
  159. // REX prefix, ModRM byte, and 32-bit immediate
  160. #[inline]
  161. fn emit_alu32_imm32(jit: &mut JitMemory, op: u8, src: u8, dst: u8, imm: i32) {
  162. emit_alu32(jit, op, src, dst);
  163. emit4(jit, imm as u32);
  164. }
  165. // REX prefix, ModRM byte, and 8-bit immediate
  166. #[inline]
  167. fn emit_alu32_imm8(jit: &mut JitMemory, op: u8, src: u8, dst: u8, imm: i8) {
  168. emit_alu32(jit, op, src, dst);
  169. emit1(jit, imm as u8);
  170. }
  171. // REX.W prefix and ModRM byte
  172. // We use the MR encoding when there is a choice
  173. // 'src' is often used as an opcode extension
  174. #[inline]
  175. fn emit_alu64(jit: &mut JitMemory, op: u8, src: u8, dst: u8) {
  176. emit_basic_rex(jit, 1, src, dst);
  177. emit1(jit, op);
  178. emit_modrm_reg2reg(jit, src, dst);
  179. }
  180. // REX.W prefix, ModRM byte, and 32-bit immediate
  181. #[inline]
  182. fn emit_alu64_imm32(jit: &mut JitMemory, op: u8, src: u8, dst: u8, imm: i32) {
  183. emit_alu64(jit, op, src, dst);
  184. emit4(jit, imm as u32);
  185. }
  186. // REX.W prefix, ModRM byte, and 8-bit immediate
  187. #[inline]
  188. fn emit_alu64_imm8(jit: &mut JitMemory, op: u8, src: u8, dst: u8, imm: i8) {
  189. emit_alu64(jit, op, src, dst);
  190. emit1(jit, imm as u8);
  191. }
  192. // Register to register mov
  193. #[inline]
  194. fn emit_mov(jit: &mut JitMemory, src: u8, dst: u8) {
  195. emit_alu64(jit, 0x89, src, dst);
  196. }
  197. #[inline]
  198. fn emit_cmp_imm32(jit: &mut JitMemory, dst: u8, imm: i32) {
  199. emit_alu64_imm32(jit, 0x81, 7, dst, imm);
  200. }
  201. #[inline]
  202. fn emit_cmp(jit: &mut JitMemory, src: u8, dst: u8) {
  203. emit_alu64(jit, 0x39, src, dst);
  204. }
  205. #[inline]
  206. fn emit_jcc(jit: &mut JitMemory, code: u8, target_pc: isize) {
  207. emit1(jit, 0x0f);
  208. emit1(jit, code);
  209. emit_jump_offset(jit, target_pc);
  210. }
  211. #[inline]
  212. fn emit_jmp(jit: &mut JitMemory, target_pc: isize) {
  213. emit1(jit, 0xe9);
  214. emit_jump_offset(jit, target_pc);
  215. }
  216. #[inline]
  217. fn set_anchor(jit: &mut JitMemory, target: isize) {
  218. jit.special_targets.insert(target, jit.offset);
  219. }
  220. // Load [src + offset] into dst
  221. #[inline]
  222. fn emit_load(jit: &mut JitMemory, size: OperandSize, src: u8, dst: u8, offset: i32) {
  223. let data = match size {
  224. OperandSize::S64 => 1,
  225. _ => 0
  226. };
  227. emit_basic_rex(jit, data, dst, src);
  228. match size {
  229. OperandSize::S8 => {
  230. // movzx
  231. emit1(jit, 0x0f);
  232. emit1(jit, 0xb6);
  233. },
  234. OperandSize::S16 => {
  235. // movzx
  236. emit1(jit, 0x0f);
  237. emit1(jit, 0xb7);
  238. },
  239. OperandSize::S32 | OperandSize::S64 => {
  240. // mov
  241. emit1(jit, 0x8b);
  242. }
  243. }
  244. emit_modrm_and_displacement(jit, dst, src, offset);
