|
@@ -1,196 +1,196 @@
|
|
|
-use core::num::Wrapping;
|
|
|
-
|
|
|
+use int::{Int, CastInto};
|
|
|
use float::Float;
|
|
|
|
|
|
/// Returns `a + b`
|
|
|
-macro_rules! add {
|
|
|
- ($a:expr, $b:expr, $ty:ty) => ({
|
|
|
- let a = $a;
|
|
|
- let b = $b;
|
|
|
- let one = Wrapping(1 as <$ty as Float>::Int);
|
|
|
- let zero = Wrapping(0 as <$ty as Float>::Int);
|
|
|
-
|
|
|
- let bits = Wrapping(<$ty>::BITS as <$ty as Float>::Int);
|
|
|
- let significand_bits = Wrapping(<$ty>::SIGNIFICAND_BITS as <$ty as Float>::Int);
|
|
|
- let exponent_bits = bits - significand_bits - one;
|
|
|
- let max_exponent = (one << exponent_bits.0 as usize) - one;
|
|
|
-
|
|
|
- let implicit_bit = one << significand_bits.0 as usize;
|
|
|
- let significand_mask = implicit_bit - one;
|
|
|
- let sign_bit = one << (significand_bits + exponent_bits).0 as usize;
|
|
|
- let abs_mask = sign_bit - one;
|
|
|
- let exponent_mask = abs_mask ^ significand_mask;
|
|
|
- let inf_rep = exponent_mask;
|
|
|
- let quiet_bit = implicit_bit >> 1;
|
|
|
- let qnan_rep = exponent_mask | quiet_bit;
|
|
|
-
|
|
|
- let mut a_rep = Wrapping(a.repr());
|
|
|
- let mut b_rep = Wrapping(b.repr());
|
|
|
- let a_abs = a_rep & abs_mask;
|
|
|
- let b_abs = b_rep & abs_mask;
|
|
|
-
|
|
|
- // Detect if a or b is zero, infinity, or NaN.
|
|
|
- if a_abs - one >= inf_rep - one ||
|
|
|
- b_abs - one >= inf_rep - one {
|
|
|
- // NaN + anything = qNaN
|
|
|
- if a_abs > inf_rep {
|
|
|
- return <$ty as Float>::from_repr((a_abs | quiet_bit).0);
|
|
|
- }
|
|
|
- // anything + NaN = qNaN
|
|
|
- if b_abs > inf_rep {
|
|
|
- return <$ty as Float>::from_repr((b_abs | quiet_bit).0);
|
|
|
- }
|
|
|
-
|
|
|
- if a_abs == inf_rep {
|
|
|
- // +/-infinity + -/+infinity = qNaN
|
|
|
- if (a.repr() ^ b.repr()) == sign_bit.0 {
|
|
|
- return <$ty as Float>::from_repr(qnan_rep.0);
|
|
|
- } else {
|
|
|
- // +/-infinity + anything remaining = +/- infinity
|
|
|
- return a;
|
|
|
- }
|
|
|
- }
|
|
|
+fn add<F: Float>(a: F, b: F) -> F where
|
|
|
+ u32: CastInto<F::Int>,
|
|
|
+ F::Int: CastInto<u32>,
|
|
|
+ i32: CastInto<F::Int>,
|
|
|
+ F::Int: CastInto<i32>,
|
|
|
+{
|
|
|
+ let one = F::Int::ONE;
|
|
|
+ let zero = F::Int::ZERO;
|
|
|
+
|
|
|
+ let bits = F::BITS.cast();
|
|
|
+ let significand_bits = F::SIGNIFICAND_BITS;
|
|
|
+ let max_exponent = F::EXPONENT_MAX;
|
|
|
+
|
|
|
+ let implicit_bit = F::IMPLICIT_BIT;
|
|
|
+ let significand_mask = F::SIGNIFICAND_MASK;
|
|
|
+ let sign_bit = F::SIGN_MASK as F::Int;
|
|
|
+ let abs_mask = sign_bit - one;
|
|
|
+ let exponent_mask = F::EXPONENT_MASK;
|
|
|
+ let inf_rep = exponent_mask;
|
|
|
+ let quiet_bit = implicit_bit >> 1;
|
|
|
+ let qnan_rep = exponent_mask | quiet_bit;
|
|
|
+
|
|
|
+ let mut a_rep = a.repr();
|
|
|
+ let mut b_rep = b.repr();
|
|
|
+ let a_abs = a_rep & abs_mask;
|
|
|
+ let b_abs = b_rep & abs_mask;
|
|
|
+
|
|
|
+ // Detect if a or b is zero, infinity, or NaN.
