123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326 |
- use core::num::Wrapping;
- use float::Float;
- macro_rules! add {
- ($intrinsic:ident: $ty:ty) => {
- /// Returns `a + b`
- #[allow(unused_parens)]
- #[cfg_attr(not(test), no_mangle)]
- pub extern fn $intrinsic(a: $ty, b: $ty) -> $ty {
- let one = Wrapping(1 as <$ty as Float>::Int);
- let zero = Wrapping(0 as <$ty as Float>::Int);
- let bits = Wrapping(<$ty>::bits() as <$ty as Float>::Int);
- let significand_bits = Wrapping(<$ty>::significand_bits() as <$ty as Float>::Int);
- let exponent_bits = bits - significand_bits - one;
- let max_exponent = (one << exponent_bits.0 as usize) - one;
- let implicit_bit = one << significand_bits.0 as usize;
- let significand_mask = implicit_bit - one;
- let sign_bit = one << (significand_bits + exponent_bits).0 as usize;
- let abs_mask = sign_bit - one;
- let exponent_mask = abs_mask ^ significand_mask;
- let inf_rep = exponent_mask;
- let quiet_bit = implicit_bit >> 1;
- let qnan_rep = exponent_mask | quiet_bit;
- let mut a_rep = Wrapping(a.repr());
- let mut b_rep = Wrapping(b.repr());
- let a_abs = a_rep & abs_mask;
- let b_abs = b_rep & abs_mask;
- // Detect if a or b is zero, infinity, or NaN.
- if a_abs - one >= inf_rep - one ||
- b_abs - one >= inf_rep - one {
- // NaN + anything = qNaN
- if a_abs > inf_rep {
- return (<$ty as Float>::from_repr((a_abs | quiet_bit).0));
- }
- // anything + NaN = qNaN
- if b_abs > inf_rep {
- return (<$ty as Float>::from_repr((b_abs | quiet_bit).0));
- }
- if a_abs == inf_rep {
- // +/-infinity + -/+infinity = qNaN
- if (a.repr() ^ b.repr()) == sign_bit.0 {
- return (<$ty as Float>::from_repr(qnan_rep.0));
- } else {
- // +/-infinity + anything remaining = +/- infinity
- return a;
- }
- }
- // anything remaining + +/-infinity = +/-infinity
- if b_abs == inf_rep {
- return b;
- }
- // zero + anything = anything
- if a_abs.0 == 0 {
- // but we need to get the sign right for zero + zero
- if b_abs.0 == 0 {
- return (<$ty as Float>::from_repr(a.repr() & b.repr()));
- } else {
- return b;
- }
- }
- // anything + zero = anything
- if b_abs.0 == 0 {
- return a;
- }
- }
- // Swap a and b if necessary so that a has the larger absolute value.
- if b_abs > a_abs {
- let temp = a_rep;
- a_rep = b_rep;
- b_rep = temp;
- }
- // Extract the exponent and significand from the (possibly swapped) a and b.
- let mut a_exponent = Wrapping((a_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
- let mut b_exponent = Wrapping((b_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
- let mut a_significand = a_rep & significand_mask;
- let mut b_significand = b_rep & significand_mask;
- // normalize any denormals, and adjust the exponent accordingly.
- if a_exponent.0 == 0 {
- let (exponent, significand) = <$ty>::normalize(a_significand.0);
- a_exponent = Wrapping(exponent);
- a_significand = Wrapping(significand);
- }
- if b_exponent.0 == 0 {
- let (exponent, significand) = <$ty>::normalize(b_significand.0);
- b_exponent = Wrapping(exponent);
- b_significand = Wrapping(significand);
- }
- // The sign of the result is the sign of the larger operand, a. If they
- // have opposite signs, we are performing a subtraction; otherwise addition.
- let result_sign = a_rep & sign_bit;
- let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;
- // Shift the significands to give us round, guard and sticky, and or in the
- // implicit significand bit. (If we fell through from the denormal path it
- // was already set by normalize(), but setting it twice won't hurt
- // anything.)
- a_significand = (a_significand | implicit_bit) << 3;
- b_significand = (b_significand | implicit_bit) << 3;
- // Shift the significand of b by the difference in exponents, with a sticky
- // bottom bit to get rounding correct.
- let align = Wrapping((a_exponent - b_exponent).0 as <$ty as Float>::Int);
- if align.0 != 0 {
- if align < bits {
- let sticky = ((b_significand << (bits - align).0 as usize).0 != 0) as <$ty as Float>::Int;
- b_significand = (b_significand >> align.0 as usize) | Wrapping(sticky);
- } else {
- b_significand = one; // sticky; b is known to be non-zero.
- }
- }
- if subtraction {
- a_significand -= b_significand;
- // If a == -b, return +zero.
- if a_significand.0 == 0 {
- return (<$ty as Float>::from_repr(0));
- }
- // If partial cancellation occured, we need to left-shift the result
- // and adjust the exponent:
- if a_significand < implicit_bit << 3 {
- let shift = a_significand.0.leading_zeros() as i32
- - (implicit_bit << 3).0.leading_zeros() as i32;
- a_significand <<= shift as usize;
- a_exponent -= Wrapping(shift);
- }
- } else /* addition */ {
- a_significand += b_significand;
- // If the addition carried up, we need to right-shift the result and
- // adjust the exponent:
- if (a_significand & implicit_bit << 4).0 != 0 {
- let sticky = ((a_significand & one).0 != 0) as <$ty as Float>::Int;
- a_significand = a_significand >> 1 | Wrapping(sticky);
- a_exponent += Wrapping(1);
- }
- }
- // If we have overflowed the type, return +/- infinity:
- if a_exponent >= Wrapping(max_exponent.0 as i32) {
- return (<$ty>::from_repr((inf_rep | result_sign).0));
- }
- if a_exponent.0 <= 0 {
- // Result is denormal before rounding; the exponent is zero and we
- // need to shift the significand.
