toc 217 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098
  1. SLATEC Common Mathematical Library
  2. Version 4.1
  3. Table of Contents
  4. This table of contents of the SLATEC Common Mathematical Library (CML) has
  5. three sections.
  6. Section I contains the names and purposes of all user-callable CML routines,
  7. arranged by GAMS category. Those unfamiliar with the GAMS scheme should
  8. consult the document "Guide to the SLATEC Common Mathematical Library". The
  9. current library has routines in the following GAMS major categories:
  10. A. Arithmetic, error analysis
  11. C. Elementary and special functions (search also class L5)
  12. D. Linear Algebra
  13. E. Interpolation
  14. F. Solution of nonlinear equations
  15. G. Optimization (search also classes K, L8)
  16. H. Differentiation, integration
  17. I. Differential and integral equations
  18. J. Integral transforms
  19. K. Approximation (search also class L8)
  20. L. Statistics, probability
  21. N. Data handling (search also class L2)
  22. R. Service routines
  23. Z. Other
  24. The library contains routines which operate on different types of data but
  25. which are otherwise equivalent. The names of equivalent routines are listed
  26. vertically before the purpose. Immediately after each name is a hyphen (-)
  27. and one of the alphabetic characters S, D, C, I, H, L, or A, where
  28. S indicates a single precision routine, D double precision, C complex,
  29. I integer, H character, L logical, and A is a pseudo-type given to routines
  30. that could not reasonably be converted to some other type.
  31. Section II contains the names and purposes of all subsidiary CML routines,
  32. arranged in alphabetical order. Usually these routines are not referenced
  33. directly by library users. They are listed here so that users will be able
  34. to avoid duplicating names that are used by the CML and for the benefit of
  35. programmers who may be able to use them in the construction of new routines
  36. for the library.
  37. Section III is an alphabetical list of every routine in the CML and the
  38. categories to which the routine is assigned. Every user-callable routine
  39. has at least one category. An asterisk (*) immediately preceding a routine
  40. name indicates a subsidiary routine.
  41. SECTION I. User-callable Routines
  42. A. Arithmetic, error analysis
  43. A3. Real
  44. A3D. Extended range
  45. XADD-S To provide single-precision floating-point arithmetic
  46. DXADD-D with an extended exponent range.
  47. XADJ-S To provide single-precision floating-point arithmetic
  48. DXADJ-D with an extended exponent range.
  49. XC210-S To provide single-precision floating-point arithmetic
  50. DXC210-D with an extended exponent range.
  51. XCON-S To provide single-precision floating-point arithmetic
  52. DXCON-D with an extended exponent range.
  53. XRED-S To provide single-precision floating-point arithmetic
  54. DXRED-D with an extended exponent range.
  55. XSET-S To provide single-precision floating-point arithmetic
  56. DXSET-D with an extended exponent range.
  57. A4. Complex
  58. A4A. Single precision
  59. CARG-C Compute the argument of a complex number.
  60. A6. Change of representation
  61. A6B. Base conversion
  62. R9PAK-S Pack a base 2 exponent into a floating point number.
  63. D9PAK-D
  64. R9UPAK-S Unpack a floating point number X so that X = Y*2**N.
  65. D9UPAK-D
  66. C. Elementary and special functions (search also class L5)
  67. FUNDOC-A Documentation for FNLIB, a collection of routines for
  68. evaluating elementary and special functions.
  69. C1. Integer-valued functions (e.g., floor, ceiling, factorial, binomial
  70. coefficient)
  71. BINOM-S Compute the binomial coefficients.
  72. DBINOM-D
  73. FAC-S Compute the factorial function.
  74. DFAC-D
  75. POCH-S Evaluate a generalization of Pochhammer's symbol.
  76. DPOCH-D
  77. POCH1-S Calculate a generalization of Pochhammer's symbol starting
  78. DPOCH1-D from first order.
  79. C2. Powers, roots, reciprocals
  80. CBRT-S Compute the cube root.
  81. DCBRT-D
  82. CCBRT-C
  83. C3. Polynomials
  84. C3A. Orthogonal
  85. C3A2. Chebyshev, Legendre
  86. CSEVL-S Evaluate a Chebyshev series.
  87. DCSEVL-D
  88. INITS-S Determine the number of terms needed in an orthogonal
  89. INITDS-D polynomial series so that it meets a specified accuracy.
  90. QMOMO-S This routine computes modified Chebyshev moments. The K-th
  91. DQMOMO-D modified Chebyshev moment is defined as the integral over
  92. (-1,1) of W(X)*T(K,X), where T(K,X) is the Chebyshev
  93. polynomial of degree K.