  245. }
  246. // Load sign-extended immediate into register
  247. #[inline]
  248. fn emit_load_imm(jit: &mut JitMemory, dst: u8, imm: i64) {
  249. if imm >= std::i32::MIN as i64 && imm <= std::i32::MAX as i64 {
  250. emit_alu64_imm32(jit, 0xc7, 0, dst, imm as i32);
  251. } else {
  252. // movabs $imm,dst
  253. emit_basic_rex(jit, 1, 0, dst);
  254. emit1(jit, 0xb8 | (dst & 0b111));
  255. emit8(jit, imm as u64);
  256. }
  257. }
  258. // Store register src to [dst + offset]
  259. #[inline]
  260. fn emit_store(jit: &mut JitMemory, size: OperandSize, src: u8, dst: u8, offset: i32) {
  261. match size {
  262. OperandSize::S16 => emit1(jit, 0x66), // 16-bit override
  263. _ => {},
  264. };
  265. let (is_s8, is_u64, rexw) = match size {
  266. OperandSize::S8 => (true, false, 0),
  267. OperandSize::S64 => (false, true, 1),
  268. _ => (false, false, 0),
  269. };
  270. if is_u64 || (src & 0b1000) != 0 || (dst & 0b1000) != 0 || is_s8 {
  271. let is_masked = | val, mask | {
  272. match val & mask {
  273. 0 => 0,
  274. _ => 1
  275. }
  276. };
  277. emit_rex(jit, rexw, is_masked(src, 8), 0, is_masked(dst, 8));
  278. }
  279. match size {
  280. OperandSize::S8 => emit1(jit, 0x88),
  281. _ => emit1(jit, 0x89),
  282. };
  283. emit_modrm_and_displacement(jit, src, dst, offset);
  284. }
  285. // Store immediate to [dst + offset]
  286. #[inline]
  287. fn emit_store_imm32(jit: &mut JitMemory, size: OperandSize, dst: u8, offset: i32, imm: i32) {
  288. match size {
  289. OperandSize::S16 => emit1(jit, 0x66), // 16-bit override
  290. _ => {},
  291. };
  292. match size {
  293. OperandSize::S64 => emit_basic_rex(jit, 1, 0, dst),
  294. _ => emit_basic_rex(jit, 0, 0, dst),
  295. };
  296. match size {
  297. OperandSize::S8 => emit1(jit, 0xc6),
  298. _ => emit1(jit, 0xc7),
  299. };
  300. emit_modrm_and_displacement(jit, 0, dst, offset);
  301. match size {
  302. OperandSize::S8 => emit1(jit, imm as u8),
  303. OperandSize::S16 => emit2(jit, imm as u16),
  304. _ => emit4(jit, imm as u32),
  305. };
  306. }
  307. #[inline]
  308. fn emit_call(jit: &mut JitMemory, target: i64) {
  309. // TODO use direct call when possible
  310. emit_load_imm(jit, RAX, target);
  311. // callq *%rax
  312. emit1(jit, 0xff);
  313. emit1(jit, 0xd0);
  314. }
  315. fn muldivmod(jit: &mut JitMemory, pc: u16, opc: u8, src: u8, dst: u8, imm: i32) {
  316. let mul = (opc & ebpf::BPF_ALU_OP_MASK) == (ebpf::MUL32_IMM & ebpf::BPF_ALU_OP_MASK);
  317. let div = (opc & ebpf::BPF_ALU_OP_MASK) == (ebpf::DIV32_IMM & ebpf::BPF_ALU_OP_MASK);
  318. let modrm = (opc & ebpf::BPF_ALU_OP_MASK) == (ebpf::MOD32_IMM & ebpf::BPF_ALU_OP_MASK);
  319. let is64 = (opc & ebpf::BPF_CLS_MASK) == ebpf::BPF_ALU64;
  320. if div || modrm {
  321. emit_load_imm(jit, RCX, pc as i64);
  322. // test src,src
  323. if is64 {
