qk41.f 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195
  1. *DECK QK41
  2. SUBROUTINE QK41 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
  3. C***BEGIN PROLOGUE QK41
  4. C***PURPOSE To compute I = Integral of F over (A,B), with error
  5. C estimate
  6. C J = Integral of ABS(F) over (A,B)
  7. C***LIBRARY SLATEC (QUADPACK)
  8. C***CATEGORY H2A1A2
  9. C***TYPE SINGLE PRECISION (QK41-S, DQK41-D)
  10. C***KEYWORDS 41-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
  11. C***AUTHOR Piessens, Robert
  12. C Applied Mathematics and Programming Division
  13. C K. U. Leuven
  14. C de Doncker, Elise
  15. C Applied Mathematics and Programming Division
  16. C K. U. Leuven
  17. C***DESCRIPTION
  18. C
  19. C Integration rules
  20. C Standard fortran subroutine
  21. C Real version
  22. C
  23. C PARAMETERS
  24. C ON ENTRY
  25. C F - Real
  26. C Function subprogram defining the integrand
  27. C FUNCTION F(X). The actual name for F needs to be
  28. C declared E X T E R N A L in the calling program.
  29. C
  30. C A - Real
  31. C Lower limit of integration
  32. C
  33. C B - Real
  34. C Upper limit of integration
  35. C
  36. C ON RETURN
  37. C RESULT - Real
  38. C Approximation to the integral I
  39. C RESULT is computed by applying the 41-POINT
  40. C GAUSS-KRONROD RULE (RESK) obtained by optimal
  41. C addition of abscissae to the 20-POINT GAUSS
  42. C RULE (RESG).
  43. C
  44. C ABSERR - Real
  45. C Estimate of the modulus of the absolute error,
  46. C which should not exceed ABS(I-RESULT)
  47. C
  48. C RESABS - Real
  49. C Approximation to the integral J
  50. C
  51. C RESASC - Real
  52. C Approximation to the integral of ABS(F-I/(B-A))
  53. C over (A,B)
  54. C
  55. C***REFERENCES (NONE)
  56. C***ROUTINES CALLED R1MACH
  57. C***REVISION HISTORY (YYMMDD)
  58. C 800101 DATE WRITTEN
  59. C 890531 Changed all specific intrinsics to generic. (WRB)
  60. C 890531 REVISION DATE from Version 3.2
  61. C 891214 Prologue converted to Version 4.0 format. (BAB)
  62. C***END PROLOGUE QK41
  63. C
  64. REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,
  65. 1 FV1,FV2,HLGTH,RESABS,
  66. 2 RESASC,RESG,RESK,RESKH,RESULT,R1MACH,UFLOW,
  67. 3 WG,WGK,XGK
  68. INTEGER J,JTW,JTWM1
  69. EXTERNAL F
  70. C
  71. DIMENSION FV1(20),FV2(20),XGK(21),WGK(21),WG(10)
  72. C
  73. C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
  74. C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
  75. C CORRESPONDING WEIGHTS ARE GIVEN.
  76. C
  77. C XGK - ABSCISSAE OF THE 41-POINT GAUSS-KRONROD RULE
  78. C XGK(2), XGK(4), ... ABSCISSAE OF THE 20-POINT
  79. C GAUSS RULE
  80. C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
  81. C ADDED TO THE 20-POINT GAUSS RULE
  82. C
  83. C WGK - WEIGHTS OF THE 41-POINT GAUSS-KRONROD RULE
  84. C
  85. C WG - WEIGHTS OF THE 20-POINT GAUSS RULE
  86. C
  87. SAVE XGK, WGK, WG
  88. DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),XGK(8),
  89. 1 XGK(9),XGK(10),XGK(11),XGK(12),XGK(13),XGK(14),XGK(15),
  90. 2 XGK(16),XGK(17),XGK(18),XGK(19),XGK(20),XGK(21)/
  91. 3 0.9988590315882777E+00, 0.9931285991850949E+00,
  92. 4 0.9815078774502503E+00, 0.9639719272779138E+00,
  93. 5 0.9408226338317548E+00, 0.9122344282513259E+00,
  94. 6 0.8782768112522820E+00, 0.8391169718222188E+00,
  95. 7 0.7950414288375512E+00, 0.7463319064601508E+00,
  96. 8 0.6932376563347514E+00, 0.6360536807265150E+00,
  97. 9 0.5751404468197103E+00, 0.5108670019508271E+00,
  98. 1 0.4435931752387251E+00, 0.3737060887154196E+00,
  99. 2 0.3016278681149130E+00, 0.2277858511416451E+00,