  94. XLEGF-S Compute normalized Legendre polynomials and associated
  95. DXLEGF-D Legendre functions.
  96. XNRMP-S Compute normalized Legendre polynomials.
  97. DXNRMP-D
  98. C4. Elementary transcendental functions
  99. C4A. Trigonometric, inverse trigonometric
  100. CACOS-C Compute the complex arc cosine.
  101. CASIN-C Compute the complex arc sine.
  102. CATAN-C Compute the complex arc tangent.
  103. CATAN2-C Compute the complex arc tangent in the proper quadrant.
  104. COSDG-S Compute the cosine of an argument in degrees.
  105. DCOSDG-D
  106. COT-S Compute the cotangent.
  107. DCOT-D
  108. CCOT-C
  109. CTAN-C Compute the complex tangent.
  110. SINDG-S Compute the sine of an argument in degrees.
  111. DSINDG-D
  112. C4B. Exponential, logarithmic
  113. ALNREL-S Evaluate ln(1+X) accurate in the sense of relative error.
  114. DLNREL-D
  115. CLNREL-C
  116. CLOG10-C Compute the principal value of the complex base 10
  117. logarithm.
  118. EXPREL-S Calculate the relative error exponential (EXP(X)-1)/X.
  119. DEXPRL-D
  120. CEXPRL-C
  121. C4C. Hyperbolic, inverse hyperbolic
  122. ACOSH-S Compute the arc hyperbolic cosine.
  123. DACOSH-D
  124. CACOSH-C
  125. ASINH-S Compute the arc hyperbolic sine.
  126. DASINH-D
  127. CASINH-C
  128. ATANH-S Compute the arc hyperbolic tangent.
  129. DATANH-D
  130. CATANH-C
  131. CCOSH-C Compute the complex hyperbolic cosine.
  132. CSINH-C Compute the complex hyperbolic sine.
  133. CTANH-C Compute the complex hyperbolic tangent.
  134. C5. Exponential and logarithmic integrals
  135. ALI-S Compute the logarithmic integral.
  136. DLI-D
  137. E1-S Compute the exponential integral E1(X).
  138. DE1-D
  139. EI-S Compute the exponential integral Ei(X).
  140. DEI-D
  141. EXINT-S Compute an M member sequence of exponential integrals
  142. DEXINT-D E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0.
  143. SPENC-S Compute a form of Spence's integral due to K. Mitchell.
  144. DSPENC-D
  145. C7. Gamma
  146. C7A. Gamma, log gamma, reciprocal gamma
  147. ALGAMS-S Compute the logarithm of the absolute value of the Gamma
  148. DLGAMS-D function.
  149. ALNGAM-S Compute the logarithm of the absolute value of the Gamma
  150. DLNGAM-D function.
  151. CLNGAM-C
  152. C0LGMC-C Evaluate (Z+0.5)*LOG((Z+1.)/Z) - 1.0 with relative
  153. accuracy.