  324. emit_alu64(jit, 0x85, src, src);
  325. } else {
  326. emit_alu32(jit, 0x85, src, src);
  327. }
  328. // jz div_by_zero
  329. emit_jcc(jit, 0x84, TARGET_PC_DIV_BY_ZERO);
  330. }
  331. if dst != RAX {
  332. emit_push(jit, RAX);
  333. }
  334. if dst != RDX {
  335. emit_push(jit, RDX);
  336. }
  337. if imm != 0 {
  338. emit_load_imm(jit, RCX, imm as i64);
  339. } else {
  340. emit_mov(jit, src, RCX);
  341. }
  342. emit_mov(jit, dst, RAX);
  343. if div || modrm {
  344. // xor %edx,%edx
  345. emit_alu32(jit, 0x31, RDX, RDX);
  346. }
  347. if is64 {
  348. emit_rex(jit, 1, 0, 0, 0);
  349. }
  350. // mul %ecx or div %ecx
  351. emit_alu32(jit, 0xf7, if mul { 4 } else { 6 }, RCX);
  352. if dst != RDX {
  353. if modrm {
  354. emit_mov(jit, RDX, dst);
  355. }
  356. emit_pop(jit, RDX);
  357. }
  358. if dst != RAX {
  359. if div || mul {
  360. emit_mov(jit, RAX, dst);
  361. }
  362. emit_pop(jit, RAX);
  363. }
  364. }
  365. #[derive(Debug)]
  366. struct Jump {
  367. offset_loc: usize,
  368. target_pc: isize,
  369. }
  370. struct JitMemory<'a> {
  371. contents: &'a mut [u8],
  372. offset: usize,
  373. pc_locs: Vec<usize>,
  374. special_targets: HashMap<isize, usize>,
  375. jumps: Vec<Jump>,
  376. }
  377. impl<'a> JitMemory<'a> {
  378. fn new(num_pages: usize) -> JitMemory<'a> {
  379. let contents: &mut[u8];
  380. unsafe {
  381. let size = num_pages * PAGE_SIZE;
  382. let mut raw: *mut libc::c_void = mem::uninitialized();
  383. libc::posix_memalign(&mut raw, PAGE_SIZE, size);
  384. libc::mprotect(raw, size, libc::PROT_EXEC | libc::PROT_READ | libc::PROT_WRITE);
  385. std::ptr::write_bytes(raw, 0xc3, size); // for now, prepopulate with 'RET' calls
  386. contents = std::slice::from_raw_parts_mut(mem::transmute(raw), num_pages * PAGE_SIZE);
  387. }
  388. JitMemory {
  389. contents: contents,
  390. offset: 0,
  391. pc_locs: vec![],
  392. jumps: vec![],
  393. special_targets: HashMap::new(),
  394. }
  395. }
  396. fn jit_compile(&mut self, prog: &[u8], use_mbuff: bool, update_data_ptr: bool,
  397. helpers: &HashMap<u32, ebpf::Helper>) {
  398. emit_push(self, RBP);
  399. emit_push(self, RBX);
  400. emit_push(self, R13);
  401. emit_push(self, R14);
  402. emit_push(self, R15);
  403. // RDI: mbuff
  404. // RSI: mbuff_len
  405. // RDX: mem
  406. // RCX: mem_len
  407. // R8: mem_offset
  408. // R9: mem_end_offset
  409. // Save mem pointer for use with LD_ABS_* and LD_IND_* instructions
  410. emit_mov(self, RDX, R10);
  411. match (use_mbuff, update_data_ptr) {
  412. (false, _) => {
  413. // We do not use any mbuff. Move mem pointer into register 1.
  414. if map_register(1) != RDX {
  415. emit_mov(self, RDX, map_register(1));
  416. }
  417. },
  418. (true, false) => {
  419. // We use a mbuff already pointing to mem and mem_end: move it to register 1.
