1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- use float::Float;
- use int::{CastInto, Int};
- /// Generic conversion from a narrower to a wider IEEE-754 floating-point type
- fn extend<F: Float, R: Float>(a: F) -> R
- where
- F::Int: CastInto<u64>,
- u64: CastInto<F::Int>,
- u32: CastInto<R::Int>,
- R::Int: CastInto<u32>,
- R::Int: CastInto<u64>,
- u64: CastInto<R::Int>,
- F::Int: CastInto<R::Int>,
- {
- let src_zero = F::Int::ZERO;
- let src_one = F::Int::ONE;
- let src_bits = F::BITS;
- let src_sign_bits = F::SIGNIFICAND_BITS;
- let src_exp_bias = F::EXPONENT_BIAS;
- let src_min_normal = F::IMPLICIT_BIT;
- let src_infinity = F::EXPONENT_MASK;
- let src_sign_mask = F::SIGN_MASK as F::Int;
- let src_abs_mask = src_sign_mask - src_one;
- let src_qnan = F::SIGNIFICAND_MASK;
- let src_nan_code = src_qnan - src_one;
- let dst_bits = R::BITS;
- let dst_sign_bits = R::SIGNIFICAND_BITS;
- let dst_inf_exp = R::EXPONENT_MAX;
- let dst_exp_bias = R::EXPONENT_BIAS;
- let dst_min_normal = R::IMPLICIT_BIT;
- let sign_bits_delta = dst_sign_bits - src_sign_bits;
- let exp_bias_delta = dst_exp_bias - src_exp_bias;
- let a_abs = a.repr() & src_abs_mask;
- let mut abs_result = R::Int::ZERO;
- if a_abs.wrapping_sub(src_min_normal) < src_infinity.wrapping_sub(src_min_normal) {
- // a is a normal number.
- // Extend to the destination type by shifting the significand and
- // exponent into the proper position and rebiasing the exponent.
- let abs_dst: R::Int = a_abs.cast();
- let bias_dst: R::Int = exp_bias_delta.cast();
- abs_result = abs_dst.wrapping_shl(sign_bits_delta);
- abs_result += bias_dst.wrapping_shl(dst_sign_bits);
- } else if a_abs >= src_infinity {
- // a is NaN or infinity.
- // Conjure the result by beginning with infinity, then setting the qNaN
- // bit (if needed) and right-aligning the rest of the trailing NaN
- // payload field.
- let qnan_dst: R::Int = (a_abs & src_qnan).cast();
- let nan_code_dst: R::Int = (a_abs & src_nan_code).cast();
- let inf_exp_dst: R::Int = dst_inf_exp.cast();
- abs_result = inf_exp_dst.wrapping_shl(dst_sign_bits);
- abs_result |= qnan_dst.wrapping_shl(sign_bits_delta);
- abs_result |= nan_code_dst.wrapping_shl(sign_bits_delta);
- } else if a_abs != src_zero {
- // a is denormal.
- // Renormalize the significand and clear the leading bit, then insert
- // the correct adjusted exponent in the destination type.
- let scale = a_abs.leading_zeros() - src_min_normal.leading_zeros();
- let abs_dst: R::Int = a_abs.cast();
- let bias_dst: R::Int = (exp_bias_delta - scale + 1).cast();
- abs_result = abs_dst.wrapping_shl(sign_bits_delta + scale);
- abs_result = (abs_result ^ dst_min_normal) | (bias_dst.wrapping_shl(dst_sign_bits));
- }
- let sign_result: R::Int = (a.repr() & src_sign_mask).cast();
- R::from_repr(abs_result | (sign_result.wrapping_shl(dst_bits - src_bits)))
- }
- intrinsics! {
- #[aapcs_on_arm]
- #[arm_aeabi_alias = __aeabi_f2d]
- pub extern "C" fn __extendsfdf2(a: f32) -> f64 {
- extend(a)
- }
- #[cfg(target_arch = "arm")]
- pub extern "C" fn __extendsfdf2vfp(a: f32) -> f64 {
- a as f64 // LLVM generate 'fcvtds'
- }
- }
|