  154. GAMLIM-S Compute the minimum and maximum bounds for the argument in
  155. DGAMLM-D the Gamma function.
  156. GAMMA-S Compute the complete Gamma function.
  157. DGAMMA-D
  158. CGAMMA-C
  159. GAMR-S Compute the reciprocal of the Gamma function.
  160. DGAMR-D
  161. CGAMR-C
  162. POCH-S Evaluate a generalization of Pochhammer's symbol.
  163. DPOCH-D
  164. POCH1-S Calculate a generalization of Pochhammer's symbol starting
  165. DPOCH1-D from first order.
  166. C7B. Beta, log beta
  167. ALBETA-S Compute the natural logarithm of the complete Beta
  168. DLBETA-D function.
  169. CLBETA-C
  170. BETA-S Compute the complete Beta function.
  171. DBETA-D
  172. CBETA-C
  173. C7C. Psi function
  174. PSI-S Compute the Psi (or Digamma) function.
  175. DPSI-D
  176. CPSI-C
  177. PSIFN-S Compute derivatives of the Psi function.
  178. DPSIFN-D
  179. C7E. Incomplete gamma
  180. GAMI-S Evaluate the incomplete Gamma function.
  181. DGAMI-D
  182. GAMIC-S Calculate the complementary incomplete Gamma function.
  183. DGAMIC-D
  184. GAMIT-S Calculate Tricomi's form of the incomplete Gamma function.
  185. DGAMIT-D
  186. C7F. Incomplete beta
  187. BETAI-S Calculate the incomplete Beta function.
  188. DBETAI-D
  189. C8. Error functions
  190. C8A. Error functions, their inverses, integrals, including the normal
  191. distribution function
  192. ERF-S Compute the error function.
  193. DERF-D
  194. ERFC-S Compute the complementary error function.
  195. DERFC-D
  196. C8C. Dawson's integral
  197. DAWS-S Compute Dawson's function.
  198. DDAWS-D
  199. C9. Legendre functions
  200. XLEGF-S Compute normalized Legendre polynomials and associated
  201. DXLEGF-D Legendre functions.
  202. XNRMP-S Compute normalized Legendre polynomials.
  203. DXNRMP-D
  204. C10. Bessel functions
  205. C10A. J, Y, H-(1), H-(2)
  206. C10A1. Real argument, integer order
  207. BESJ0-S Compute the Bessel function of the first kind of order
  208. DBESJ0-D zero.
  209. BESJ1-S Compute the Bessel function of the first kind of order one.
  210. DBESJ1-D
  211. BESY0-S Compute the Bessel function of the second kind of order
  212. DBESY0-D zero.
  213. BESY1-S Compute the Bessel function of the second kind of order
  214. DBESY1-D one.
  215. C10A3. Real argument, real order
  216. BESJ-S Compute an N member sequence of J Bessel functions
  217. DBESJ-D J/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA
  218. and X.
  219. BESY-S Implement forward recursion on the three term recursion
  220. DBESY-D relation for a sequence of non-negative order Bessel
  221. functions Y/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
  222. X and non-negative orders FNU.
  223. C10A4. Complex argument, real order
  224. CBESH-C Compute a sequence of the Hankel functions H(m,a,z)
  225. ZBESH-C for superscript m=1 or 2, real nonnegative orders a=b,
  226. b+1,... where b>0, and nonzero complex argument z. A
  227. scaling option is available to help avoid overflow.
  228. CBESJ-C Compute a sequence of the Bessel functions J(a,z) for
  229. ZBESJ-C complex argument z and real nonnegative orders a=b,b+1,
  230. b+2,... where b>0. A scaling option is available to
  231. help avoid overflow.
  232. CBESY-C Compute a sequence of the Bessel functions Y(a,z) for
  233. ZBESY-C complex argument z and real nonnegative orders a=b,b+1,
  234. b+2,... where b>0. A scaling option is available to
  235. help avoid overflow.