  100. 3 0.1526054652409227E+00, 0.7652652113349733E-01,
  101. 4 0.0E+00 /
  102. DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),WGK(8),
  103. 1 WGK(9),WGK(10),WGK(11),WGK(12),WGK(13),WGK(14),WGK(15),WGK(16),
  104. 2 WGK(17),WGK(18),WGK(19),WGK(20),WGK(21)/
  105. 3 0.3073583718520532E-02, 0.8600269855642942E-02,
  106. 4 0.1462616925697125E-01, 0.2038837346126652E-01,
  107. 5 0.2588213360495116E-01, 0.3128730677703280E-01,
  108. 6 0.3660016975820080E-01, 0.4166887332797369E-01,
  109. 7 0.4643482186749767E-01, 0.5094457392372869E-01,
  110. 8 0.5519510534828599E-01, 0.5911140088063957E-01,
  111. 9 0.6265323755478117E-01, 0.6583459713361842E-01,
  112. 1 0.6864867292852162E-01, 0.7105442355344407E-01,
  113. 2 0.7303069033278667E-01, 0.7458287540049919E-01,
  114. 3 0.7570449768455667E-01, 0.7637786767208074E-01,
  115. 4 0.7660071191799966E-01/
  116. DATA WG(1),WG(2),WG(3),WG(4),WG(5),WG(6),WG(7),WG(8),WG(9),WG(10)/
  117. 1 0.1761400713915212E-01, 0.4060142980038694E-01,
  118. 2 0.6267204833410906E-01, 0.8327674157670475E-01,
  119. 3 0.1019301198172404E+00, 0.1181945319615184E+00,
  120. 4 0.1316886384491766E+00, 0.1420961093183821E+00,
  121. 5 0.1491729864726037E+00, 0.1527533871307259E+00/
  122. C
  123. C
  124. C LIST OF MAJOR VARIABLES
  125. C -----------------------
  126. C
  127. C CENTR - MID POINT OF THE INTERVAL
  128. C HLGTH - HALF-LENGTH OF THE INTERVAL
  129. C ABSC - ABSCISSA
  130. C FVAL* - FUNCTION VALUE
  131. C RESG - RESULT OF THE 20-POINT GAUSS FORMULA
  132. C RESK - RESULT OF THE 41-POINT KRONROD FORMULA
  133. C RESKH - APPROXIMATION TO MEAN VALUE OF F OVER (A,B), I.E.
  134. C TO I/(B-A)
  135. C
  136. C MACHINE DEPENDENT CONSTANTS
  137. C ---------------------------
  138. C
  139. C EPMACH IS THE LARGEST RELATIVE SPACING.
  140. C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
  141. C
  142. C***FIRST EXECUTABLE STATEMENT QK41
  143. EPMACH = R1MACH(4)
  144. UFLOW = R1MACH(1)
  145. C
  146. CENTR = 0.5E+00*(A+B)
  147. HLGTH = 0.5E+00*(B-A)
  148. DHLGTH = ABS(HLGTH)
  149. C
  150. C COMPUTE THE 41-POINT GAUSS-KRONROD APPROXIMATION TO
  151. C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
  152. C
  153. RESG = 0.0E+00
  154. FC = F(CENTR)
  155. RESK = WGK(21)*FC
  156. RESABS = ABS(RESK)
  157. DO 10 J=1,10
  158. JTW = J*2
  159. ABSC = HLGTH*XGK(JTW)
  160. FVAL1 = F(CENTR-ABSC)
  161. FVAL2 = F(CENTR+ABSC)
  162. FV1(JTW) = FVAL1
  163. FV2(JTW) = FVAL2
  164. FSUM = FVAL1+FVAL2
  165. RESG = RESG+WG(J)*FSUM
  166. RESK = RESK+WGK(JTW)*FSUM
  167. RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
  168. 10 CONTINUE
  169. DO 15 J = 1,10
  170. JTWM1 = J*2-1
  171. ABSC = HLGTH*XGK(JTWM1)
  172. FVAL1 = F(CENTR-ABSC)
  173. FVAL2 = F(CENTR+ABSC)
  174. FV1(JTWM1) = FVAL1
  175. FV2(JTWM1) = FVAL2
  176. FSUM = FVAL1+FVAL2
  177. RESK = RESK+WGK(JTWM1)*FSUM
  178. RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
  179. 15 CONTINUE
  180. RESKH = RESK*0.5E+00
  181. RESASC = WGK(21)*ABS(FC-RESKH)
  182. DO 20 J=1,20
  183. RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
  184. 20 CONTINUE
  185. RESULT = RESK*HLGTH
  186. RESABS = RESABS*DHLGTH
  187. RESASC = RESASC*DHLGTH
  188. ABSERR = ABS((RESK-RESG)*HLGTH)
  189. IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.E+00)
  190. 1 ABSERR = RESASC*MIN(0.1E+01,
  191. 2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
  192. IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
  193. 1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
  194. RETURN
  195. END