  420. if map_register(1) != RDI {
  421. emit_mov(self, RDI, map_register(1));
  422. }
  423. },
  424. (true, true) => {
  425. // We have a fixed (simulated) mbuff: update mem and mem_end offset values in it.
  426. // Store mem at mbuff + mem_offset. Trash R8.
  427. emit_alu64(self, 0x01, RDI, R8); // add mbuff to mem_offset in R8
  428. emit_store(self, OperandSize::S64, RDX, R8, 0); // set mem at mbuff + mem_offset
  429. // Store mem_end at mbuff + mem_end_offset. Trash R9.
  430. emit_load(self, OperandSize::S64, RDX, R8, 0); // load mem into R8
  431. emit_alu64(self, 0x01, RCX, R8); // add mem_len to mem (= mem_end)
  432. emit_alu64(self, 0x01, RDI, R9); // add mbuff to mem_end_offset
  433. emit_store(self, OperandSize::S64, R8, R9, 0); // store mem_end
  434. // Move rdi into register 1
  435. if map_register(1) != RDI {
  436. emit_mov(self, RDI, map_register(1));
  437. }
  438. }
  439. }
  440. // Copy stack pointer to R10
  441. emit_mov(self, RSP, map_register(10));
  442. // Allocate stack space
  443. emit_alu64_imm32(self, 0x81, 5, RSP, ebpf::STACK_SIZE as i32);
  444. self.pc_locs = vec![0; prog.len() / ebpf::INSN_SIZE + 1];
  445. let mut insn_ptr:usize = 0;
  446. while insn_ptr * ebpf::INSN_SIZE < prog.len() {
  447. let insn = ebpf::get_insn(prog, insn_ptr);
  448. self.pc_locs[insn_ptr] = self.offset;
  449. let dst = map_register(insn.dst);
  450. let src = map_register(insn.src);
  451. let target_pc = insn_ptr as isize + insn.off as isize + 1;
  452. match insn.opc {
  453. // BPF_LD class
  454. // R10 is a constant pointer to mem.
  455. ebpf::LD_ABS_B =>
  456. emit_load(self, OperandSize::S8, R10, RAX, insn.imm),
  457. ebpf::LD_ABS_H =>
  458. emit_load(self, OperandSize::S16, R10, RAX, insn.imm),
  459. ebpf::LD_ABS_W =>
  460. emit_load(self, OperandSize::S32, R10, RAX, insn.imm),
  461. ebpf::LD_ABS_DW =>
  462. emit_load(self, OperandSize::S64, R10, RAX, insn.imm),
  463. ebpf::LD_IND_B => {
  464. emit_mov(self, R10, R11); // load mem into R11
  465. emit_alu64(self, 0x01, src, R11); // add src to R11
  466. emit_load(self, OperandSize::S8, R11, RAX, insn.imm); // ld R0, mem[src+imm]
  467. },
  468. ebpf::LD_IND_H => {
  469. emit_mov(self, R10, R11); // load mem into R11
  470. emit_alu64(self, 0x01, src, R11); // add src to R11
  471. emit_load(self, OperandSize::S16, R11, RAX, insn.imm); // ld R0, mem[src+imm]
  472. },
  473. ebpf::LD_IND_W => {
  474. emit_mov(self, R10, R11); // load mem into R11
  475. emit_alu64(self, 0x01, src, R11); // add src to R11
  476. emit_load(self, OperandSize::S32, R11, RAX, insn.imm); // ld R0, mem[src+imm]
  477. },
  478. ebpf::LD_IND_DW => {
  479. emit_mov(self, R10, R11); // load mem into R11
  480. emit_alu64(self, 0x01, src, R11); // add src to R11
  481. emit_load(self, OperandSize::S64, R11, RAX, insn.imm); // ld R0, mem[src+imm]
  482. },
