|
@@ -1 +1,259 @@
|
|
|
+//! This crate is for integration testing and fuzz testing of functions in `compiler-builtins`. This
|
|
|
+//! includes publicly documented intrinsics and some internal alternative implementation functions
|
|
|
+//! such as `usize_leading_zeros_riscv` (which are tested because they are configured for
|
|
|
+//! architectures not tested by the CI).
|
|
|
+//!
|
|
|
+//! The general idea is to use a combination of edge case testing and randomized fuzz testing. The
|
|
|
+//! edge case testing is crucial for checking cases like where both inputs are equal or equal to
|
|
|
+//! special values such as `i128::MIN`, which is unlikely for the random fuzzer by itself to
|
|
|
+//! encounter. The randomized fuzz testing is specially designed to cover wide swaths of search
|
|
|
+//! space in as few iterations as possible. See `fuzz_values` in `testcrate/tests/misc.rs` for an
|
|
|
+//! example.
|
|
|
+//!
|
|
|
+//! Some floating point tests are disabled for specific architectures, because they do not have
|
|
|
+//! correct rounding.
|
|
|
#![no_std]
|
|
|
+
|
|
|
+use compiler_builtins::float::Float;
|
|
|
+use compiler_builtins::int::Int;
|
|
|
+
|
|
|
+use rand_xoshiro::rand_core::{RngCore, SeedableRng};
|
|
|
+use rand_xoshiro::Xoshiro128StarStar;
|
|
|
+
|
|
|
+/// Sets the number of fuzz iterations run for most tests. In practice, the vast majority of bugs
|
|
|
+/// are caught by the edge case testers. Most of the remaining bugs triggered by more complex
|
|
|
+/// sequences are caught well within 10_000 fuzz iterations. For classes of algorithms like division
|
|
|
+/// that are vulnerable to rare edge cases, we want 1_000_000 iterations to be more confident. In
|
|
|
+/// practical CI, however, we only want to run the more strenuous test once to catch algorithmic
|
|
|
+/// level bugs, and run the 10_000 iteration test on most targets. Target-dependent bugs are likely
|
|
|
+/// to involve miscompilation and misconfiguration that is likely to break algorithms in quickly
|
|
|
+/// caught ways. We choose to configure `N = 1_000_000` iterations for `x86_64` targets (and if
|
|
|
+/// debug assertions are disabled. Tests without `--release` would take too long) which are likely
|
|
|
+/// to have fast hardware, and run `N = 10_000` for all other targets.
|
|
|
+pub const N: u32 = if cfg!(target_arch = "x86_64") && !cfg!(debug_assertions) {
|
|
|
+ 1_000_000
|
|
|
+} else {
|
|
|
+ 10_000
|
|
|
+};
|
|
|
+
|
|
|
+/// Random fuzzing step. When run several times, it results in excellent fuzzing entropy such as:
|
|
|
+/// 11110101010101011110111110011111
|
|
|
+/// 10110101010100001011101011001010
|
|
|
+/// 1000000000000000
|
|
|
+/// 10000000000000110111110000001010
|
|
|
+/// 1111011111111101010101111110101
|
|
|
+/// 101111111110100000000101000000
|
|
|
+/// 10000000110100000000100010101
|
|
|
+/// 1010101010101000
|
|
|
+fn fuzz_step<I: Int>(rng: &mut Xoshiro128StarStar, x: &mut I) {
|
|
|
+ let ones = !I::ZERO;
|
|
|
+ let bit_indexing_mask: u32 = I::BITS - 1;
|
|
|
+ // It happens that all the RNG we need can come from one call. 7 bits are needed to index a
|
|
|
+ // worst case 128 bit integer, and there are 4 indexes that need to be made plus 4 bits for
|
|
|
+ // selecting operations
|
|
|
+ let rng32 = rng.next_u32();
|
|
|
+
|
|
|
+ // Randomly OR, AND, and XOR randomly sized and shifted continuous strings of
|
|
|
+ // ones with `lhs` and `rhs`.
|
|
|
+ let r0 = bit_indexing_mask & rng32;
|
|
|
+ let r1 = bit_indexing_mask & (rng32 >> 7);
|
|
|
+ let mask = ones.wrapping_shl(r0).rotate_left(r1);
|
|
|
+ match (rng32 >> 14) % 4 {
|
|
|
+ 0 => *x |= mask,
|
|
|
+ 1 => *x &= mask,
|
|
|
+ // both 2 and 3 to make XORs as common as ORs and ANDs combined
|
|
|
+ _ => *x ^= mask,
|
|
|
+ }
|
|
|
+
|
|
|
+ // Alternating ones and zeros (e.x. 0b1010101010101010). This catches second-order
|
|
|
+ // problems that might occur for algorithms with two modes of operation (potentially
|
|
|
+ // there is some invariant that can be broken and maintained via alternating between modes,
|
|
|
+ // breaking the algorithm when it reaches the end).
