Forráskód Böngészése

Convert add! to a function

est31 7 éve
szülő
commit
3efae7f7d9
2 módosított fájl, 160 hozzáadás és 158 törlés
  1. 159 158
      src/float/add.rs
  2. 1 0
      src/int/mod.rs

+ 159 - 158
src/float/add.rs

@@ -1,195 +1,196 @@
-use int::Int;
+use int::{Int, CastInto};
 use float::Float;
 
 /// Returns `a + b`
-macro_rules! add {
-    ($a:expr, $b:expr, $ty:ty) => ({
-        let a = $a;
-        let b = $b;
-        let one = <$ty as Float>::Int::ONE;
-        let zero = <$ty as Float>::Int::ZERO;
-
-        let bits =             <$ty>::BITS as <$ty as Float>::Int;
-        let significand_bits = <$ty>::SIGNIFICAND_BITS as <$ty as Float>::Int;
-        let exponent_bits =    <$ty>::EXPONENT_BITS as <$ty as Float>::Int;
-        let max_exponent =     (one << exponent_bits as usize) - one;
-
-        let implicit_bit =     one << significand_bits as usize;
-        let significand_mask = implicit_bit - one;
-        let sign_bit =         <$ty>::SIGN_MASK as <$ty as Float>::Int;
-        let abs_mask =         sign_bit - one;
-        let exponent_mask =    abs_mask ^ significand_mask;
-        let inf_rep =          exponent_mask;
-        let quiet_bit =        implicit_bit >> 1;
-        let qnan_rep =         exponent_mask | quiet_bit;
-
-        let mut a_rep = a.repr();
-        let mut b_rep = b.repr();
-        let a_abs = a_rep & abs_mask;
-        let b_abs = b_rep & abs_mask;
-
-        // Detect if a or b is zero, infinity, or NaN.
-        if a_abs.wrapping_sub(one) >= inf_rep - one ||
-            b_abs.wrapping_sub(one) >= inf_rep - one {
-            // NaN + anything = qNaN
-            if a_abs > inf_rep {
-                return <$ty as Float>::from_repr(a_abs | quiet_bit);
-            }
-            // anything + NaN = qNaN
-            if b_abs > inf_rep {
-                return <$ty as Float>::from_repr(b_abs | quiet_bit);
-            }
-
-            if a_abs == inf_rep {
-                // +/-infinity + -/+infinity = qNaN
-                if (a.repr() ^ b.repr()) == sign_bit {
-                    return <$ty as Float>::from_repr(qnan_rep);
-                } else {
-                    // +/-infinity + anything remaining = +/- infinity
-                    return a;
-                }
-            }
+fn add<F: Float>(a: F, b: F) -> F where
+    u32: CastInto<F::Int>,
+    F::Int: CastInto<u32>,
+    i32: CastInto<F::Int>,
+    F::Int: CastInto<i32>,
+{
+    let one = F::Int::ONE;
+    let zero = F::Int::ZERO;
+
+    let bits =             F::BITS.cast();
+    let significand_bits = F::SIGNIFICAND_BITS;
+    let max_exponent =     F::EXPONENT_MAX;
+
+    let implicit_bit =     F::IMPLICIT_BIT;
+    let significand_mask = F::SIGNIFICAND_MASK;
+    let sign_bit =         F::SIGN_MASK as F::Int;
+    let abs_mask =         sign_bit - one;
+    let exponent_mask =    F::EXPONENT_MASK;
+    let inf_rep =          exponent_mask;
+    let quiet_bit =        implicit_bit >> 1;
+    let qnan_rep =         exponent_mask | quiet_bit;
+
+    let mut a_rep = a.repr();
+    let mut b_rep = b.repr();
+    let a_abs = a_rep & abs_mask;
+    let b_abs = b_rep & abs_mask;
+
+    // Detect if a or b is zero, infinity, or NaN.
+    if a_abs.wrapping_sub(one) >= inf_rep - one ||
+        b_abs.wrapping_sub(one) >= inf_rep - one {
+        // NaN + anything = qNaN
+        if a_abs > inf_rep {
+            return F::from_repr(a_abs | quiet_bit);
+        }
+        // anything + NaN = qNaN
+        if b_abs > inf_rep {
+            return F::from_repr(b_abs | quiet_bit);
+        }
 
-            // anything remaining + +/-infinity = +/-infinity
-            if b_abs == inf_rep {
-                return b;
+        if a_abs == inf_rep {
+            // +/-infinity + -/+infinity = qNaN
+            if (a.repr() ^ b.repr()) == sign_bit {
+                return F::from_repr(qnan_rep);
+            } else {
+                // +/-infinity + anything remaining = +/- infinity
+                return a;
             }
+        }
 
-            // zero + anything = anything
-            if a_abs == 0 {
-                // but we need to get the sign right for zero + zero
-                if b_abs == 0 {
-                    return <$ty as Float>::from_repr(a.repr() & b.repr());
-                } else {
-                    return b;
-                }
-            }
+        // anything remaining + +/-infinity = +/-infinity
+        if b_abs == inf_rep {
+            return b;
+        }
 