|
|
|
+ if a_abs.wrapping_sub(one) >= inf_rep - one ||
|
|
|
+ b_abs.wrapping_sub(one) >= inf_rep - one {
|
|
|
+ // NaN + anything = qNaN
|
|
|
+ if a_abs > inf_rep {
|
|
|
+ return F::from_repr(a_abs | quiet_bit);
|
|
|
+ }
|
|
|
+ // anything + NaN = qNaN
|
|
|
+ if b_abs > inf_rep {
|
|
|
+ return F::from_repr(b_abs | quiet_bit);
|
|
|
+ }
|
|
|
|
|
|
- // anything remaining + +/-infinity = +/-infinity
|
|
|
- if b_abs == inf_rep {
|
|
|
- return b;
|
|
|
+ if a_abs == inf_rep {
|
|
|
+ // +/-infinity + -/+infinity = qNaN
|
|
|
+ if (a.repr() ^ b.repr()) == sign_bit {
|
|
|
+ return F::from_repr(qnan_rep);
|
|
|
+ } else {
|
|
|
+ // +/-infinity + anything remaining = +/- infinity
|
|
|
+ return a;
|
|
|
}
|
|
|
+ }
|
|
|
|
|
|
- // zero + anything = anything
|
|
|
- if a_abs.0 == 0 {
|
|
|
- // but we need to get the sign right for zero + zero
|
|
|
- if b_abs.0 == 0 {
|
|
|
- return <$ty as Float>::from_repr(a.repr() & b.repr());
|
|
|
- } else {
|
|
|
- return b;
|
|
|
- }
|
|
|
- }
|
|
|
+ // anything remaining + +/-infinity = +/-infinity
|
|
|
+ if b_abs == inf_rep {
|
|
|
+ return b;
|
|
|
+ }
|
|
|
|
|
|
- // anything + zero = anything
|
|
|
- if b_abs.0 == 0 {
|
|
|
- return a;
|
|
|
+ // zero + anything = anything
|
|
|
+ if a_abs == Int::ZERO {
|
|
|
+ // but we need to get the sign right for zero + zero
|
|
|
+ if b_abs == Int::ZERO {
|
|
|
+ return F::from_repr(a.repr() & b.repr());
|
|
|
+ } else {
|
|
|
+ return b;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- // Swap a and b if necessary so that a has the larger absolute value.
|
|
|
- if b_abs > a_abs {
|
|
|
- // Don't use mem::swap because it may generate references to memcpy in unoptimized code.
|
|
|
- let tmp = a_rep;
|
|
|
- a_rep = b_rep;
|
|
|
- b_rep = tmp;
|
|
|
+ // anything + zero = anything
|
|
|
+ if b_abs == Int::ZERO {
|
|
|
+ return a;
|
|
|
}
|
|
|
+ }
|
|
|
+
|
|
|
+ // Swap a and b if necessary so that a has the larger absolute value.
|
|
|
+ if b_abs > a_abs {
|
|
|
+ // Don't use mem::swap because it may generate references to memcpy in unoptimized code.
|
|
|
+ let tmp = a_rep;
|
|
|
+ a_rep = b_rep;
|
|
|
+ b_rep = tmp;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Extract the exponent and significand from the (possibly swapped) a and b.
