123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- /* $OpenBSD: s_casinf.c,v 1.3 2011/07/20 19:28:33 martynas Exp $ */
- /*
- * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
- /* casinf()
- *
- * Complex circular arc sine
- *
- *
- *
- * SYNOPSIS:
- *
- * void casinf();
- * cmplxf z, w;
- *
- * casinf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * Inverse complex sine:
- *
- * 2
- * w = -i clog( iz + csqrt( 1 - z ) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.1e-5 1.5e-6
- * Larger relative error can be observed for z near zero.
- *
- */
- #include <openlibm.h>
- #include <openlibm_complex.h>
- float complex
- casinf(float complex z)
- {
- float complex w;
- float x, y;
- static float complex ca, ct, zz, z2;
- /*
- float cn, n;
- static float a, b, s, t, u, v, y2;
- static cmplxf sum;
- */
- x = crealf(z);
- y = cimagf(z);
- if(y == 0.0f) {
- if(fabsf(x) > 1.0f) {
- w = (float)M_PI_2 + 0.0f * I;
- /*mtherr( "casinf", DOMAIN );*/
- }
- else {
- w = asinf (x) + 0.0f * I;
- }
- return (w);
- }
- /* Power series expansion */
- /*
- b = cabsf(z);
- if(b < 0.125) {
- z2.r = (x - y) * (x + y);
- z2.i = 2.0 * x * y;
- cn = 1.0;
- n = 1.0;
- ca.r = x;
- ca.i = y;
- sum.r = x;
- sum.i = y;
- do {
- ct.r = z2.r * ca.r - z2.i * ca.i;
- ct.i = z2.r * ca.i + z2.i * ca.r;
- ca.r = ct.r;
- ca.i = ct.i;
- cn *= n;
- n += 1.0;
- cn /= n;
- n += 1.0;
- b = cn/n;
- ct.r *= b;
- ct.i *= b;
- sum.r += ct.r;
- sum.i += ct.i;
- b = fabsf(ct.r) + fabsf(ct.i);
- }
- while(b > MACHEPF);
- w->r = sum.r;
- w->i = sum.i;
- return;
- }
- */
- ca = x + y * I;
- ct = ca * I; /* iz */
- /* sqrt( 1 - z*z) */
- /* cmul( &ca, &ca, &zz ) */
- /*x * x - y * y */
- zz = (x - y) * (x + y) + (2.0f * x * y) * I;
- zz = 1.0f - crealf(zz) - cimagf(zz) * I;
- z2 = csqrtf (zz);
- zz = ct + z2;
- zz = clogf (zz);
- /* multiply by 1/i = -i */
- w = zz * (-1.0f * I);
- return (w);
- }
|