|
@@ -1,5 +1,5 @@
|
|
|
use float::Float;
|
|
|
-use int::{Int, CastInto};
|
|
|
+use int::Int;
|
|
|
|
|
|
macro_rules! int_to_float {
|
|
|
($i:expr, $ity:ty, $fty:ty) => ({
|
|
@@ -137,116 +137,115 @@ enum Sign {
|
|
|
Negative
|
|
|
}
|
|
|
|
|
|
-fn float_to_int<F: Float, I: Int>(f: F) -> I where
|
|
|
- F::Int: CastInto<u32>,
|
|
|
- F::Int: CastInto<I>,
|
|
|
-{
|
|
|
- let f = f;
|
|
|
- let fixint_min = I::min_value();
|
|
|
- let fixint_max = I::max_value();
|
|
|
- let fixint_bits = I::BITS;
|
|
|
- let fixint_unsigned = fixint_min == I::ZERO;
|
|
|
-
|
|
|
- let sign_bit = F::SIGN_MASK;
|
|
|
- let significand_bits = F::SIGNIFICAND_BITS;
|
|
|
- let exponent_bias = F::EXPONENT_BIAS;
|
|
|
- //let exponent_max = F::exponent_max() as usize;
|
|
|
-
|
|
|
- // Break a into sign, exponent, significand
|
|
|
- let a_rep = F::repr(f);
|
|
|
- let a_abs = a_rep & !sign_bit;
|
|
|
-
|
|
|
- // this is used to work around -1 not being available for unsigned
|
|
|
- let sign = if (a_rep & sign_bit) == F::Int::ZERO { Sign::Positive } else { Sign::Negative };
|
|
|
- let mut exponent: u32 = (a_abs >> significand_bits).cast();
|
|
|
- let significand = (a_abs & F::SIGNIFICAND_MASK) | F::IMPLICIT_BIT;
|
|
|
-
|
|
|
- // if < 1 or unsigned & negative
|
|
|
- if exponent < exponent_bias ||
|
|
|
- fixint_unsigned && sign == Sign::Negative {
|
|
|
- return I::ZERO;
|
|
|
- }
|
|
|
- exponent -= exponent_bias;
|
|
|
-
|
|
|
- // If the value is infinity, saturate.
|
|
|
- // If the value is too large for the integer type, 0.
|
|
|
- if exponent >= (if fixint_unsigned {fixint_bits} else {fixint_bits -1}) {
|
|
|
- return if sign == Sign::Positive {fixint_max} else {fixint_min}
|
|
|
- }
|
|
|
- // If 0 <= exponent < significand_bits, right shift to get the result.
|
|
|
- // Otherwise, shift left.
|
|
|
- // (sign - 1) will never overflow as negative signs are already returned as 0 for unsigned
|
|
|
- let r: I = if exponent < significand_bits {
|
|
|
- (significand >> (significand_bits - exponent)).cast()
|
|
|
- } else {
|
|
|
- (significand << (exponent - significand_bits)).cast()
|
|
|
- };
|
|
|
-
|
|
|
- if sign == Sign::Negative {
|
|
|
- (!r).wrapping_add(I::ONE)
|
|
|
- } else {
|
|
|
- r
|
|
|
- }
|
|
|
+macro_rules! float_to_int {
|
|
|
+ ($f:expr, $fty:ty, $ity:ty) => ({
|
|
|
+ let f = $f;
|
|
|
+ let fixint_min = <$ity>::min_value();
|
|
|
+ let fixint_max = <$ity>::max_value();
|
|
|
+ let fixint_bits = <$ity>::BITS as usize;
|
|
|
+ let fixint_unsigned = fixint_min == 0;
|
|
|
+
|
|
|
+ let sign_bit = <$fty>::SIGN_MASK;
|
|
|
+ let significand_bits = <$fty>::SIGNIFICAND_BITS as usize;
|
|
|
+ let exponent_bias = <$fty>::EXPONENT_BIAS as usize;
|
|
|
+ //let exponent_max = <$fty>::exponent_max() as usize;
|
|
|
+
|
|
|
+ // Break a into sign, exponent, significand
|
|
|
+ let a_rep = <$fty>::repr(f);
|
|
|
+ let a_abs = a_rep & !sign_bit;
|
|
|
+
|
|
|
+ // this is used to work around -1 not being available for unsigned
|
|
|
+ let sign = if (a_rep & sign_bit) == 0 { Sign::Positive } else { Sign::Negative };
|
|
|
+ let mut exponent = (a_abs >> significand_bits) as usize;
|
|
|
+ let significand = (a_abs & <$fty>::SIGNIFICAND_MASK) | <$fty>::IMPLICIT_BIT;
|
|
|
+
|
|
|
+ // if < 1 or unsigned & negative
|
|
|
+ if exponent < exponent_bias ||
|
|
|
+ fixint_unsigned && sign == Sign::Negative {
|
|
|
+ return 0
|
|
|
+ }
|
|
|
+ exponent -= exponent_bias;
|
|
|
+
|
|
|
+ // If the value is infinity, saturate.