  483. ebpf::LD_DW_IMM => {
  484. insn_ptr += 1;
  485. let second_part = ebpf::get_insn(prog, insn_ptr).imm as u64;
  486. let imm = (insn.imm as u32) as u64 | second_part.wrapping_shl(32);
  487. emit_load_imm(self, dst, imm as i64);
  488. },
  489. // BPF_LDX class
  490. ebpf::LD_B_REG =>
  491. emit_load(self, OperandSize::S8, src, dst, insn.off as i32),
  492. ebpf::LD_H_REG =>
  493. emit_load(self, OperandSize::S16, src, dst, insn.off as i32),
  494. ebpf::LD_W_REG =>
  495. emit_load(self, OperandSize::S32, src, dst, insn.off as i32),
  496. ebpf::LD_DW_REG =>
  497. emit_load(self, OperandSize::S64, src, dst, insn.off as i32),
  498. // BPF_ST class
  499. ebpf::ST_B_IMM =>
  500. emit_store_imm32(self, OperandSize::S8, dst, insn.off as i32, insn.imm),
  501. ebpf::ST_H_IMM =>
  502. emit_store_imm32(self, OperandSize::S16, dst, insn.off as i32, insn.imm),
  503. ebpf::ST_W_IMM =>
  504. emit_store_imm32(self, OperandSize::S32, dst, insn.off as i32, insn.imm),
  505. ebpf::ST_DW_IMM =>
  506. emit_store_imm32(self, OperandSize::S64, dst, insn.off as i32, insn.imm),
  507. // BPF_STX class
  508. ebpf::ST_B_REG =>
  509. emit_store(self, OperandSize::S8, src, dst, insn.off as i32),
  510. ebpf::ST_H_REG =>
  511. emit_store(self, OperandSize::S16, src, dst, insn.off as i32),
  512. ebpf::ST_W_REG =>
  513. emit_store(self, OperandSize::S32, src, dst, insn.off as i32),
  514. ebpf::ST_DW_REG =>
  515. emit_store(self, OperandSize::S64, src, dst, insn.off as i32),
  516. ebpf::ST_W_XADD => unimplemented!(),
  517. ebpf::ST_DW_XADD => unimplemented!(),
  518. // BPF_ALU class
  519. ebpf::ADD32_IMM => emit_alu32_imm32(self, 0x81, 0, dst, insn.imm),
  520. ebpf::ADD32_REG => emit_alu32(self, 0x01, src, dst),
  521. ebpf::SUB32_IMM => emit_alu32_imm32(self, 0x81, 5, dst, insn.imm),
  522. ebpf::SUB32_REG => emit_alu32(self, 0x29, src, dst),
  523. ebpf::MUL32_IMM | ebpf::MUL32_REG |
  524. ebpf::DIV32_IMM | ebpf::DIV32_REG |
  525. ebpf::MOD32_IMM | ebpf::MOD32_REG =>
  526. muldivmod(self, insn_ptr as u16, insn.opc, src, dst, insn.imm),
  527. ebpf::OR32_IMM => emit_alu32_imm32(self, 0x81, 1, dst, insn.imm),
  528. ebpf::OR32_REG => emit_alu32(self, 0x09, src, dst),
  529. ebpf::AND32_IMM => emit_alu32_imm32(self, 0x81, 4, dst, insn.imm),
  530. ebpf::AND32_REG => emit_alu32(self, 0x21, src, dst),
  531. ebpf::LSH32_IMM => emit_alu32_imm8(self, 0xc1, 4, dst, insn.imm as i8),
  532. ebpf::LSH32_REG => {
  533. emit_mov(self, src, RCX);
  534. emit_alu32(self, 0xd3, 4, dst);
  535. },
  536. ebpf::RSH32_IMM => emit_alu32_imm8(self, 0xc1, 5, dst, insn.imm as i8),
  537. ebpf::RSH32_REG => {
  538. emit_mov(self, src, RCX);
  539. emit_alu32(self, 0xd3, 5, dst);
  540. },
  541. ebpf::NEG32 => emit_alu32(self, 0xf7, 3, dst),
  542. ebpf::XOR32_IMM => emit_alu32_imm32(self, 0x81, 6, dst, insn.imm),
