123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467 |
- // The functions are complex with many branches, and explicit
- // `return`s makes it clear where function exit points are
- #![allow(clippy::needless_return)]
- use float::Float;
- use int::{CastInto, DInt, HInt, Int};
- fn div32<F: Float>(a: F, b: F) -> F
- where
- u32: CastInto<F::Int>,
- F::Int: CastInto<u32>,
- i32: CastInto<F::Int>,
- F::Int: CastInto<i32>,
- F::Int: HInt,
- {
- let one = F::Int::ONE;
- let zero = F::Int::ZERO;
- // let bits = F::BITS;
- let significand_bits = F::SIGNIFICAND_BITS;
- let max_exponent = F::EXPONENT_MAX;
- let exponent_bias = F::EXPONENT_BIAS;
- let implicit_bit = F::IMPLICIT_BIT;
- let significand_mask = F::SIGNIFICAND_MASK;
- let sign_bit = F::SIGN_MASK as F::Int;
- let abs_mask = sign_bit - one;
- let exponent_mask = F::EXPONENT_MASK;
- let inf_rep = exponent_mask;
- let quiet_bit = implicit_bit >> 1;
- let qnan_rep = exponent_mask | quiet_bit;
- #[inline(always)]
- fn negate_u32(a: u32) -> u32 {
- (<i32>::wrapping_neg(a as i32)) as u32
- }
- let a_rep = a.repr();
- let b_rep = b.repr();
- let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
- let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
- let quotient_sign = (a_rep ^ b_rep) & sign_bit;
- let mut a_significand = a_rep & significand_mask;
- let mut b_significand = b_rep & significand_mask;
- let mut scale = 0;
- // Detect if a or b is zero, denormal, infinity, or NaN.
- if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
- || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
- {
- let a_abs = a_rep & abs_mask;
- let b_abs = b_rep & abs_mask;
- // NaN / anything = qNaN
- if a_abs > inf_rep {
- return F::from_repr(a_rep | quiet_bit);
- }
- // anything / NaN = qNaN
- if b_abs > inf_rep {
- return F::from_repr(b_rep | quiet_bit);
- }
- if a_abs == inf_rep {
- if b_abs == inf_rep {
- // infinity / infinity = NaN
- return F::from_repr(qnan_rep);
- } else {
- // infinity / anything else = +/- infinity
- return F::from_repr(a_abs | quotient_sign);
- }
- }
- // anything else / infinity = +/- 0
- if b_abs == inf_rep {
- return F::from_repr(quotient_sign);
- }
- if a_abs == zero {
- if b_abs == zero {
- // zero / zero = NaN
- return F::from_repr(qnan_rep);
- } else {
- // zero / anything else = +/- zero
- return F::from_repr(quotient_sign);
- }
- }
- // anything else / zero = +/- infinity
- if b_abs == zero {
- return F::from_repr(inf_rep | quotient_sign);
- }
- // one or both of a or b is denormal, the other (if applicable) is a
- // normal number. Renormalize one or both of a and b, and set scale to
- // include the necessary exponent adjustment.
- if a_abs < implicit_bit {
- let (exponent, significand) = F::normalize(a_significand);
- scale += exponent;
- a_significand = significand;
- }
- if b_abs < implicit_bit {
- let (exponent, significand) = F::normalize(b_significand);
- scale -= exponent;
- b_significand = significand;
- }
- }
- // Or in the implicit significand bit. (If we fell through from the
- // denormal path it was already set by normalize( ), but setting it twice
- // won't hurt anything.)
- a_significand |= implicit_bit;
- b_significand |= implicit_bit;
- let mut quotient_exponent: i32 = CastInto::<i32>::cast(a_exponent)
- .wrapping_sub(CastInto::<i32>::cast(b_exponent))
- .wrapping_add(scale);
- // Align the significand of b as a Q31 fixed-point number in the range
- // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
- // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
- // is accurate to about 3.5 binary digits.
- let q31b = CastInto::<u32>::cast(b_significand << 8.cast());
- let mut reciprocal = (0x7504f333u32).wrapping_sub(q31b);
- // Now refine the reciprocal estimate using a Newton-Raphson iteration:
- //
- // x1 = x0 * (2 - x0 * b)
- //
- // This doubles the number of correct binary digits in the approximation
- // with each iteration, so after three iterations, we have about 28 binary
- // digits of accuracy.