|
|
|
+ // If the value is too large for the integer type, 0.
|
|
|
+ if exponent >= (if fixint_unsigned {fixint_bits} else {fixint_bits -1}) {
|
|
|
+ return if sign == Sign::Positive {fixint_max} else {fixint_min}
|
|
|
+ }
|
|
|
+ // If 0 <= exponent < significand_bits, right shift to get the result.
|
|
|
+ // Otherwise, shift left.
|
|
|
+ // (sign - 1) will never overflow as negative signs are already returned as 0 for unsigned
|
|
|
+ let r = if exponent < significand_bits {
|
|
|
+ (significand >> (significand_bits - exponent)) as $ity
|
|
|
+ } else {
|
|
|
+ (significand as $ity) << (exponent - significand_bits)
|
|
|
+ };
|
|
|
+
|
|
|
+ if sign == Sign::Negative {
|
|
|
+ (!r).wrapping_add(1)
|
|
|
+ } else {
|
|
|
+ r
|
|
|
+ }
|
|
|
+ })
|
|
|
}
|
|
|
|
|
|
intrinsics! {
|
|
|
#[arm_aeabi_alias = __aeabi_f2iz]
|
|
|
pub extern "C" fn __fixsfsi(f: f32) -> i32 {
|
|
|
- float_to_int(f)
|
|
|
+ float_to_int!(f, f32, i32)
|
|
|
}
|
|
|
|
|
|
#[arm_aeabi_alias = __aeabi_f2lz]
|
|
|
pub extern "C" fn __fixsfdi(f: f32) -> i64 {
|
|
|
- float_to_int(f)
|
|
|
+ float_to_int!(f, f32, i64)
|
|
|
}
|
|
|
|
|
|
#[unadjusted_on_win64]
|
|
|
pub extern "C" fn __fixsfti(f: f32) -> i128 {
|
|
|
- float_to_int(f)
|
|
|
+ float_to_int!(f, f32, i128)
|
|
|
}
|
|
|
|
|
|
#[arm_aeabi_alias = __aeabi_d2iz]
|
|
|
pub extern "C" fn __fixdfsi(f: f64) -> i32 {
|
|
|
- float_to_int(f)
|
|
|
+ float_to_int!(f, f64, i32)
|
|
|
}
|
|
|
|
|
|
#[arm_aeabi_alias = __aeabi_d2lz]
|
|
|
pub extern "C" fn __fixdfdi(f: f64) -> i64 {
|
|
|
- float_to_int(f)
|
|
|
+ float_to_int!(f, f64, i64)
|
|
|
}
|
|
|
|
|
|
#[unadjusted_on_win64]
|
|
|
pub extern "C" fn __fixdfti(f: f64) -> i128 {
|
|
|
- float_to_int(f)
|
|
|
+ float_to_int!(f, f64, i128)
|
|
|
}
|
|
|
|
|
|
#[arm_aeabi_alias = __aeabi_f2uiz]
|
|
|
pub extern "C" fn __fixunssfsi(f: f32) -> u32 {
|
|
|
- float_to_int(f)
|
|
|
+ float_to_int!(f, f32, u32)
|
|
|
}
|
|
|
|
|
|
#[arm_aeabi_alias = __aeabi_f2ulz]
|
|
|
pub extern "C" fn __fixunssfdi(f: f32) -> u64 {
|
|
|
- float_to_int(f)
|
|
|
+ float_to_int!(f, f32, u64)
|
|
|
}
|
|
|
|
|
|
#[unadjusted_on_win64]
|
|
|
pub extern "C" fn __fixunssfti(f: f32) -> u128 {
|
|
|
- float_to_int(f)
|
|
|
+ float_to_int!(f, f32, u128)
|
|
|
}
|
|
|
|
|
|
#[arm_aeabi_alias = __aeabi_d2uiz]
|
|
|
pub extern "C" fn __fixunsdfsi(f: f64) -> u32 {
|
|
|
- float_to_int(f)
|
|
|
+ float_to_int!(f, f64, u32)
|
|
|
}
|
|
|
|
|
|
#[arm_aeabi_alias = __aeabi_d2ulz]
|
|
|
pub extern "C" fn __fixunsdfdi(f: f64) -> u64 {
|
|
|
- float_to_int(f)
|
|
|
+ float_to_int!(f, f64, u64)
|
|
|
}
|
|
|
|
|
|
#[unadjusted_on_win64]
|
|
|
pub extern "C" fn __fixunsdfti(f: f64) -> u128 {
|
|
|
- float_to_int(f)
|
|
|
+ float_to_int!(f, f64, u128)
|
|
|
}
|
|
|
}
|