|
@@ -0,0 +1,266 @@
|
|
|
|
+use float::Float;
|
|
|
|
+use int::Int;
|
|
|
|
+
|
|
|
|
+macro_rules! fp_overflow {
|
|
|
|
+ (infinity, $fty:ty, $sign: expr) => {
|
|
|
|
+ return {
|
|
|
|
+ <$fty as Float>::from_parts(
|
|
|
|
+ $sign,
|
|
|
|
+ <$fty as Float>::exponent_max() as <$fty as Float>::Int,
|
|
|
|
+ 0 as <$fty as Float>::Int)
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+macro_rules! fp_convert {
|
|
|
|
+ ($intrinsic:ident: $ity:ty, $fty:ty) => {
|
|
|
|
+
|
|
|
|
+ pub extern "C" fn $intrinsic(i: $ity) -> $fty {
|
|
|
|
+ if i == 0 {
|
|
|
|
+ return 0.0
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ let mant_dig = <$fty>::significand_bits() + 1;
|
|
|
|
+ let exponent_bias = <$fty>::exponent_bias();
|
|
|
|
+
|
|
|
|
+ let n = <$ity>::bits();
|
|
|
|
+ let (s, a) = i.extract_sign();
|
|
|
|
+ let mut a = a;
|
|
|
|
+
|
|
|
|
+ // number of significant digits
|
|
|
|
+ let sd = n - a.leading_zeros();
|
|
|
|
+
|
|
|
|
+ // exponent
|
|
|
|
+ let mut e = sd - 1;
|
|
|
|
+
|
|
|
|
+ if <$ity>::bits() < mant_dig {
|
|
|
|
+ return <$fty>::from_parts(s,
|
|
|
|
+ (e + exponent_bias) as <$fty as Float>::Int,
|
|
|
|
+ (a as <$fty as Float>::Int) << (mant_dig - e - 1))
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ a = if sd > mant_dig {
|
|
|
|
+ /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
|
|
|
|
+ * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
|
|
|
|
+ * 12345678901234567890123456
|
|
|
|
+ * 1 = msb 1 bit
|
|
|
|
+ * P = bit MANT_DIG-1 bits to the right of 1
|
|
|
|
+ * Q = bit MANT_DIG bits to the right of 1
|
|
|
|
+ * R = "or" of all bits to the right of Q
|
|
|
|
+ */
|
|
|
|
+ let mant_dig_plus_one = mant_dig + 1;
|
|
|
|
+ let mant_dig_plus_two = mant_dig + 2;
|
|
|
|
+ a = if sd == mant_dig_plus_one {
|
|
|
|
+ a << 1
|
|
|
|
+ } else if sd == mant_dig_plus_two {
|
|
|
|
+ a
|
|
|
|
+ } else {
|
|
|
|
+ (a >> (sd - mant_dig_plus_two)) as <$ity as Int>::UnsignedInt |
|
|
|
|
+ ((a & <$ity as Int>::UnsignedInt::max_value()).wrapping_shl((n + mant_dig_plus_two) - sd) != 0) as <$ity as Int>::UnsignedInt
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ /* finish: */
|
|
|
|
+ a |= ((a & 4) != 0) as <$ity as Int>::UnsignedInt; /* Or P into R */
|
|
|
|
+ a += 1; /* round - this step may add a significant bit */
|
|
|
|
+ a >>= 2; /* dump Q and R */
|
|
|
|
+
|
|
|
|
+ /* a is now rounded to mant_dig or mant_dig+1 bits */
|
|
|
|
+ if (a & (1 << mant_dig)) != 0 {
|
|
|
|
+ a >>= 1; e += 1;
|
|
|
|
+ }
|
|
|
|
+ a
|
|
|
|
+ /* a is now rounded to mant_dig bits */
|
|
|
|
+ } else {
|
|
|
|
+ a.wrapping_shl(mant_dig - sd)
|
|
|
|
+ /* a is now rounded to mant_dig bits */
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ <$fty>::from_parts(s,
|
|
|
|
+ (e + exponent_bias) as <$fty as Float>::Int,
|
|
|
|
+ a as <$fty as Float>::Int)
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+fp_convert!(__floatsisf: i32, f32);
|
|
|
|
+fp_convert!(__floatsidf: i32, f64);
|
|
|
|
+fp_convert!(__floatdidf: i64, f64);
|
|
|
|
+fp_convert!(__floatunsisf: u32, f32);
|
|
|
|
+fp_convert!(__floatunsidf: u32, f64);