- let mut correction: u32 =
- negate_u32(((reciprocal as u64).wrapping_mul(q31b as u64) >> 32) as u32);
- reciprocal = ((reciprocal as u64).wrapping_mul(correction as u64) as u64 >> 31) as u32;
- correction = negate_u32(((reciprocal as u64).wrapping_mul(q31b as u64) >> 32) as u32);
- reciprocal = ((reciprocal as u64).wrapping_mul(correction as u64) as u64 >> 31) as u32;
- correction = negate_u32(((reciprocal as u64).wrapping_mul(q31b as u64) >> 32) as u32);
- reciprocal = ((reciprocal as u64).wrapping_mul(correction as u64) as u64 >> 31) as u32;
- // Exhaustive testing shows that the error in reciprocal after three steps
- // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
- // expectations. We bump the reciprocal by a tiny value to force the error
- // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
- // be specific). This also causes 1/1 to give a sensible approximation
- // instead of zero (due to overflow).
- reciprocal = reciprocal.wrapping_sub(2);
- // The numerical reciprocal is accurate to within 2^-28, lies in the
- // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
- // than the true reciprocal of b. Multiplying a by this reciprocal thus
- // gives a numerical q = a/b in Q24 with the following properties:
- //
- // 1. q < a/b
- // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
- // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
- // from the fact that we truncate the product, and the 2^27 term
- // is the error in the reciprocal of b scaled by the maximum
- // possible value of a. As a consequence of this error bound,
- // either q or nextafter(q) is the correctly rounded
- let mut quotient = (a_significand << 1).widen_mul(reciprocal.cast()).hi();
- // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
- // In either case, we are going to compute a residual of the form
- //
- // r = a - q*b
- //
- // We know from the construction of q that r satisfies:
- //
- // 0 <= r < ulp(q)*b
- //
- // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
- // already have the correct result. The exact halfway case cannot occur.
- // We also take this time to right shift quotient if it falls in the [1,2)
- // range and adjust the exponent accordingly.
- let residual = if quotient < (implicit_bit << 1) {
- quotient_exponent = quotient_exponent.wrapping_sub(1);
- (a_significand << (significand_bits + 1)).wrapping_sub(quotient.wrapping_mul(b_significand))
- } else {
- quotient >>= 1;
- (a_significand << significand_bits).wrapping_sub(quotient.wrapping_mul(b_significand))
- };
- let written_exponent = quotient_exponent.wrapping_add(exponent_bias as i32);
- if written_exponent >= max_exponent as i32 {
- // If we have overflowed the exponent, return infinity.
- return F::from_repr(inf_rep | quotient_sign);
- } else if written_exponent < 1 {
- // Flush denormals to zero. In the future, it would be nice to add
- // code to round them correctly.
- return F::from_repr(quotient_sign);
- } else {
- let round = ((residual << 1) > b_significand) as u32;
- // Clear the implicit bits
- let mut abs_result = quotient & significand_mask;
- // Insert the exponent
- abs_result |= written_exponent.cast() << significand_bits;
- // Round
- abs_result = abs_result.wrapping_add(round.cast());
- // Insert the sign and return
- return F::from_repr(abs_result | quotient_sign);
- }
- }
- fn div64<F: Float>(a: F, b: F) -> F
- where
- u32: CastInto<F::Int>,
- F::Int: CastInto<u32>,
- i32: CastInto<F::Int>,
- F::Int: CastInto<i32>,
- u64: CastInto<F::Int>,
- F::Int: CastInto<u64>,
- i64: CastInto<F::Int>,
- F::Int: CastInto<i64>,
- F::Int: HInt,
- {
- let one = F::Int::ONE;
- let zero = F::Int::ZERO;
- // let bits = F::BITS;
- let significand_bits = F::SIGNIFICAND_BITS;
- let max_exponent = F::EXPONENT_MAX;
- let exponent_bias = F::EXPONENT_BIAS;
- let implicit_bit = F::IMPLICIT_BIT;
- let significand_mask = F::SIGNIFICAND_MASK;
- let sign_bit = F::SIGN_MASK as F::Int;
- let abs_mask = sign_bit - one;
- let exponent_mask = F::EXPONENT_MASK;
- let inf_rep = exponent_mask;
- let quiet_bit = implicit_bit >> 1;
- let qnan_rep = exponent_mask | quiet_bit;
- // let exponent_bits = F::EXPONENT_BITS;
- #[inline(always)]
- fn negate_u32(a: u32) -> u32 {
- (<i32>::wrapping_neg(a as i32)) as u32
- }
- #[inline(always)]
- fn negate_u64(a: u64) -> u64 {
- (<i64>::wrapping_neg(a as i64)) as u64
- }
- let a_rep = a.repr();
- let b_rep = b.repr();
- let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
- let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
- let quotient_sign = (a_rep ^ b_rep) & sign_bit;
- let mut a_significand = a_rep & significand_mask;
- let mut b_significand = b_rep & significand_mask;
- let mut scale = 0;
- // Detect if a or b is zero, denormal, infinity, or NaN.