  236. C10B. I, K
  237. C10B1. Real argument, integer order
  238. BESI0-S Compute the hyperbolic Bessel function of the first kind
  239. DBESI0-D of order zero.
  240. BESI0E-S Compute the exponentially scaled modified (hyperbolic)
  241. DBSI0E-D Bessel function of the first kind of order zero.
  242. BESI1-S Compute the modified (hyperbolic) Bessel function of the
  243. DBESI1-D first kind of order one.
  244. BESI1E-S Compute the exponentially scaled modified (hyperbolic)
  245. DBSI1E-D Bessel function of the first kind of order one.
  246. BESK0-S Compute the modified (hyperbolic) Bessel function of the
  247. DBESK0-D third kind of order zero.
  248. BESK0E-S Compute the exponentially scaled modified (hyperbolic)
  249. DBSK0E-D Bessel function of the third kind of order zero.
  250. BESK1-S Compute the modified (hyperbolic) Bessel function of the
  251. DBESK1-D third kind of order one.
  252. BESK1E-S Compute the exponentially scaled modified (hyperbolic)
  253. DBSK1E-D Bessel function of the third kind of order one.
  254. C10B3. Real argument, real order
  255. BESI-S Compute an N member sequence of I Bessel functions
  256. DBESI-D I/SUB(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
  257. EXP(-X)*I/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative
  258. ALPHA and X.
  259. BESK-S Implement forward recursion on the three term recursion
  260. DBESK-D relation for a sequence of non-negative order Bessel
  261. functions K/SUB(FNU+I-1)/(X), or scaled Bessel functions
  262. EXP(X)*K/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
  263. X and non-negative orders FNU.
  264. BESKES-S Compute a sequence of exponentially scaled modified Bessel
  265. DBSKES-D functions of the third kind of fractional order.
  266. BESKS-S Compute a sequence of modified Bessel functions of the
  267. DBESKS-D third kind of fractional order.
  268. C10B4. Complex argument, real order
  269. CBESI-C Compute a sequence of the Bessel functions I(a,z) for
  270. ZBESI-C complex argument z and real nonnegative orders a=b,b+1,
  271. b+2,... where b>0. A scaling option is available to
  272. help avoid overflow.
  273. CBESK-C Compute a sequence of the Bessel functions K(a,z) for
  274. ZBESK-C complex argument z and real nonnegative orders a=b,b+1,
  275. b+2,... where b>0. A scaling option is available to
  276. help avoid overflow.
  277. C10D. Airy and Scorer functions
  278. AI-S Evaluate the Airy function.
  279. DAI-D
  280. AIE-S Calculate the Airy function for a negative argument and an
  281. DAIE-D exponentially scaled Airy function for a non-negative
  282. argument.
  283. BI-S Evaluate the Bairy function (the Airy function of the
  284. DBI-D second kind).
  285. BIE-S Calculate the Bairy function for a negative argument and an
  286. DBIE-D exponentially scaled Bairy function for a non-negative
  287. argument.
  288. CAIRY-C Compute the Airy function Ai(z) or its derivative dAi/dz
  289. ZAIRY-C for complex argument z. A scaling option is available
  290. to help avoid underflow and overflow.
  291. CBIRY-C Compute the Airy function Bi(z) or its derivative dBi/dz
  292. ZBIRY-C for complex argument z. A scaling option is available
  293. to help avoid overflow.
  294. C10F. Integrals of Bessel functions
  295. BSKIN-S Compute repeated integrals of the K-zero Bessel function.
  296. DBSKIN-D
  297. C11. Confluent hypergeometric functions
  298. CHU-S Compute the logarithmic confluent hypergeometric function.
  299. DCHU-D
  300. C14. Elliptic integrals
  301. RC-S Calculate an approximation to
  302. DRC-D RC(X,Y) = Integral from zero to infinity of
  303. -1/2 -1
  304. (1/2)(t+X) (t+Y) dt,
  305. where X is nonnegative and Y is positive.
  306. RD-S Compute the incomplete or complete elliptic integral of the
  307. DRD-D 2nd kind. For X and Y nonnegative, X+Y and Z positive,
  308. RD(X,Y,Z) = Integral from zero to infinity of
  309. -1/2 -1/2 -3/2
  310. (3/2)(t+X) (t+Y) (t+Z) dt.
  311. If X or Y is zero, the integral is complete.
  312. RF-S Compute the incomplete or complete elliptic integral of the
  313. DRF-D 1st kind. For X, Y, and Z non-negative and at most one of
  314. them zero, RF(X,Y,Z) = Integral from zero to infinity of
  315. -1/2 -1/2 -1/2
  316. (1/2)(t+X) (t+Y) (t+Z) dt.
  317. If X, Y or Z is zero, the integral is complete.
  318. RJ-S Compute the incomplete or complete (X or Y or Z is zero)
  319. DRJ-D elliptic integral of the 3rd kind. For X, Y, and Z non-
  320. negative, at most one of them zero, and P positive,
  321. RJ(X,Y,Z,P) = Integral from zero to infinity of
  322. -1/2 -1/2 -1/2 -1
  323. (3/2)(t+X) (t+Y) (t+Z) (t+P) dt.