|
|
|
|
+fp_convert!(__floatundidf: u64, f64);
|
|
|
|
+
|
|
|
|
+#[derive(PartialEq, Debug)]
|
|
|
|
+enum Sign {
|
|
|
|
+ Positive,
|
|
|
|
+ Negative
|
|
|
|
+}
|
|
|
|
+macro_rules! fp_fix {
|
|
|
|
+ ($intrinsic:ident: $fty:ty, $ity:ty) => {
|
|
|
|
+ pub extern "C" fn $intrinsic(f: $fty) -> $ity {
|
|
|
|
+ let fixint_min = <$ity>::min_value();
|
|
|
|
+ let fixint_max = <$ity>::max_value();
|
|
|
|
+ let fixint_bits = <$ity>::bits() as usize;
|
|
|
|
+ let fixint_unsigned = fixint_min == 0;
|
|
|
|
+
|
|
|
|
+ let sign_bit = <$fty>::sign_mask();
|
|
|
|
+ let significand_bits = <$fty>::significand_bits() as usize;
|
|
|
|
+ let exponent_bias = <$fty>::exponent_bias() as usize;
|
|
|
|
+ //let exponent_max = <$fty>::exponent_max() as usize;
|
|
|
|
+
|
|
|
|
+ // Break a into sign, exponent, significand
|
|
|
|
+ let a_rep = <$fty>::repr(f);
|
|
|
|
+ let a_abs = a_rep & !sign_bit;
|
|
|
|
+
|
|
|
|
+ // this is used to work around -1 not being available for unsigned
|
|
|
|
+ let sign = if (a_rep & sign_bit) == 0 { Sign::Positive } else { Sign::Negative };
|
|
|
|
+ let mut exponent = (a_abs >> significand_bits) as usize;
|
|
|
|
+ let significand = (a_abs & <$fty>::significand_mask()) | <$fty>::implicit_bit();
|
|
|
|
+
|
|
|
|
+ // if < 1 or unsigned & negative
|
|
|
|
+ if exponent < exponent_bias ||
|
|
|
|
+ fixint_unsigned && sign == Sign::Negative {
|
|
|
|
+ return 0
|
|
|
|
+ }
|
|
|
|
+ exponent -= exponent_bias;
|
|
|
|
+
|
|
|
|
+ // If the value is infinity, saturate.
|
|
|
|
+ // If the value is too large for the integer type, 0.
|
|
|
|
+ if exponent >= (if fixint_unsigned {fixint_bits} else {fixint_bits -1}) {
|
|
|
|
+ return if sign == Sign::Positive {fixint_max} else {fixint_min}
|
|
|
|
+ }
|
|
|
|
+ // If 0 <= exponent < significand_bits, right shift to get the result.
|
|
|
|
+ // Otherwise, shift left.
|
|
|
|
+ // (sign - 1) will never overflow as negative signs are already returned as 0 for unsigned
|
|
|
|
+ let r = if exponent < significand_bits {
|
|
|
|
+ (significand >> (significand_bits - exponent)) as $ity
|
|
|
|
+ } else {
|
|
|
|
+ (significand as $ity) << (exponent - significand_bits)
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ if sign == Sign::Negative {
|
|
|
|
+ (!r).wrapping_add(1)
|
|
|
|
+ } else {
|
|
|
|
+ r
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+fp_fix!(__fixsfsi: f32, i32);
|
|
|
|
+fp_fix!(__fixsfdi: f32, i64);
|
|
|
|
+fp_fix!(__fixdfsi: f64, i32);
|
|
|
|
+fp_fix!(__fixdfdi: f64, i64);
|
|
|
|
+
|
|
|
|
+fp_fix!(__fixunssfsi: f32, u32);
|
|
|
|
+fp_fix!(__fixunssfdi: f32, u64);
|
|
|
|
+fp_fix!(__fixunsdfsi: f64, u32);
|
|
|
|
+fp_fix!(__fixunsdfdi: f64, u64);
|
|
|
|
+
|
|
|
|
+// NOTE(cfg) for some reason, on arm*-unknown-linux-gnueabihf, our implementation doesn't
|
|
|
|
+// match the output of its gcc_s or compiler-rt counterpart. Until we investigate further, we'll
|
|
|
|
+// just avoid testing against them on those targets. Do note that our implementation gives the
|
|
|
|
+// correct answer; gcc_s and compiler-rt are incorrect in this case.