- if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
- || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
- {
- let a_abs = a_rep & abs_mask;
- let b_abs = b_rep & abs_mask;
- // NaN / anything = qNaN
- if a_abs > inf_rep {
- return F::from_repr(a_rep | quiet_bit);
- }
- // anything / NaN = qNaN
- if b_abs > inf_rep {
- return F::from_repr(b_rep | quiet_bit);
- }
- if a_abs == inf_rep {
- if b_abs == inf_rep {
- // infinity / infinity = NaN
- return F::from_repr(qnan_rep);
- } else {
- // infinity / anything else = +/- infinity
- return F::from_repr(a_abs | quotient_sign);
- }
- }
- // anything else / infinity = +/- 0
- if b_abs == inf_rep {
- return F::from_repr(quotient_sign);
- }
- if a_abs == zero {
- if b_abs == zero {
- // zero / zero = NaN
- return F::from_repr(qnan_rep);
- } else {
- // zero / anything else = +/- zero
- return F::from_repr(quotient_sign);
- }
- }
- // anything else / zero = +/- infinity
- if b_abs == zero {
- return F::from_repr(inf_rep | quotient_sign);
- }
- // one or both of a or b is denormal, the other (if applicable) is a
- // normal number. Renormalize one or both of a and b, and set scale to
- // include the necessary exponent adjustment.
- if a_abs < implicit_bit {
- let (exponent, significand) = F::normalize(a_significand);
- scale += exponent;
- a_significand = significand;
- }
- if b_abs < implicit_bit {
- let (exponent, significand) = F::normalize(b_significand);
- scale -= exponent;
- b_significand = significand;
- }
- }
- // Or in the implicit significand bit. (If we fell through from the
- // denormal path it was already set by normalize( ), but setting it twice
- // won't hurt anything.)
- a_significand |= implicit_bit;
- b_significand |= implicit_bit;
- let mut quotient_exponent: i32 = CastInto::<i32>::cast(a_exponent)
- .wrapping_sub(CastInto::<i32>::cast(b_exponent))
- .wrapping_add(scale);
- // Align the significand of b as a Q31 fixed-point number in the range
- // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
- // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
- // is accurate to about 3.5 binary digits.
- let q31b = CastInto::<u32>::cast(b_significand >> 21.cast());
- let mut recip32 = (0x7504f333u32).wrapping_sub(q31b);
- // Now refine the reciprocal estimate using a Newton-Raphson iteration:
- //
- // x1 = x0 * (2 - x0 * b)
- //
- // This doubles the number of correct binary digits in the approximation
- // with each iteration, so after three iterations, we have about 28 binary
- // digits of accuracy.
- let mut correction32: u32 =
- negate_u32(((recip32 as u64).wrapping_mul(q31b as u64) >> 32) as u32);
- recip32 = ((recip32 as u64).wrapping_mul(correction32 as u64) >> 31) as u32;
- correction32 = negate_u32(((recip32 as u64).wrapping_mul(q31b as u64) >> 32) as u32);
- recip32 = ((recip32 as u64).wrapping_mul(correction32 as u64) >> 31) as u32;
- correction32 = negate_u32(((recip32 as u64).wrapping_mul(q31b as u64) >> 32) as u32);
- recip32 = ((recip32 as u64).wrapping_mul(correction32 as u64) >> 31) as u32;
- // recip32 might have overflowed to exactly zero in the preceeding
- // computation if the high word of b is exactly 1.0. This would sabotage
- // the full-width final stage of the computation that follows, so we adjust
- // recip32 downward by one bit.