|
|
|
+ let mut alt_ones = I::ONE;
|
|
|
+ for _ in 0..(I::BITS / 2) {
|
|
|
+ alt_ones <<= 2;
|
|
|
+ alt_ones |= I::ONE;
|
|
|
+ }
|
|
|
+ let r0 = bit_indexing_mask & (rng32 >> 16);
|
|
|
+ let r1 = bit_indexing_mask & (rng32 >> 23);
|
|
|
+ let mask = alt_ones.wrapping_shl(r0).rotate_left(r1);
|
|
|
+ match rng32 >> 30 {
|
|
|
+ 0 => *x |= mask,
|
|
|
+ 1 => *x &= mask,
|
|
|
+ _ => *x ^= mask,
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// We need macros like this, because `#![no_std]` prevents us from using iterators
|
|
|
+macro_rules! edge_cases {
|
|
|
+ ($I:ident, $case:ident, $inner:block) => {
|
|
|
+ for i0 in 0..$I::FUZZ_NUM {
|
|
|
+ let mask_lo = (!$I::UnsignedInt::ZERO).wrapping_shr($I::FUZZ_LENGTHS[i0] as u32);
|
|
|
+ for i1 in i0..I::FUZZ_NUM {
|
|
|
+ let mask_hi =
|
|
|
+ (!$I::UnsignedInt::ZERO).wrapping_shl($I::FUZZ_LENGTHS[i1 - i0] as u32);
|
|
|
+ let $case = I::from_unsigned(mask_lo & mask_hi);
|
|
|
+ $inner
|
|
|
+ }
|
|
|
+ }
|
|
|
+ };
|
|
|
+}
|
|
|
+
|
|
|
+/// Feeds a series of fuzzing inputs to `f`. The fuzzer first uses an algorithm designed to find
|
|
|
+/// edge cases, followed by a more random fuzzer that runs `n` times.
|
|
|
+pub fn fuzz<I: Int, F: FnMut(I)>(n: u32, mut f: F) {
|
|
|
+ // edge case tester. Calls `f` 210 times for u128.
|
|
|
+ // zero gets skipped by the loop
|
|
|
+ f(I::ZERO);
|
|
|
+ edge_cases!(I, case, {
|
|
|
+ f(case);
|
|
|
+ });
|
|
|
+
|
|
|
+ // random fuzzer
|
|
|
+ let mut rng = Xoshiro128StarStar::seed_from_u64(0);
|
|
|
+ let mut x: I = Int::ZERO;
|
|
|
+ for _ in 0..n {
|
|
|
+ fuzz_step(&mut rng, &mut x);
|
|
|
+ f(x)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/// The same as `fuzz`, except `f` has two inputs.
|
|
|
+pub fn fuzz_2<I: Int, F: Fn(I, I)>(n: u32, f: F) {
|
|
|
+ // Check cases where the first and second inputs are zero. Both call `f` 210 times for `u128`.
|
|
|
+ edge_cases!(I, case, {
|
|
|
+ f(I::ZERO, case);
|
|
|
+ });
|
|
|
+ edge_cases!(I, case, {
|
|
|
+ f(case, I::ZERO);
|
|
|
+ });
|
|
|
+ // Nested edge tester. Calls `f` 44100 times for `u128`.
|
|
|
+ edge_cases!(I, case0, {
|
|
|
+ edge_cases!(I, case1, {
|
|
|
+ f(case0, case1);
|
|
|
+ })
|
|
|
+ });
|
|
|
+
|
|
|
+ // random fuzzer
|
|
|
+ let mut rng = Xoshiro128StarStar::seed_from_u64(0);
|
|
|
+ let mut x: I = I::ZERO;
|
|
|
+ let mut y: I = I::ZERO;
|
|
|
+ for _ in 0..n {
|
|
|
+ fuzz_step(&mut rng, &mut x);
|
|
|
+ fuzz_step(&mut rng, &mut y);
|
|
|
+ f(x, y)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/// Tester for shift functions
|
|
|
+pub fn fuzz_shift<I: Int, F: Fn(I, u32)>(f: F) {
|
|
|
+ // Shift functions are very simple and do not need anything other than shifting a small
|
|
|
+ // set of random patterns for every fuzz length.
|
|
|
+ let mut rng = Xoshiro128StarStar::seed_from_u64(0);
|
|
|
+ let mut x: I = Int::ZERO;
|
|
|
+ for i in 0..I::FUZZ_NUM {
|
|
|
+ fuzz_step(&mut rng, &mut x);
|
|
|
+ f(x, Int::ZERO);
|
|
|
+ f(x, I::FUZZ_LENGTHS[i] as u32);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+fn fuzz_float_step<F: Float>(rng: &mut Xoshiro128StarStar, f: &mut F) {
|
|
|
+ let rng32 = rng.next_u32();
|
|
|
+ // we need to fuzz the different parts of the float separately, because the masking on larger
|
|
|
+ // significands will tend to set the exponent to all ones or all zeros frequently
|
|
|
+
|
|
|
+ // sign bit fuzzing
|
|
|
+ let sign = (rng32 & 1) != 0;
|
|
|
+
|
|
|
+ // exponent fuzzing. Only 4 bits for the selector needed.