-            // anything + zero = anything
-            if b_abs == 0 {
-                 return a;
+        // zero + anything = anything
+        if a_abs == Int::ZERO {
+            // but we need to get the sign right for zero + zero
+            if b_abs == Int::ZERO {
+                return F::from_repr(a.repr() & b.repr());
+            } else {
+                return b;
             }
         }
 
-        // Swap a and b if necessary so that a has the larger absolute value.
-        if b_abs > a_abs {
-            // Don't use mem::swap because it may generate references to memcpy in unoptimized code.
-            let tmp = a_rep;
-            a_rep = b_rep;
-            b_rep = tmp;
+        // anything + zero = anything
+        if b_abs == Int::ZERO {
+             return a;
         }
+    }
+
+    // Swap a and b if necessary so that a has the larger absolute value.
+    if b_abs > a_abs {
+        // Don't use mem::swap because it may generate references to memcpy in unoptimized code.
+        let tmp = a_rep;
+        a_rep = b_rep;
+        b_rep = tmp;
+    }
 
-        // Extract the exponent and significand from the (possibly swapped) a and b.
-        let mut a_exponent = ((a_rep >> significand_bits) & max_exponent) as i32;
-        let mut b_exponent = ((b_rep >> significand_bits) & max_exponent) as i32;
-        let mut a_significand = a_rep & significand_mask;
-        let mut b_significand = b_rep & significand_mask;
-
-        // normalize any denormals, and adjust the exponent accordingly.
-        if a_exponent == 0 {
-            let (exponent, significand) = <$ty>::normalize(a_significand);
-            a_exponent = exponent;
-            a_significand = significand;
+    // Extract the exponent and significand from the (possibly swapped) a and b.
+    let mut a_exponent: i32 = ((a_rep & exponent_mask) >> significand_bits).cast();
+    let mut b_exponent: i32 = ((b_rep & exponent_mask) >> significand_bits).cast();
+    let mut a_significand = a_rep & significand_mask;
+    let mut b_significand = b_rep & significand_mask;
+
+    // normalize any denormals, and adjust the exponent accordingly.
+    if a_exponent == 0 {
+        let (exponent, significand) = F::normalize(a_significand);
+        a_exponent = exponent;
+        a_significand = significand;
+    }
+    if b_exponent == 0 {
+        let (exponent, significand) = F::normalize(b_significand);
+        b_exponent = exponent;
+        b_significand = significand;
+    }
+
+    // The sign of the result is the sign of the larger operand, a.  If they
+    // have opposite signs, we are performing a subtraction; otherwise addition.
+    let result_sign = a_rep & sign_bit;
+    let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;
+
+    // Shift the significands to give us round, guard and sticky, and or in the
+    // implicit significand bit.  (If we fell through from the denormal path it
+    // was already set by normalize(), but setting it twice won't hurt
+    // anything.)
+    a_significand = (a_significand | implicit_bit) << 3;
+    b_significand = (b_significand | implicit_bit) << 3;
+
+    // Shift the significand of b by the difference in exponents, with a sticky
+    // bottom bit to get rounding correct.
+    let align = a_exponent.wrapping_sub(b_exponent).cast();
+    if align != Int::ZERO {
+        if align < bits {
+            let sticky = F::Int::from_bool(b_significand << bits.wrapping_sub(align).cast() != Int::ZERO);
+            b_significand = (b_significand >> align.cast()) | sticky;
+        } else {
+            b_significand = one; // sticky; b is known to be non-zero.
         }
-        if b_exponent == 0 {
-            let (exponent, significand) = <$ty>::normalize(b_significand);
-            b_exponent = exponent;
-            b_significand = significand;
+    }
+    if subtraction {
+        a_significand = a_significand.wrapping_sub(b_significand);
+        // If a == -b, return +zero.
+        if a_significand == Int::ZERO {
+            return F::from_repr(Int::ZERO);
         }
 