  543. ebpf::XOR32_REG => emit_alu32(self, 0x31, src, dst),
  544. ebpf::MOV32_IMM => emit_alu32_imm32(self, 0xc7, 0, dst, insn.imm),
  545. ebpf::MOV32_REG => emit_mov(self, src, dst),
  546. ebpf::ARSH32_IMM => emit_alu32_imm8(self, 0xc1, 7, dst, insn.imm as i8),
  547. ebpf::ARSH32_REG => {
  548. emit_mov(self, src, RCX);
  549. emit_alu32(self, 0xd3, 7, dst);
  550. },
  551. ebpf::LE => {}, // No-op
  552. ebpf::BE => {
  553. match insn.imm {
  554. 16 => {
  555. // rol
  556. emit1(self, 0x66); // 16-bit override
  557. emit_alu32_imm8(self, 0xc1, 0, dst, 8);
  558. // and
  559. emit_alu32_imm32(self, 0x81, 4, dst, 0xffff);
  560. }
  561. 32 | 64 => {
  562. // bswap
  563. let bit = match insn.imm { 64 => 1, _ => 0 };
  564. emit_basic_rex(self, bit, 0, dst);
  565. emit1(self, 0x0f);
  566. emit1(self, 0xc8 | (dst & 0b111));
  567. }
  568. _ => unreachable!() // Should have been caught by verifier
  569. }
  570. },
  571. // BPF_ALU64 class
  572. ebpf::ADD64_IMM => emit_alu64_imm32(self, 0x81, 0, dst, insn.imm),
  573. ebpf::ADD64_REG => emit_alu64(self, 0x01, src, dst),
  574. ebpf::SUB64_IMM => emit_alu64_imm32(self, 0x81, 5, dst, insn.imm),
  575. ebpf::SUB64_REG => emit_alu64(self, 0x29, src, dst),
  576. ebpf::MUL64_IMM | ebpf::MUL64_REG |
  577. ebpf::DIV64_IMM | ebpf::DIV64_REG |
  578. ebpf::MOD64_IMM | ebpf::MOD64_REG =>
  579. muldivmod(self, insn_ptr as u16, insn.opc, src, dst, insn.imm),
  580. ebpf::OR64_IMM => emit_alu64_imm32(self, 0x81, 1, dst, insn.imm),
  581. ebpf::OR64_REG => emit_alu64(self, 0x09, src, dst),
  582. ebpf::AND64_IMM => emit_alu64_imm32(self, 0x81, 4, dst, insn.imm),
  583. ebpf::AND64_REG => emit_alu64(self, 0x21, src, dst),
  584. ebpf::LSH64_IMM => emit_alu64_imm8(self, 0xc1, 4, dst, insn.imm as i8),
  585. ebpf::LSH64_REG => {
  586. emit_mov(self, src, RCX);
  587. emit_alu64(self, 0xd3, 4, dst);
  588. },
  589. ebpf::RSH64_IMM => emit_alu64_imm8(self, 0xc1, 5, dst, insn.imm as i8),
  590. ebpf::RSH64_REG => {
  591. emit_mov(self, src, RCX);
  592. emit_alu64(self, 0xd3, 5, dst);
  593. },
  594. ebpf::NEG64 => emit_alu64(self, 0xf7, 3, dst),
  595. ebpf::XOR64_IMM => emit_alu64_imm32(self, 0x81, 6, dst, insn.imm),
  596. ebpf::XOR64_REG => emit_alu64(self, 0x31, src, dst),
  597. ebpf::MOV64_IMM => emit_load_imm(self, dst, insn.imm as i64),
  598. ebpf::MOV64_REG => emit_mov(self, src, dst),
  599. ebpf::ARSH64_IMM => emit_alu64_imm8(self, 0xc1, 7, dst, insn.imm as i8),
  600. ebpf::ARSH64_REG => {
  601. emit_mov(self, src, RCX);
  602. emit_alu64(self, 0xd3, 7, dst);
  603. },
  604. // BPF_JMP class
  605. ebpf::JA => emit_jmp(self, target_pc),
  606. ebpf::JEQ_IMM => {
  607. emit_cmp_imm32(self, dst, insn.imm);
  608. emit_jcc(self, 0x84, target_pc);
  609. },
  610. ebpf::JEQ_REG => {
  611. emit_cmp(self, src, dst);
  612. emit_jcc(self, 0x84, target_pc);
  613. },
  614. ebpf::JGT_IMM => {