|
|
|
+ let mut a_exponent: i32 = ((a_rep & exponent_mask) >> significand_bits).cast();
|
|
|
+ let mut b_exponent: i32 = ((b_rep & exponent_mask) >> significand_bits).cast();
|
|
|
+ let mut a_significand = a_rep & significand_mask;
|
|
|
+ let mut b_significand = b_rep & significand_mask;
|
|
|
+
|
|
|
+ // normalize any denormals, and adjust the exponent accordingly.
|
|
|
+ if a_exponent == 0 {
|
|
|
+ let (exponent, significand) = F::normalize(a_significand);
|
|
|
+ a_exponent = exponent;
|
|
|
+ a_significand = significand;
|
|
|
+ }
|
|
|
+ if b_exponent == 0 {
|
|
|
+ let (exponent, significand) = F::normalize(b_significand);
|
|
|
+ b_exponent = exponent;
|
|
|
+ b_significand = significand;
|
|
|
+ }
|
|
|
|
|
|
- // Extract the exponent and significand from the (possibly swapped) a and b.
|
|
|
- let mut a_exponent = Wrapping((a_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
|
|
|
- let mut b_exponent = Wrapping((b_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
|
|
|
- let mut a_significand = a_rep & significand_mask;
|
|
|
- let mut b_significand = b_rep & significand_mask;
|
|
|
-
|
|
|
- // normalize any denormals, and adjust the exponent accordingly.
|
|
|
- if a_exponent.0 == 0 {
|
|
|
- let (exponent, significand) = <$ty>::normalize(a_significand.0);
|
|
|
- a_exponent = Wrapping(exponent);
|
|
|
- a_significand = Wrapping(significand);
|
|
|
+ // The sign of the result is the sign of the larger operand, a. If they
|
|
|
+ // have opposite signs, we are performing a subtraction; otherwise addition.
|
|
|
+ let result_sign = a_rep & sign_bit;
|
|
|
+ let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;
|
|
|
+
|
|
|
+ // Shift the significands to give us round, guard and sticky, and or in the
|
|
|
+ // implicit significand bit. (If we fell through from the denormal path it
|
|
|
+ // was already set by normalize(), but setting it twice won't hurt
|
|
|
+ // anything.)
|
|
|
+ a_significand = (a_significand | implicit_bit) << 3;
|
|
|
+ b_significand = (b_significand | implicit_bit) << 3;
|
|
|
+
|
|
|
+ // Shift the significand of b by the difference in exponents, with a sticky
|
|
|
+ // bottom bit to get rounding correct.
|
|
|
+ let align = a_exponent.wrapping_sub(b_exponent).cast();
|
|
|
+ if align != Int::ZERO {
|
|
|
+ if align < bits {
|
|
|
+ let sticky = F::Int::from_bool(b_significand << bits.wrapping_sub(align).cast() != Int::ZERO);
|
|
|
+ b_significand = (b_significand >> align.cast()) | sticky;
|
|
|
+ } else {
|
|
|
+ b_significand = one; // sticky; b is known to be non-zero.
|
|
|
}
|
|
|
- if b_exponent.0 == 0 {
|
|
|
- let (exponent, significand) = <$ty>::normalize(b_significand.0);
|
|
|
- b_exponent = Wrapping(exponent);
|
|
|
- b_significand = Wrapping(significand);
|
|
|
+ }
|
|
|
+ if subtraction {
|
|
|
+ a_significand = a_significand.wrapping_sub(b_significand);
|
|
|
+ // If a == -b, return +zero.
|
|
|
+ if a_significand == Int::ZERO {
|
|
|
+ return F::from_repr(Int::ZERO);
|
|
|
}
|
|
|
|
|
|
- // The sign of the result is the sign of the larger operand, a. If they
|
|
|
- // have opposite signs, we are performing a subtraction; otherwise addition.