  324. C19. Other special functions
  325. RC3JJ-S Evaluate the 3j symbol f(L1) = ( L1 L2 L3)
  326. DRC3JJ-D (-M2-M3 M2 M3)
  327. for all allowed values of L1, the other parameters
  328. being held fixed.
  329. RC3JM-S Evaluate the 3j symbol g(M2) = (L1 L2 L3 )
  330. DRC3JM-D (M1 M2 -M1-M2)
  331. for all allowed values of M2, the other parameters
  332. being held fixed.
  333. RC6J-S Evaluate the 6j symbol h(L1) = {L1 L2 L3}
  334. DRC6J-D {L4 L5 L6}
  335. for all allowed values of L1, the other parameters
  336. being held fixed.
  337. D. Linear Algebra
  338. D1. Elementary vector and matrix operations
  339. D1A. Elementary vector operations
  340. D1A2. Minimum and maximum components
  341. ISAMAX-S Find the smallest index of that component of a vector
  342. IDAMAX-D having the maximum magnitude.
  343. ICAMAX-C
  344. D1A3. Norm
  345. D1A3A. L-1 (sum of magnitudes)
  346. SASUM-S Compute the sum of the magnitudes of the elements of a
  347. DASUM-D vector.
  348. SCASUM-C
  349. D1A3B. L-2 (Euclidean norm)
  350. SNRM2-S Compute the Euclidean length (L2 norm) of a vector.
  351. DNRM2-D
  352. SCNRM2-C
  353. D1A4. Dot product (inner product)
  354. CDOTC-C Dot product of two complex vectors using the complex
  355. conjugate of the first vector.
  356. DQDOTA-D Compute the inner product of two vectors with extended
  357. precision accumulation and result.
  358. DQDOTI-D Compute the inner product of two vectors with extended
  359. precision accumulation and result.