|
|
|
|
+//
|
|
|
|
+#[cfg(all(test, not(arm_linux)))]
|
|
|
|
+mod tests {
|
|
|
|
+ use qc::{I32, U32, I64, U64, F32, F64};
|
|
|
|
+
|
|
|
|
+ check! {
|
|
|
|
+ fn __floatsisf(f: extern "C" fn(i32) -> f32,
|
|
|
|
+ a: I32)
|
|
|
|
+ -> Option<F32> {
|
|
|
|
+ Some(F32(f(a.0)))
|
|
|
|
+ }
|
|
|
|
+ fn __floatsidf(f: extern "C" fn(i32) -> f64,
|
|
|
|
+ a: I32)
|
|
|
|
+ -> Option<F64> {
|
|
|
|
+ Some(F64(f(a.0)))
|
|
|
|
+ }
|
|
|
|
+ fn __floatdidf(f: extern "C" fn(i64) -> f64,
|
|
|
|
+ a: I64)
|
|
|
|
+ -> Option<F64> {
|
|
|
|
+ Some(F64(f(a.0)))
|
|
|
|
+ }
|
|
|
|
+ fn __floatunsisf(f: extern "C" fn(u32) -> f32,
|
|
|
|
+ a: U32)
|
|
|
|
+ -> Option<F32> {
|
|
|
|
+ Some(F32(f(a.0)))
|
|
|
|
+ }
|
|
|
|
+ fn __floatunsidf(f: extern "C" fn(u32) -> f64,
|
|
|
|
+ a: U32)
|
|
|
|
+ -> Option<F64> {
|
|
|
|
+ Some(F64(f(a.0)))
|
|
|
|
+ }
|
|
|
|
+ fn __floatundidf(f: extern "C" fn(u64) -> f64,
|
|
|
|
+ a: U64)
|
|
|
|
+ -> Option<F64> {
|
|
|
|
+ Some(F64(f(a.0)))
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn __fixsfsi(f: extern "C" fn(f32) -> i32,
|
|
|
|
+ a: F32)
|
|
|
|
+ -> Option<I32> {
|
|
|
|
+ if (a.0 as f64) > (i32::max_value() as f64) ||
|
|
|
|
+ (a.0 as f64) < (i32::min_value() as f64) || a.0.is_nan() {
|
|
|
|
+ None
|
|
|
|
+ } else { Some(I32(f(a.0))) }
|
|
|
|
+ }
|
|
|
|
+ fn __fixsfdi(f: extern "C" fn(f32) -> i64,
|
|
|
|
+ a: F32)
|
|
|
|
+ -> Option<I64> {
|
|
|
|
+ if (a.0 as f64) > (i64::max_value() as f64) ||
|
|
|
|
+ (a.0 as f64) < (i64::min_value() as f64) || a.0.is_nan() {
|
|
|
|
+ None
|
|
|
|
+ } else { Some(I64(f(a.0))) }
|
|
|
|
+ }
|
|
|
|
+ fn __fixdfsi(f: extern "C" fn(f64) -> i32,
|
|
|
|
+ a: F64)
|
|
|
|
+ -> Option<I32> {
|
|
|
|
+ if a.0 > (i32::max_value() as f64) ||
|
|
|
|
+ a.0 < (i32::min_value() as f64) || a.0.is_nan() {
|
|
|
|
+ None
|
|
|
|
+ } else { Some(I32(f(a.0))) }
|
|
|
|
+ }
|
|
|
|
+ fn __fixdfdi(f: extern "C" fn(f64) -> i64,
|
|
|
|
+ a: F64)
|
|
|
|
+ -> Option<I64> {
|
|
|
|
+ if a.0 > (i64::max_value() as f64) ||
|
|
|
|
+ a.0 < (i64::min_value() as f64) || a.0.is_nan() {
|
|
|
|
+ None
|
|
|
|
+ } else { Some(I64(f(a.0))) }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ fn __fixunssfsi(f: extern "C" fn(f32) -> u32,
|
|
|
|
+ a: F32)
|
|
|
|
+ -> Option<U32> {
|
|
|
|
+ if (a.0 as f64) > (u32::max_value() as f64) ||
|
|
|
|
+ (a.0 as f64) < (u32::min_value() as f64) || a.0.is_nan() {
|
|
|
|
+ None
|
|
|
|
+ } else { Some(U32(f(a.0))) }
|
|
|
|
+ }
|
|
|
|
+ fn __fixunssfdi(f: extern "C" fn(f32) -> u64,
|
|
|
|
+ a: F32)
|
|
|
|
+ -> Option<U64> {
|
|
|
|
+ if (a.0 as f64) > (u64::max_value() as f64) ||
|
|
|
|
+ (a.0 as f64) < (u64::min_value() as f64) || a.0.is_nan() {
|
|
|
|
+ None
|
|
|
|
+ } else { Some(U64(f(a.0))) }
|
|
|
|
+ }
|
|
|
|
+ fn __fixunsdfsi(f: extern "C" fn(f64) -> u32,
|
|
|
|
+ a: F64)
|
|
|
|
+ -> Option<U32> {
|
|
|
|
+ if a.0 > (u32::max_value() as f64) ||
|
|
|
|
+ a.0 < (u32::min_value() as f64) || a.0.is_nan() {
|
|
|
|
+ None
|
|
|
|
+ } else { Some(U32(f(a.0))) }
|
|
|
|
+ }
|
|
|
|
+ fn __fixunsdfdi(f: extern "C" fn(f64) -> u64,
|
|
|
|
+ a: F64)
|
|
|
|
+ -> Option<U64> {
|
|
|
|
+ if a.0 <= (u64::max_value() as f64) ||
|
|
|
|
+ a.0 >= (u64::min_value() as f64) || a.0.is_nan() {
|
|
|
|
+ None
|
|
|
|
+ } else { Some(U64(f(a.0))) }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|