  615. emit_cmp_imm32(self, dst, insn.imm);
  616. emit_jcc(self, 0x87, target_pc);
  617. },
  618. ebpf::JGT_REG => {
  619. emit_cmp(self, src, dst);
  620. emit_jcc(self, 0x87, target_pc);
  621. },
  622. ebpf::JGE_IMM => {
  623. emit_cmp_imm32(self, dst, insn.imm);
  624. emit_jcc(self, 0x83, target_pc);
  625. },
  626. ebpf::JGE_REG => {
  627. emit_cmp(self, src, dst);
  628. emit_jcc(self, 0x83, target_pc);
  629. },
  630. ebpf::JSET_IMM => {
  631. emit_alu64_imm32(self, 0xf7, 0, dst, insn.imm);
  632. emit_jcc(self, 0x85, target_pc);
  633. },
  634. ebpf::JSET_REG => {
  635. emit_alu64(self, 0x85, src, dst);
  636. emit_jcc(self, 0x85, target_pc);
  637. },
  638. ebpf::JNE_IMM => {
  639. emit_cmp_imm32(self, dst, insn.imm);
  640. emit_jcc(self, 0x85, target_pc);
  641. },
  642. ebpf::JNE_REG => {
  643. emit_cmp(self, src, dst);
  644. emit_jcc(self, 0x85, target_pc);
  645. },
  646. ebpf::JSGT_IMM => {
  647. emit_cmp_imm32(self, dst, insn.imm);
  648. emit_jcc(self, 0x8f, target_pc);
  649. },
  650. ebpf::JSGT_REG => {
  651. emit_cmp(self, src, dst);
  652. emit_jcc(self, 0x8f, target_pc);
  653. },
  654. ebpf::JSGE_IMM => {
  655. emit_cmp_imm32(self, dst, insn.imm);
  656. emit_jcc(self, 0x8d, target_pc);
  657. },
  658. ebpf::JSGE_REG => {
  659. emit_cmp(self, src, dst);
  660. emit_jcc(self, 0x8d, target_pc);
  661. },
  662. ebpf::CALL => {
  663. // For JIT, helpers in use MUST be registered at compile time. They can be
  664. // updated later, but not created after compiling (we need the address of the
  665. // helper function in the JIT-compiled program).
  666. if let Some(helper) = helpers.get(&(insn.imm as u32)) {
  667. // We reserve RCX for shifts
  668. emit_mov(self, R9, RCX);
  669. emit_call(self, *helper as i64);
  670. } else {
  671. panic!("[JIT] Error: unknown helper function (id: {:#x})",
  672. insn.imm as u32);
  673. };
  674. },
  675. ebpf::TAIL_CALL => { unimplemented!() },
  676. ebpf::EXIT => {
  677. if insn_ptr != prog.len() / ebpf::INSN_SIZE - 1 {
  678. emit_jmp(self, TARGET_PC_EXIT);
  679. };
  680. },
  681. _ => {
  682. panic!("[JIT] Error: unknown eBPF opcode {:#2x} (insn #{:?})",
  683. insn.opc, insn_ptr);
  684. },
  685. }
  686. insn_ptr += 1;
  687. }
  688. // Epilogue
  689. set_anchor(self, TARGET_PC_EXIT);
  690. // Move register 0 into rax
  691. if map_register(0) != RAX {
  692. emit_mov(self, map_register(0), RAX);
  693. }
  694. // Deallocate stack space
  695. emit_alu64_imm32(self, 0x81, 0, RSP, ebpf::STACK_SIZE as i32);
  696. emit_pop(self, R15);
  697. emit_pop(self, R14);
  698. emit_pop(self, R13);
  699. emit_pop(self, RBX);
  700. emit_pop(self, RBP);
  701. emit1(self, 0xc3); // ret
  702. // Division by zero handler
  703. set_anchor(self, TARGET_PC_DIV_BY_ZERO);
  704. fn log(pc: u64) -> i64 {
  705. // Write error message on stderr.