  360. DSDOT-D Compute the inner product of two vectors with extended
  361. DCDOT-C precision accumulation and result.
  362. SDOT-S Compute the inner product of two vectors.
  363. DDOT-D
  364. CDOTU-C
  365. SDSDOT-S Compute the inner product of two vectors with extended
  366. CDCDOT-C precision accumulation.
  367. D1A5. Copy or exchange (swap)
  368. ICOPY-S Copy a vector.
  369. DCOPY-D
  370. CCOPY-C
  371. ICOPY-I
  372. SCOPY-S Copy a vector.
  373. DCOPY-D
  374. CCOPY-C
  375. ICOPY-I
  376. SCOPYM-S Copy the negative of a vector to a vector.
  377. DCOPYM-D
  378. SSWAP-S Interchange two vectors.
  379. DSWAP-D
  380. CSWAP-C
  381. ISWAP-I
  382. D1A6. Multiplication by scalar
  383. CSSCAL-C Scale a complex vector.
  384. SSCAL-S Multiply a vector by a constant.
  385. DSCAL-D
  386. CSCAL-C
  387. D1A7. Triad (a*x+y for vectors x,y and scalar a)
  388. SAXPY-S Compute a constant times a vector plus a vector.
  389. DAXPY-D
  390. CAXPY-C
  391. D1A8. Elementary rotation (Givens transformation)
  392. SROT-S Apply a plane Givens rotation.
  393. DROT-D
  394. CSROT-C
  395. SROTM-S Apply a modified Givens transformation.
  396. DROTM-D
  397. D1B. Elementary matrix operations
  398. D1B4. Multiplication by vector
  399. CHPR-C Perform the hermitian rank 1 operation.
  400. DGER-D Perform the rank 1 operation.
  401. DSPR-D Perform the symmetric rank 1 operation.
  402. DSYR-D Perform the symmetric rank 1 operation.
  403. SGBMV-S Multiply a real vector by a real general band matrix.
  404. DGBMV-D
  405. CGBMV-C
  406. SGEMV-S Multiply a real vector by a real general matrix.
  407. DGEMV-D
  408. CGEMV-C
  409. SGER-S Perform rank 1 update of a real general matrix.
  410. CGERC-C Perform conjugated rank 1 update of a complex general
  411. SGERC-S matrix.
  412. DGERC-D
  413. CGERU-C Perform unconjugated rank 1 update of a complex general
  414. SGERU-S matrix.
  415. DGERU-D
  416. CHBMV-C Multiply a complex vector by a complex Hermitian band
  417. SHBMV-S matrix.
  418. DHBMV-D
  419. CHEMV-C Multiply a complex vector by a complex Hermitian matrix.
  420. SHEMV-S
  421. DHEMV-D
  422. CHER-C Perform Hermitian rank 1 update of a complex Hermitian
  423. SHER-S matrix.
  424. DHER-D
  425. CHER2-C Perform Hermitian rank 2 update of a complex Hermitian
  426. SHER2-S matrix.
  427. DHER2-D
  428. CHPMV-C Perform the matrix-vector operation.
  429. SHPMV-S
  430. DHPMV-D
  431. CHPR2-C Perform the hermitian rank 2 operation.
  432. SHPR2-S
  433. DHPR2-D
  434. SSBMV-S Multiply a real vector by a real symmetric band matrix.
  435. DSBMV-D
  436. CSBMV-C
  437. SSDI-S Diagonal Matrix Vector Multiply.
  438. DSDI-D Routine to calculate the product X = DIAG*B, where DIAG
  439. is a diagonal matrix.
  440. SSMTV-S SLAP Column Format Sparse Matrix Transpose Vector Product.
  441. DSMTV-D Routine to calculate the sparse matrix vector product:
  442. Y = A'*X, where ' denotes transpose.
  443. SSMV-S SLAP Column Format Sparse Matrix Vector Product.
  444. DSMV-D Routine to calculate the sparse matrix vector product:
  445. Y = A*X.
  446. SSPMV-S Perform the matrix-vector operation.
  447. DSPMV-D
  448. CSPMV-C
  449. SSPR-S Performs the symmetric rank 1 operation.
  450. SSPR2-S Perform the symmetric rank 2 operation.
  451. DSPR2-D
  452. CSPR2-C
  453. SSYMV-S Multiply a real vector by a real symmetric matrix.
  454. DSYMV-D
  455. CSYMV-C
  456. SSYR-S Perform symmetric rank 1 update of a real symmetric matrix.
  457. SSYR2-S Perform symmetric rank 2 update of a real symmetric matrix.
  458. DSYR2-D
  459. CSYR2-C
  460. STBMV-S Multiply a real vector by a real triangular band matrix.
  461. DTBMV-D
  462. CTBMV-C
  463. STBSV-S Solve a real triangular banded system of linear equations.
  464. DTBSV-D
  465. CTBSV-C
  466. STPMV-S Perform one of the matrix-vector operations.
  467. DTPMV-D
  468. CTPMV-C
  469. STPSV-S Solve one of the systems of equations.
  470. DTPSV-D
  471. CTPSV-C
  472. STRMV-S Multiply a real vector by a real triangular matrix.
  473. DTRMV-D
  474. CTRMV-C
  475. STRSV-S Solve a real triangular system of linear equations.
  476. DTRSV-D
  477. CTRSV-C
  478. D1B6. Multiplication
  479. SGEMM-S Multiply a real general matrix by a real general matrix.
  480. DGEMM-D
  481. CGEMM-C
  482. CHEMM-C Multiply a complex general matrix by a complex Hermitian
  483. SHEMM-S matrix.
  484. DHEMM-D
  485. CHER2K-C Perform Hermitian rank 2k update of a complex.
  486. SHER2-S
  487. DHER2-D
  488. CHER2-C
  489. CHERK-C Perform Hermitian rank k update of a complex Hermitian
  490. SHERK-S matrix.
  491. DHERK-D
  492. SSYMM-S Multiply a real general matrix by a real symmetric matrix.
  493. DSYMM-D
  494. CSYMM-C
  495. DSYR2K-D Perform one of the symmetric rank 2k operations.
  496. SSYR2-S
  497. DSYR2-D
  498. CSYR2-C
  499. SSYRK-S Perform symmetric rank k update of a real symmetric matrix.
  500. DSYRK-D
  501. CSYRK-C
  502. STRMM-S Multiply a real general matrix by a real triangular matrix.
  503. DTRMM-D
  504. CTRMM-C
  505. STRSM-S Solve a real triangular system of equations with multiple
  506. DTRSM-D right-hand sides.
  507. CTRSM-C
  508. D1B9. Storage mode conversion
  509. SS2Y-S SLAP Triad to SLAP Column Format Converter.
  510. DS2Y-D Routine to convert from the SLAP Triad to SLAP Column
  511. format.
