4
0

load_elf.rs 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. // SPDX-License-Identifier: (Apache-2.0 OR MIT)
  2. // Copyright 2016 6WIND S.A. <quentin.monnet@6wind.com>
  3. extern crate elf;
  4. use std::path::PathBuf;
  5. extern crate rbpf;
  6. use rbpf::helpers;
  7. // The following example uses an ELF file that has been compiled from the C program available in
  8. // `load_elf__block_a_port.c` in the same directory.
  9. //
  10. // It was compiled with the following command:
  11. //
  12. // ```bash
  13. // clang -O2 -emit-llvm -c load_elf__block_a_port.c -o - | \
  14. // llc -march=bpf -filetype=obj -o load_elf__block_a_port.o
  15. // ```
  16. //
  17. // Once compiled, this program can be injected into Linux kernel, with tc for instance. Sadly, we
  18. // need to bring some modifications to the generated bytecode in order to run it: the three
  19. // instructions with opcode 0x61 load data from a packet area as 4-byte words, where we need to
  20. // load it as 8-bytes double words (0x79). The kernel does the same kind of translation before
  21. // running the program, but rbpf does not implement this.
  22. //
  23. // In addition, the offset at which the pointer to the packet data is stored must be changed: since
  24. // we use 8 bytes instead of 4 for the start and end addresses of the data packet, we cannot use
  25. // the offsets produced by clang (0x4c and 0x50), the addresses would overlap. Instead we can use,
  26. // for example, 0x40 and 0x50.
  27. //
  28. // These change were applied with the following script:
  29. //
  30. // ```bash
  31. // xxd load_elf__block_a_port.o | sed '
  32. // s/6112 5000 0000 0000/7912 5000 0000 0000/ ;
  33. // s/6111 4c00 0000 0000/7911 4000 0000 0000/ ;
  34. // s/6111 2200 0000 0000/7911 2200 0000 0000/' | xxd -r > load_elf__block_a_port.tmp
  35. // mv load_elf__block_a_port.tmp load_elf__block_a_port.o
  36. // ```
  37. //
  38. // The eBPF program was placed into the `.classifier` ELF section (see C code above), which means
  39. // that you can retrieve the raw bytecode with `readelf -x .classifier load_elf__block_a_port.o` or
  40. // with `objdump -s -j .classifier load_elf__block_a_port.o`.
  41. //
  42. // Once the bytecode has been edited, we can load the bytecode directly from the ELF object file.
  43. fn main() {
  44. let filename = "examples/load_elf__block_a_port.o";
  45. let path = PathBuf::from(filename);
  46. let file = match elf::File::open_path(path) {
  47. Ok(f) => f,
  48. Err(e) => panic!("Error: {e:?}"),
  49. };
  50. let text_scn = match file.get_section(".classifier") {
  51. Some(s) => s,
  52. None => panic!("Failed to look up .classifier section"),
  53. };
  54. let prog = &text_scn.data;
  55. #[rustfmt::skip]
  56. let packet1 = &mut [
  57. 0x01, 0x23, 0x45, 0x67, 0x89, 0xab,
  58. 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54,
  59. 0x08, 0x00, // ethertype
  60. 0x45, 0x00, 0x00, 0x3b, // start ip_hdr
  61. 0xa6, 0xab, 0x40, 0x00,
  62. 0x40, 0x06, 0x96, 0x0f,
  63. 0x7f, 0x00, 0x00, 0x01,
  64. 0x7f, 0x00, 0x00, 0x01,
  65. // Program matches the next two bytes: 0x9999 returns 0xffffffff, else return 0.
  66. 0x99, 0x99, 0xc6, 0xcc, // start tcp_hdr
  67. 0xd1, 0xe5, 0xc4, 0x9d,
  68. 0xd4, 0x30, 0xb5, 0xd2,
  69. 0x80, 0x18, 0x01, 0x56,
  70. 0xfe, 0x2f, 0x00, 0x00,
  71. 0x01, 0x01, 0x08, 0x0a, // start data
  72. 0x00, 0x23, 0x75, 0x89,
  73. 0x00, 0x23, 0x63, 0x2d,
  74. 0x71, 0x64, 0x66, 0x73,
  75. 0x64, 0x66, 0x0au8
  76. ];
  77. #[rustfmt::skip]
  78. let packet2 = &mut [
  79. 0x01, 0x23, 0x45, 0x67, 0x89, 0xab,
  80. 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54,
  81. 0x08, 0x00, // ethertype
  82. 0x45, 0x00, 0x00, 0x3b, // start ip_hdr
  83. 0xa6, 0xab, 0x40, 0x00,
  84. 0x40, 0x06, 0x96, 0x0f,
  85. 0x7f, 0x00, 0x00, 0x01,
  86. 0x7f, 0x00, 0x00, 0x01,
  87. // Program matches the next two bytes: 0x9999 returns 0xffffffff, else return 0.
  88. 0x98, 0x76, 0xc6, 0xcc, // start tcp_hdr
  89. 0xd1, 0xe5, 0xc4, 0x9d,
  90. 0xd4, 0x30, 0xb5, 0xd2,
  91. 0x80, 0x18, 0x01, 0x56,
  92. 0xfe, 0x2f, 0x00, 0x00,
  93. 0x01, 0x01, 0x08, 0x0a, // start data
  94. 0x00, 0x23, 0x75, 0x89,
  95. 0x00, 0x23, 0x63, 0x2d,
  96. 0x71, 0x64, 0x66, 0x73,
  97. 0x64, 0x66, 0x0au8
  98. ];
  99. let mut vm = rbpf::EbpfVmFixedMbuff::new(Some(prog), 0x40, 0x50).unwrap();
  100. vm.register_helper(helpers::BPF_TRACE_PRINTK_IDX, helpers::bpf_trace_printf)
  101. .unwrap();
  102. let res = vm.execute_program(packet1).unwrap();
  103. println!("Packet #1, program returned: {res:?} ({res:#x})");
  104. assert_eq!(res, 0xffffffff);
  105. #[cfg(not(windows))]
  106. {
  107. vm.jit_compile().unwrap();
  108. let res = unsafe { vm.execute_program_jit(packet2).unwrap() };
  109. println!("Packet #2, program returned: {res:?} ({res:#x})");
  110. assert_eq!(res, 0);
  111. }
  112. #[cfg(windows)]
  113. {
  114. let res = vm.execute_program(packet2).unwrap();
  115. println!("Packet #2, program returned: {:?} ({:#x})", res, res);
  116. assert_eq!(res, 0);
  117. }
  118. }