-        // The sign of the result is the sign of the larger operand, a.  If they
-        // have opposite signs, we are performing a subtraction; otherwise addition.
-        let result_sign = a_rep & sign_bit;
-        let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;
-
-        // Shift the significands to give us round, guard and sticky, and or in the
-        // implicit significand bit.  (If we fell through from the denormal path it
-        // was already set by normalize(), but setting it twice won't hurt
-        // anything.)
-        a_significand = (a_significand | implicit_bit) << 3;
-        b_significand = (b_significand | implicit_bit) << 3;
-
-        // Shift the significand of b by the difference in exponents, with a sticky
-        // bottom bit to get rounding correct.
-        let align = a_exponent.wrapping_sub(b_exponent) as <$ty as Float>::Int;
-        if align != 0 {
-            if align < bits {
-                let sticky = (b_significand << (bits.wrapping_sub(align) as usize) != 0) as <$ty as Float>::Int;
-                b_significand = (b_significand >> align as usize) | sticky;
-            } else {
-                b_significand = one; // sticky; b is known to be non-zero.
-            }
+        // If partial cancellation occured, we need to left-shift the result
+        // and adjust the exponent:
+        if a_significand < implicit_bit << 3 {
+            let shift = a_significand.leading_zeros() as i32
+                - (implicit_bit << 3).leading_zeros() as i32;
+            a_significand <<= shift;
+            a_exponent -= shift;
         }
-        if subtraction {
-            a_significand = a_significand.wrapping_sub(b_significand);
-            // If a == -b, return +zero.
-            if a_significand == 0 {
-                return <$ty as Float>::from_repr(0);
-            }
-
-            // If partial cancellation occured, we need to left-shift the result
-            // and adjust the exponent:
-            if a_significand < implicit_bit << 3 {
-                let shift = a_significand.leading_zeros() as i32
-                    - (implicit_bit << 3).leading_zeros() as i32;
-                a_significand <<= shift as usize;
-                a_exponent -= shift;
-            }
-        } else /* addition */ {
-            a_significand += b_significand;
-
-            // If the addition carried up, we need to right-shift the result and
-            // adjust the exponent:
-            if a_significand & implicit_bit << 4 != 0 {
-                let sticky = (a_significand & one != 0) as <$ty as Float>::Int;
-                a_significand = a_significand >> 1 | sticky;
-                a_exponent += 1;
-            }
+    } else /* addition */ {
+        a_significand += b_significand;
+
+        // If the addition carried up, we need to right-shift the result and
+        // adjust the exponent:
+        if a_significand & implicit_bit << 4 != Int::ZERO {
+            let sticky = F::Int::from_bool(a_significand & one != Int::ZERO);
+            a_significand = a_significand >> 1 | sticky;
+            a_exponent += 1;
         }
+    }
 
-        // If we have overflowed the type, return +/- infinity:
-        if a_exponent >= max_exponent as i32 {
-            return <$ty>::from_repr(inf_rep | result_sign);
-        }
+    // If we have overflowed the type, return +/- infinity:
+    if a_exponent >= max_exponent as i32 {
+        return F::from_repr(inf_rep | result_sign);
+    }
 
-        if a_exponent <= 0 {
-            // Result is denormal before rounding; the exponent is zero and we
-            // need to shift the significand.
-            let shift = (1 - a_exponent) as <$ty as Float>::Int;
-            let sticky = ((a_significand << bits.wrapping_sub(shift) as usize) != 0) as <$ty as Float>::Int;
-            a_significand = a_significand >> shift as usize | sticky;
-            a_exponent = 0;
-        }
+    if a_exponent <= 0 {
+        // Result is denormal before rounding; the exponent is zero and we
+        // need to shift the significand.
+        let shift = (1 - a_exponent).cast();
+        let sticky = F::Int::from_bool((a_significand << bits.wrapping_sub(shift).cast()) != Int::ZERO);
+        a_significand = a_significand >> shift.cast() | sticky;
+        a_exponent = 0;
+    }
 
-        // Low three bits are round, guard, and sticky.
-        let round_guard_sticky: i32 = (a_significand & 0x7) as i32;
+    // Low three bits are round, guard, and sticky.
+    let a_significand_i32: i32 = a_significand.cast();
+    let round_guard_sticky: i32 = a_significand_i32 & 0x7;
 
-        // Shift the significand into place, and mask off the implicit bit.
-        let mut result = a_significand >> 3 & significand_mask;
+    // Shift the significand into place, and mask off the implicit bit.
+    let mut result = a_significand >> 3 & significand_mask;
 
-        // Insert the exponent and sign.
-        result |= (a_exponent as <$ty as Float>::Int) << (significand_bits as usize);
-        result |= result_sign;
+    // Insert the exponent and sign.
+    result |= a_exponent.cast() << significand_bits;
+    result |= result_sign;
 
-        // Final rounding.  The result may overflow to infinity, but that is the
-        // correct result in that case.
-        if round_guard_sticky > 0x4 { result += one; }
-        if round_guard_sticky == 0x4 { result += result & one; }
+    // Final rounding.  The result may overflow to infinity, but that is the
+    // correct result in that case.
+    if round_guard_sticky > 0x4 { result += one; }
+    if round_guard_sticky == 0x4 { result += result & one; }
 
-        <$ty>::from_repr(result)
-    })
+    F::from_repr(result)
 }
 
 intrinsics! {
     #[aapcs_on_arm]
     #[arm_aeabi_alias = __aeabi_fadd]
     pub extern "C" fn __addsf3(a: f32, b: f32) -> f32 {
-        add!(a, b, f32)
+        add(a, b)
     }
 
     #[aapcs_on_arm]
     #[arm_aeabi_alias = __aeabi_dadd]
     pub extern "C" fn __adddf3(a: f64, b: f64) -> f64 {
-        add!(a, b, f64)
+        add(a, b)
     }
 }

+ 1 - 0
src/int/mod.rs

@@ -25,6 +25,7 @@ pub trait Int:
     ops::AddAssign +
     ops::BitAndAssign +
     ops::BitOrAssign +
+    ops::ShlAssign<i32> +
     ops::ShrAssign<u32> +
     ops::Add<Output = Self> +
     ops::Sub<Output = Self> +