- let shift = Wrapping((Wrapping(1) - a_exponent).0 as <$ty as Float>::Int);
- let sticky = ((a_significand << (bits - shift).0 as usize).0 != 0) as <$ty as Float>::Int;
- a_significand = a_significand >> shift.0 as usize | Wrapping(sticky);
- a_exponent = Wrapping(0);
- }
- // Low three bits are round, guard, and sticky.
- let round_guard_sticky: i32 = (a_significand.0 & 0x7) as i32;
- // Shift the significand into place, and mask off the implicit bit.
- let mut result = a_significand >> 3 & significand_mask;
- // Insert the exponent and sign.
- result |= Wrapping(a_exponent.0 as <$ty as Float>::Int) << significand_bits.0 as usize;
- result |= result_sign;
- // Final rounding. The result may overflow to infinity, but that is the
- // correct result in that case.
- if round_guard_sticky > 0x4 { result += one; }
- if round_guard_sticky == 0x4 { result += result & one; }
- return (<$ty>::from_repr(result.0));
- }
- }
- }
- add!(__addsf3: f32);
- add!(__adddf3: f64);
- // FIXME: Implement these using aliases
- #[cfg(target_arch = "arm")]
- #[cfg_attr(not(test), no_mangle)]
- pub extern fn __aeabi_dadd(a: f64, b: f64) -> f64 {
- __adddf3(a, b)
- }
- #[cfg(target_arch = "arm")]
- #[cfg_attr(not(test), no_mangle)]
- pub extern fn __aeabi_fadd(a: f32, b: f32) -> f32 {
- __addsf3(a, b)
- }
- #[cfg(test)]
- mod tests {
- use core::{f32, f64};
- use qc::{U32, U64};
- use float::Float;
- // NOTE The tests below have special handing for NaN values.
- // Because NaN != NaN, the floating-point representations must be used
- // Because there are many diffferent values of NaN, and the implementation
- // doesn't care about calculating the 'correct' one, if both values are NaN
- // the values are considered equivalent.
- // TODO: Add F32/F64 to qc so that they print the right values (at the very least)
- quickcheck! {
- fn addsf3(a: U32, b: U32) -> bool {
- let (a, b) = (f32::from_repr(a.0), f32::from_repr(b.0));
- let x = super::__addsf3(a, b);
- let y = a + b;
- if !(x.is_nan() && y.is_nan()) {
- x.repr() == y.repr()
- } else {
- true
- }
- }
- fn adddf3(a: U64, b: U64) -> bool {
- let (a, b) = (f64::from_repr(a.0), f64::from_repr(b.0));
- let x = super::__adddf3(a, b);
- let y = a + b;
- if !(x.is_nan() && y.is_nan()) {
- x.repr() == y.repr()
- } else {
- true
- }
- }
- }
-
- // More tests for special float values
- #[test]
- fn test_float_tiny_plus_tiny() {
- let tiny = f32::from_repr(1);
- let r = super::__addsf3(tiny, tiny);
- assert_eq!(r, tiny + tiny);
- }
- #[test]
- fn test_double_tiny_plus_tiny() {
- let tiny = f64::from_repr(1);
- let r = super::__adddf3(tiny, tiny);
- assert_eq!(r, tiny + tiny);
- }
- #[test]
- fn test_float_small_plus_small() {
- let a = f32::from_repr(327);
- let b = f32::from_repr(256);
- let r = super::__addsf3(a, b);
- assert_eq!(r, a + b);
- }
- #[test]
- fn test_double_small_plus_small() {
- let a = f64::from_repr(327);
- let b = f64::from_repr(256);
- let r = super::__adddf3(a, b);
- assert_eq!(r, a + b);
- }
- #[test]
- fn test_float_one_plus_one() {
- let r = super::__addsf3(1f32, 1f32);
- assert_eq!(r, 1f32 + 1f32);
- }
- #[test]
- fn test_double_one_plus_one() {
- let r = super::__adddf3(1f64, 1f64);
- assert_eq!(r, 1f64 + 1f64);
- }
- #[test]
- fn test_float_different_nan() {
- let a = f32::from_repr(1);
- let b = f32::from_repr(0b11111111100100010001001010101010);
- let x = super::__addsf3(a, b);
- let y = a + b;
- if !(x.is_nan() && y.is_nan()) {
- assert_eq!(x.repr(), y.repr());
- }
- }
- #[test]
- fn test_double_different_nan() {
- let a = f64::from_repr(1);
- let b = f64::from_repr(
- 0b1111111111110010001000100101010101001000101010000110100011101011);
- let x = super::__adddf3(a, b);
- let y = a + b;
- if !(x.is_nan() && y.is_nan()) {
- assert_eq!(x.repr(), y.repr());
- }
- }
- #[test]
- fn test_float_nan() {
- let r = super::__addsf3(f32::NAN, 1.23);
- assert_eq!(r.repr(), f32::NAN.repr());
- }
- #[test]
- fn test_double_nan() {
- let r = super::__adddf3(f64::NAN, 1.23);
- assert_eq!(r.repr(), f64::NAN.repr());
- }
- #[test]
- fn test_float_inf() {
- let r = super::__addsf3(f32::INFINITY, -123.4);
- assert_eq!(r, f32::INFINITY);
- }
- #[test]
- fn test_double_inf() {
- let r = super::__adddf3(f64::INFINITY, -123.4);
- assert_eq!(r, f64::INFINITY);
- }
- }
|