|
|
|
- let result_sign = a_rep & sign_bit;
|
|
|
- let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;
|
|
|
-
|
|
|
- // Shift the significands to give us round, guard and sticky, and or in the
|
|
|
- // implicit significand bit. (If we fell through from the denormal path it
|
|
|
- // was already set by normalize(), but setting it twice won't hurt
|
|
|
- // anything.)
|
|
|
- a_significand = (a_significand | implicit_bit) << 3;
|
|
|
- b_significand = (b_significand | implicit_bit) << 3;
|
|
|
-
|
|
|
- // Shift the significand of b by the difference in exponents, with a sticky
|
|
|
- // bottom bit to get rounding correct.
|
|
|
- let align = Wrapping((a_exponent - b_exponent).0 as <$ty as Float>::Int);
|
|
|
- if align.0 != 0 {
|
|
|
- if align < bits {
|
|
|
- let sticky = ((b_significand << (bits - align).0 as usize).0 != 0) as <$ty as Float>::Int;
|
|
|
- b_significand = (b_significand >> align.0 as usize) | Wrapping(sticky);
|
|
|
- } else {
|
|
|
- b_significand = one; // sticky; b is known to be non-zero.
|
|
|
- }
|
|
|
+ // If partial cancellation occured, we need to left-shift the result
|
|
|
+ // and adjust the exponent:
|
|
|
+ if a_significand < implicit_bit << 3 {
|
|
|
+ let shift = a_significand.leading_zeros() as i32
|
|
|
+ - (implicit_bit << 3).leading_zeros() as i32;
|
|
|
+ a_significand <<= shift;
|
|
|
+ a_exponent -= shift;
|
|
|
}
|
|
|
- if subtraction {
|
|
|
- a_significand -= b_significand;
|
|
|
- // If a == -b, return +zero.
|
|
|
- if a_significand.0 == 0 {
|
|
|
- return <$ty as Float>::from_repr(0);
|
|
|
- }
|
|
|
-
|
|
|
- // If partial cancellation occured, we need to left-shift the result
|
|
|
- // and adjust the exponent:
|
|
|
- if a_significand < implicit_bit << 3 {
|
|
|
- let shift = a_significand.0.leading_zeros() as i32
|
|
|
- - (implicit_bit << 3).0.leading_zeros() as i32;
|
|
|
- a_significand <<= shift as usize;
|
|
|
- a_exponent -= Wrapping(shift);
|
|
|
- }
|
|
|
- } else /* addition */ {
|
|
|
- a_significand += b_significand;
|
|
|
-
|
|
|
- // If the addition carried up, we need to right-shift the result and
|
|
|
- // adjust the exponent:
|
|
|
- if (a_significand & implicit_bit << 4).0 != 0 {
|
|
|
- let sticky = ((a_significand & one).0 != 0) as <$ty as Float>::Int;
|
|
|
- a_significand = a_significand >> 1 | Wrapping(sticky);
|
|
|
- a_exponent += Wrapping(1);
|
|
|
- }
|
|
|
+ } else /* addition */ {
|
|
|
+ a_significand += b_significand;
|
|
|
+
|
|
|
+ // If the addition carried up, we need to right-shift the result and
|
|
|
+ // adjust the exponent:
|
|
|
+ if a_significand & implicit_bit << 4 != Int::ZERO {
|
|
|
+ let sticky = F::Int::from_bool(a_significand & one != Int::ZERO);
|
|
|
+ a_significand = a_significand >> 1 | sticky;
|
|
|
+ a_exponent += 1;
|
|
|
}
|
|
|
+ }
|
|
|
|
|
|
- // If we have overflowed the type, return +/- infinity:
|
|
|
- if a_exponent >= Wrapping(max_exponent.0 as i32) {
|
|
|
- return <$ty>::from_repr((inf_rep | result_sign).0);
|
|
|
- }
|
|
|
+ // If we have overflowed the type, return +/- infinity:
|
|
|
+ if a_exponent >= max_exponent as i32 {
|
|
|
+ return F::from_repr(inf_rep | result_sign);
|
|
|
+ }
|
|
|
|
|
|
- if a_exponent.0 <= 0 {
|
|
|
- // Result is denormal before rounding; the exponent is zero and we
|
|
|
- // need to shift the significand.