- recip32 = recip32.wrapping_sub(1);
- // We need to perform one more iteration to get us to 56 binary digits;
- // The last iteration needs to happen with extra precision.
- let q63blo = CastInto::<u32>::cast(b_significand << 11.cast());
- let correction: u64 = negate_u64(
- (recip32 as u64)
- .wrapping_mul(q31b as u64)
- .wrapping_add((recip32 as u64).wrapping_mul(q63blo as u64) >> 32),
- );
- let c_hi = (correction >> 32) as u32;
- let c_lo = correction as u32;
- let mut reciprocal: u64 = (recip32 as u64)
- .wrapping_mul(c_hi as u64)
- .wrapping_add((recip32 as u64).wrapping_mul(c_lo as u64) >> 32);
- // We already adjusted the 32-bit estimate, now we need to adjust the final
- // 64-bit reciprocal estimate downward to ensure that it is strictly smaller
- // than the infinitely precise exact reciprocal. Because the computation
- // of the Newton-Raphson step is truncating at every step, this adjustment
- // is small; most of the work is already done.
- reciprocal = reciprocal.wrapping_sub(2);
- // The numerical reciprocal is accurate to within 2^-56, lies in the
- // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
- // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
- // in Q53 with the following properties:
- //
- // 1. q < a/b
- // 2. q is in the interval [0.5, 2.0)
- // 3. the error in q is bounded away from 2^-53 (actually, we have a
- // couple of bits to spare, but this is all we need).
- // We need a 64 x 64 multiply high to compute q, which isn't a basic
- // operation in C, so we need to be a little bit fussy.
- // let mut quotient: F::Int = ((((reciprocal as u64)
- // .wrapping_mul(CastInto::<u32>::cast(a_significand << 1) as u64))
- // >> 32) as u32)
- // .cast();
- // We need a 64 x 64 multiply high to compute q, which isn't a basic
- // operation in C, so we need to be a little bit fussy.
- let mut quotient = (a_significand << 2).widen_mul(reciprocal.cast()).hi();
- // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
- // In either case, we are going to compute a residual of the form
- //
- // r = a - q*b
- //
- // We know from the construction of q that r satisfies:
- //
- // 0 <= r < ulp(q)*b
- //
- // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
- // already have the correct result. The exact halfway case cannot occur.
- // We also take this time to right shift quotient if it falls in the [1,2)
- // range and adjust the exponent accordingly.
- let residual = if quotient < (implicit_bit << 1) {
- quotient_exponent = quotient_exponent.wrapping_sub(1);
- (a_significand << (significand_bits + 1)).wrapping_sub(quotient.wrapping_mul(b_significand))
- } else {
- quotient >>= 1;
- (a_significand << significand_bits).wrapping_sub(quotient.wrapping_mul(b_significand))
- };
- let written_exponent = quotient_exponent.wrapping_add(exponent_bias as i32);
- if written_exponent >= max_exponent as i32 {
- // If we have overflowed the exponent, return infinity.
- return F::from_repr(inf_rep | quotient_sign);
- } else if written_exponent < 1 {
- // Flush denormals to zero. In the future, it would be nice to add
- // code to round them correctly.
- return F::from_repr(quotient_sign);
- } else {
- let round = ((residual << 1) > b_significand) as u32;
- // Clear the implicit bits
- let mut abs_result = quotient & significand_mask;
- // Insert the exponent
- abs_result |= written_exponent.cast() << significand_bits;
- // Round
- abs_result = abs_result.wrapping_add(round.cast());
- // Insert the sign and return
- return F::from_repr(abs_result | quotient_sign);
- }
- }
- intrinsics! {
- #[arm_aeabi_alias = __aeabi_fdiv]
- pub extern "C" fn __divsf3(a: f32, b: f32) -> f32 {
- div32(a, b)
- }
- #[arm_aeabi_alias = __aeabi_ddiv]
- pub extern "C" fn __divdf3(a: f64, b: f64) -> f64 {
- div64(a, b)
- }
- #[cfg(target_arch = "arm")]
- pub extern "C" fn __divsf3vfp(a: f32, b: f32) -> f32 {
- a / b
- }
- #[cfg(target_arch = "arm")]
- pub extern "C" fn __divdf3vfp(a: f64, b: f64) -> f64 {
- a / b
- }
- }
|