|
@@ -0,0 +1,191 @@
|
|
|
+use int::{CastInto, Int, WideInt};
|
|
|
+use float::Float;
|
|
|
+
|
|
|
+fn mul<F: Float>(a: F, b: F) -> F
|
|
|
+where
|
|
|
+ u32: CastInto<F::Int>,
|
|
|
+ F::Int: CastInto<u32>,
|
|
|
+ i32: CastInto<F::Int>,
|
|
|
+ F::Int: CastInto<i32>,
|
|
|
+ F::Int: WideInt,
|
|
|
+{
|
|
|
+ let one = F::Int::ONE;
|
|
|
+ let zero = F::Int::ZERO;
|
|
|
+
|
|
|
+ let bits = F::BITS;
|
|
|
+ let significand_bits = F::SIGNIFICAND_BITS;
|
|
|
+ let max_exponent = F::EXPONENT_MAX;
|
|
|
+
|
|
|
+ let exponent_bias = F::EXPONENT_BIAS;
|
|
|
+
|
|
|
+ let implicit_bit = F::IMPLICIT_BIT;
|
|
|
+ let significand_mask = F::SIGNIFICAND_MASK;
|
|
|
+ let sign_bit = F::SIGN_MASK as F::Int;
|
|
|
+ let abs_mask = sign_bit - one;
|
|
|
+ let exponent_mask = F::EXPONENT_MASK;
|
|
|
+ let inf_rep = exponent_mask;
|
|
|
+ let quiet_bit = implicit_bit >> 1;
|
|
|
+ let qnan_rep = exponent_mask | quiet_bit;
|
|
|
+ let exponent_bits = F::EXPONENT_BITS;
|
|
|
+
|
|
|
+ let a_rep = a.repr();
|
|
|
+ let b_rep = b.repr();
|
|
|
+
|
|
|
+ let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
|
|
|
+ let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
|
|
|
+ let product_sign = (a_rep ^ b_rep) & sign_bit;
|
|
|
+
|
|
|
+ let mut a_significand = a_rep & significand_mask;
|
|
|
+ let mut b_significand = b_rep & significand_mask;
|
|
|
+ let mut scale = 0;
|
|
|
+
|
|
|
+ // Detect if a or b is zero, denormal, infinity, or NaN.
|
|
|
+ if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
|
|
|
+ || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
|
|
|
+ {
|
|
|
+ let a_abs = a_rep & abs_mask;
|
|
|
+ let b_abs = b_rep & abs_mask;
|
|
|
+
|
|
|
+ // NaN + anything = qNaN
|
|
|
+ if a_abs > inf_rep {
|
|
|
+ return F::from_repr(a_rep | quiet_bit);
|
|
|
+ }
|
|
|
+ // anything + NaN = qNaN
|
|
|
+ if b_abs > inf_rep {
|
|
|
+ return F::from_repr(b_rep | quiet_bit);
|
|
|
+ }
|
|
|
+
|
|
|
+ if a_abs == inf_rep {
|
|
|
+ if b_abs != zero {
|
|
|
+ // infinity * non-zero = +/- infinity
|
|
|
+ return F::from_repr(a_abs | product_sign);
|
|
|
+ } else {
|
|
|
+ // infinity * zero = NaN
|
|
|
+ return F::from_repr(qnan_rep);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if b_abs == inf_rep {
|
|
|
+ if a_abs != zero {
|
|
|
+ // infinity * non-zero = +/- infinity
|
|
|
+ return F::from_repr(b_abs | product_sign);
|
|
|
+ } else {
|
|
|
+ // infinity * zero = NaN
|
|
|
+ return F::from_repr(qnan_rep);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // zero * anything = +/- zero
|
|
|
+ if a_abs == zero {
|
|
|
+ return F::from_repr(product_sign);
|
|
|
+ }
|
|
|
+
|
|
|
+ // anything * zero = +/- zero
|
|
|
+ if b_abs == zero {
|
|
|
+ return F::from_repr(product_sign);
|
|
|
+ }
|
|
|
+
|
|
|
+ // one or both of a or b is denormal, the other (if applicable) is a
|
|
|
+ // normal number. Renormalize one or both of a and b, and set scale to
|
|
|
+ // include the necessary exponent adjustment.