|
|
|
- let shift = Wrapping((Wrapping(1) - a_exponent).0 as <$ty as Float>::Int);
|
|
|
- let sticky = ((a_significand << (bits - shift).0 as usize).0 != 0) as <$ty as Float>::Int;
|
|
|
- a_significand = a_significand >> shift.0 as usize | Wrapping(sticky);
|
|
|
- a_exponent = Wrapping(0);
|
|
|
- }
|
|
|
+ if a_exponent <= 0 {
|
|
|
+ // Result is denormal before rounding; the exponent is zero and we
|
|
|
+ // need to shift the significand.
|
|
|
+ let shift = (1 - a_exponent).cast();
|
|
|
+ let sticky = F::Int::from_bool((a_significand << bits.wrapping_sub(shift).cast()) != Int::ZERO);
|
|
|
+ a_significand = a_significand >> shift.cast() | sticky;
|
|
|
+ a_exponent = 0;
|
|
|
+ }
|
|
|
|
|
|
- // Low three bits are round, guard, and sticky.
|
|
|
- let round_guard_sticky: i32 = (a_significand.0 & 0x7) as i32;
|
|
|
+ // Low three bits are round, guard, and sticky.
|
|
|
+ let a_significand_i32: i32 = a_significand.cast();
|
|
|
+ let round_guard_sticky: i32 = a_significand_i32 & 0x7;
|
|
|
|
|
|
- // Shift the significand into place, and mask off the implicit bit.
|
|
|
- let mut result = a_significand >> 3 & significand_mask;
|
|
|
+ // Shift the significand into place, and mask off the implicit bit.
|
|
|
+ let mut result = a_significand >> 3 & significand_mask;
|
|
|
|
|
|
- // Insert the exponent and sign.
|
|
|
- result |= Wrapping(a_exponent.0 as <$ty as Float>::Int) << significand_bits.0 as usize;
|
|
|
- result |= result_sign;
|
|
|
+ // Insert the exponent and sign.
|
|
|
+ result |= a_exponent.cast() << significand_bits;
|
|
|
+ result |= result_sign;
|
|
|
|
|
|
- // Final rounding. The result may overflow to infinity, but that is the
|
|
|
- // correct result in that case.
|
|
|
- if round_guard_sticky > 0x4 { result += one; }
|
|
|
- if round_guard_sticky == 0x4 { result += result & one; }
|
|
|
+ // Final rounding. The result may overflow to infinity, but that is the
|
|
|
+ // correct result in that case.
|
|
|
+ if round_guard_sticky > 0x4 { result += one; }
|
|
|
+ if round_guard_sticky == 0x4 { result += result & one; }
|
|
|
|
|
|
- <$ty>::from_repr(result.0)
|
|
|
- })
|
|
|
+ F::from_repr(result)
|
|
|
}
|
|
|
|
|
|
intrinsics! {
|
|
|
#[aapcs_on_arm]
|
|
|
#[arm_aeabi_alias = __aeabi_fadd]
|
|
|
pub extern "C" fn __addsf3(a: f32, b: f32) -> f32 {
|
|
|
- add!(a, b, f32)
|
|
|
+ add(a, b)
|
|
|
}
|
|
|
|
|
|
#[aapcs_on_arm]
|
|
|
#[arm_aeabi_alias = __aeabi_dadd]
|
|
|
pub extern "C" fn __adddf3(a: f64, b: f64) -> f64 {
|
|
|
- add!(a, b, f64)
|
|
|
+ add(a, b)
|
|
|
}
|
|
|
}
|