|
|
|
+ let ones = (F::Int::ONE << F::EXPONENT_BITS) - F::Int::ONE;
|
|
|
+ let r0 = (rng32 >> 1) % F::EXPONENT_BITS;
|
|
|
+ let r1 = (rng32 >> 5) % F::EXPONENT_BITS;
|
|
|
+ // custom rotate shift. Note that `F::Int` is unsigned, so we can shift right without smearing
|
|
|
+ // the sign bit.
|
|
|
+ let mask = if r1 == 0 {
|
|
|
+ ones.wrapping_shr(r0)
|
|
|
+ } else {
|
|
|
+ let tmp = ones.wrapping_shr(r0);
|
|
|
+ (tmp.wrapping_shl(r1) | tmp.wrapping_shr(F::EXPONENT_BITS - r1)) & ones
|
|
|
+ };
|
|
|
+ let mut exp = (f.repr() & F::EXPONENT_MASK) >> F::SIGNIFICAND_BITS;
|
|
|
+ match (rng32 >> 9) % 4 {
|
|
|
+ 0 => exp |= mask,
|
|
|
+ 1 => exp &= mask,
|
|
|
+ _ => exp ^= mask,
|
|
|
+ }
|
|
|
+
|
|
|
+ // significand fuzzing
|
|
|
+ let mut sig = f.repr() & F::SIGNIFICAND_MASK;
|
|
|
+ fuzz_step(rng, &mut sig);
|
|
|
+ sig &= F::SIGNIFICAND_MASK;
|
|
|
+
|
|
|
+ *f = F::from_parts(sign, exp, sig);
|
|
|
+}
|
|
|
+
|
|
|
+macro_rules! float_edge_cases {
|
|
|
+ ($F:ident, $case:ident, $inner:block) => {
|
|
|
+ for exponent in [
|
|
|
+ F::Int::ZERO,
|
|
|
+ F::Int::ONE,
|
|
|
+ F::Int::ONE << (F::EXPONENT_BITS / 2),
|
|
|
+ (F::Int::ONE << (F::EXPONENT_BITS - 1)) - F::Int::ONE,
|
|
|
+ F::Int::ONE << (F::EXPONENT_BITS - 1),
|
|
|
+ (F::Int::ONE << (F::EXPONENT_BITS - 1)) + F::Int::ONE,
|
|
|
+ (F::Int::ONE << F::EXPONENT_BITS) - F::Int::ONE,
|
|
|
+ ]
|
|
|
+ .iter()
|
|
|
+ {
|
|
|
+ for significand in [
|
|
|
+ F::Int::ZERO,
|
|
|
+ F::Int::ONE,
|
|
|
+ F::Int::ONE << (F::SIGNIFICAND_BITS / 2),
|
|
|
+ (F::Int::ONE << (F::SIGNIFICAND_BITS - 1)) - F::Int::ONE,
|
|
|
+ F::Int::ONE << (F::SIGNIFICAND_BITS - 1),
|
|
|
+ (F::Int::ONE << (F::SIGNIFICAND_BITS - 1)) + F::Int::ONE,
|
|
|
+ (F::Int::ONE << F::SIGNIFICAND_BITS) - F::Int::ONE,
|
|
|
+ ]
|
|
|
+ .iter()
|
|
|
+ {
|
|
|
+ for sign in [false, true].iter() {
|
|
|
+ let $case = F::from_parts(*sign, *exponent, *significand);
|
|
|
+ $inner
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ };
|
|
|
+}
|
|
|
+
|
|
|
+pub fn fuzz_float<F: Float, E: Fn(F)>(n: u32, f: E) {
|
|
|
+ float_edge_cases!(F, case, {
|
|
|
+ f(case);
|
|
|
+ });
|
|
|
+
|
|
|
+ // random fuzzer
|
|
|
+ let mut rng = Xoshiro128StarStar::seed_from_u64(0);
|
|
|
+ let mut x = F::ZERO;
|
|
|
+ for _ in 0..n {
|
|
|
+ fuzz_float_step(&mut rng, &mut x);
|
|
|
+ f(x);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+pub fn fuzz_float_2<F: Float, E: Fn(F, F)>(n: u32, f: E) {
|
|
|
+ float_edge_cases!(F, case0, {
|
|
|
+ float_edge_cases!(F, case1, {
|
|
|
+ f(case0, case1);
|
|
|
+ });
|
|
|
+ });
|
|
|
+
|
|
|
+ // random fuzzer
|
|
|
+ let mut rng = Xoshiro128StarStar::seed_from_u64(0);
|
|
|
+ let mut x = F::ZERO;
|
|
|
+ let mut y = F::ZERO;
|
|
|
+ for _ in 0..n {
|
|
|
+ fuzz_float_step(&mut rng, &mut x);
|
|
|
+ fuzz_float_step(&mut rng, &mut y);
|
|
|
+ f(x, y)
|
|
|
+ }
|
|
|
+}
|