|
|
|
+ if a_abs < implicit_bit {
|
|
|
+ let (exponent, significand) = F::normalize(a_significand);
|
|
|
+ scale += exponent;
|
|
|
+ a_significand = significand;
|
|
|
+ }
|
|
|
+
|
|
|
+ if b_abs < implicit_bit {
|
|
|
+ let (exponent, significand) = F::normalize(b_significand);
|
|
|
+ scale += exponent;
|
|
|
+ b_significand = significand;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Or in the implicit significand bit. (If we fell through from the
|
|
|
+ // denormal path it was already set by normalize( ), but setting it twice
|
|
|
+ // won't hurt anything.)
|
|
|
+ a_significand |= implicit_bit;
|
|
|
+ b_significand |= implicit_bit;
|
|
|
+
|
|
|
+ // Get the significand of a*b. Before multiplying the significands, shift
|
|
|
+ // one of them left to left-align it in the field. Thus, the product will
|
|
|
+ // have (exponentBits + 2) integral digits, all but two of which must be
|
|
|
+ // zero. Normalizing this result is just a conditional left-shift by one
|
|
|
+ // and bumping the exponent accordingly.
|
|
|
+ let (mut product_high, mut product_low) =
|
|
|
+ <F::Int as WideInt>::wide_mul(a_significand, b_significand << exponent_bits);
|
|
|
+
|
|
|
+ let a_exponent_i32: i32 = a_exponent.cast();
|
|
|
+ let b_exponent_i32: i32 = b_exponent.cast();
|
|
|
+ let mut product_exponent: i32 = a_exponent_i32
|
|
|
+ .wrapping_add(b_exponent_i32)
|
|
|
+ .wrapping_add(scale)
|
|
|
+ .wrapping_sub(exponent_bias as i32);
|
|
|
+
|
|
|
+ // Normalize the significand, adjust exponent if needed.
|
|
|
+ if (product_high & implicit_bit) != zero {
|
|
|
+ product_exponent = product_exponent.wrapping_add(1);
|
|
|
+ } else {
|
|
|
+ <F::Int as WideInt>::wide_shift_left(&mut product_high, &mut product_low, 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ // If we have overflowed the type, return +/- infinity.
|
|
|
+ if product_exponent >= max_exponent as i32 {
|
|
|
+ return F::from_repr(inf_rep | product_sign);
|
|
|
+ }
|
|
|
+
|
|
|
+ if product_exponent <= 0 {
|
|
|
+ // Result is denormal before rounding
|
|
|
+ //
|
|
|
+ // If the result is so small that it just underflows to zero, return
|
|
|
+ // a zero of the appropriate sign. Mathematically there is no need to
|
|
|
+ // handle this case separately, but we make it a special case to
|
|
|
+ // simplify the shift logic.
|
|
|
+ let shift = one.wrapping_sub(product_exponent.cast()).cast();
|
|
|
+ if shift >= bits as i32 {
|
|
|
+ return F::from_repr(product_sign);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Otherwise, shift the significand of the result so that the round
|
|
|
+ // bit is the high bit of productLo.
|
|
|
+ <F::Int as WideInt>::wide_shift_right_with_sticky(
|
|
|
+ &mut product_high,
|
|
|
+ &mut product_low,
|
|
|
+ shift,
|
|
|
+ )
|
|
|
+ } else {
|
|
|
+ // Result is normal before rounding; insert the exponent.
|
|
|
+ product_high &= significand_mask;
|
|
|
+ product_high |= product_exponent.cast() << significand_bits;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Insert the sign of the result:
|
|
|
+ product_high |= product_sign;
|
|
|
+
|
|
|
+ // Final rounding. The final result may overflow to infinity, or underflow
|
|
|
+ // to zero, but those are the correct results in those cases. We use the
|
|
|
+ // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
|
|
|
+ if product_low > sign_bit {
|
|
|
+ product_high += one;
|
|
|
+ }
|
|
|
+
|
|
|
+ if product_low == sign_bit {
|
|
|
+ product_high += product_high & one;
|
|
|
+ }
|
|
|
+
|
|
|
+ return F::from_repr(product_high);
|
|
|
+}
|
|
|
+
|
|
|
+intrinsics! {
|
|
|
+ #[aapcs_on_arm]
|
|
|
+ #[arm_aeabi_alias = __aeabi_fmul]
|
|
|
+ pub extern "C" fn __mulsf3(a: f32, b: f32) -> f32 {
|
|
|
+ mul(a, b)
|
|
|
+ }
|
|
|
+
|
|
|
+ #[aapcs_on_arm]
|
|
|
+ #[arm_aeabi_alias = __aeabi_dmul]
|
|
|
+ pub extern "C" fn __muldf3(a: f64, b: f64) -> f64 {
|
|
|
+ mul(a, b)
|
|
|
+ }
|
|
|
+}
|