  706. // We would like to panic!() instead (but does not work here), or maybe return an
  707. // error, that is, if we also turn all other panics into errors someday.
  708. // Note: needs `use std::io::Write;`
  709. // let res = writeln!(&mut std::io::stderr(),
  710. // "[JIT] Error: division by zero (insn {:?})\n", pc);
  711. // match res {
  712. // Ok(_) => 0,
  713. // Err(_) => -1
  714. // }
  715. pc as i64 // Just to prevent warnings
  716. };
  717. emit_mov(self, RCX, RDI); // muldivmod stored pc in RCX
  718. emit_call(self, log as i64);
  719. emit_load_imm(self, map_register(0), -1);
  720. emit_jmp(self, TARGET_PC_EXIT);
  721. }
  722. fn resolve_jumps(&mut self)
  723. {
  724. for jump in &self.jumps {
  725. let target_loc = match self.special_targets.get(&jump.target_pc) {
  726. Some(target) => *target,
  727. None => self.pc_locs[jump.target_pc as usize]
  728. };
  729. // Assumes jump offset is at end of instruction
  730. unsafe {
  731. let offset_loc = jump.offset_loc as i32 + std::mem::size_of::<i32>() as i32;
  732. let rel = &(target_loc as i32 - offset_loc) as *const i32;
  733. let offset_ptr = self.contents.as_ptr().offset(jump.offset_loc as isize);
  734. libc::memcpy(offset_ptr as *mut libc::c_void, rel as *const libc::c_void,
  735. std::mem::size_of::<i32>());
  736. }
  737. }
  738. }
  739. } // struct JitMemory
  740. impl<'a> Index<usize> for JitMemory<'a> {
  741. type Output = u8;
  742. fn index(&self, _index: usize) -> &u8 {
  743. &self.contents[_index]
  744. }
  745. }
  746. impl<'a> IndexMut<usize> for JitMemory<'a> {
  747. fn index_mut(&mut self, _index: usize) -> &mut u8 {
  748. &mut self.contents[_index]
  749. }
  750. }
  751. impl<'a> std::fmt::Debug for JitMemory<'a> {
  752. fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error> {
  753. fmt.write_str("JIT contents: [")?;
  754. for i in self.contents as &[u8] {
  755. fmt.write_fmt(format_args!(" {:#04x},", i))?;
  756. };
  757. fmt.write_str(" ] | ")?;
  758. fmt.debug_struct("JIT state")
  759. .field("offset", &self.offset)
  760. .field("pc_locs", &self.pc_locs)
  761. .field("special_targets", &self.special_targets)
  762. .field("jumps", &self.jumps)
  763. .finish()
  764. }
  765. }
  766. // In the end, this is the only thing we export
  767. pub fn compile(prog: &[u8],
  768. helpers: &HashMap<u32, ebpf::Helper>,
  769. use_mbuff: bool, update_data_ptr: bool)
  770. -> (unsafe fn(*mut u8, usize, *mut u8, usize, usize, usize) -> u64) {
  771. // TODO: check how long the page must be to be sure to support an eBPF program of maximum
  772. // possible length
  773. let mut jit = JitMemory::new(1);
  774. jit.jit_compile(prog, use_mbuff, update_data_ptr, helpers);
  775. jit.resolve_jumps();
  776. unsafe { mem::transmute(jit.contents.as_ptr()) }
  777. }