  512. D1B10. Elementary rotation (Givens transformation)
  513. CSROT-C Apply a plane Givens rotation.
  514. SROT-S
  515. DROT-D
  516. SROTG-S Construct a plane Givens rotation.
  517. DROTG-D
  518. CROTG-C
  519. SROTMG-S Construct a modified Givens transformation.
  520. DROTMG-D
  521. D2. Solution of systems of linear equations (including inversion, LU and
  522. related decompositions)
  523. D2A. Real nonsymmetric matrices
  524. D2A1. General
  525. SGECO-S Factor a matrix using Gaussian elimination and estimate
  526. DGECO-D the condition number of the matrix.
  527. CGECO-C
  528. SGEDI-S Compute the determinant and inverse of a matrix using the
  529. DGEDI-D factors computed by SGECO or SGEFA.
  530. CGEDI-C
  531. SGEFA-S Factor a matrix using Gaussian elimination.
  532. DGEFA-D
  533. CGEFA-C
  534. SGEFS-S Solve a general system of linear equations.
  535. DGEFS-D
  536. CGEFS-C
  537. SGEIR-S Solve a general system of linear equations. Iterative
  538. CGEIR-C refinement is used to obtain an error estimate.
  539. SGESL-S Solve the real system A*X=B or TRANS(A)*X=B using the
  540. DGESL-D factors of SGECO or SGEFA.
  541. CGESL-C
  542. SQRSL-S Apply the output of SQRDC to compute coordinate transfor-
  543. DQRSL-D mations, projections, and least squares solutions.
  544. CQRSL-C
  545. D2A2. Banded
  546. SGBCO-S Factor a band matrix by Gaussian elimination and
  547. DGBCO-D estimate the condition number of the matrix.
  548. CGBCO-C
  549. SGBFA-S Factor a band matrix using Gaussian elimination.
  550. DGBFA-D
  551. CGBFA-C
  552. SGBSL-S Solve the real band system A*X=B or TRANS(A)*X=B using
  553. DGBSL-D the factors computed by SGBCO or SGBFA.
  554. CGBSL-C
  555. SNBCO-S Factor a band matrix using Gaussian elimination and
  556. DNBCO-D estimate the condition number.
  557. CNBCO-C
  558. SNBFA-S Factor a real band matrix by elimination.
  559. DNBFA-D
  560. CNBFA-C
  561. SNBFS-S Solve a general nonsymmetric banded system of linear
  562. DNBFS-D equations.
  563. CNBFS-C
  564. SNBIR-S Solve a general nonsymmetric banded system of linear
  565. CNBIR-C equations. Iterative refinement is used to obtain an error
  566. estimate.
  567. SNBSL-S Solve a real band system using the factors computed by
  568. DNBSL-D SNBCO or SNBFA.
  569. CNBSL-C
  570. D2A2A. Tridiagonal
  571. SGTSL-S Solve a tridiagonal linear system.
  572. DGTSL-D
  573. CGTSL-C
  574. D2A3. Triangular
  575. SSLI-S SLAP MSOLVE for Lower Triangle Matrix.
  576. DSLI-D This routine acts as an interface between the SLAP generic
  577. MSOLVE calling convention and the routine that actually
  578. -1
  579. computes L B = X.
  580. SSLI2-S SLAP Lower Triangle Matrix Backsolve.
  581. DSLI2-D Routine to solve a system of the form Lx = b , where L
  582. is a lower triangular matrix.
  583. STRCO-S Estimate the condition number of a triangular matrix.
  584. DTRCO-D
  585. CTRCO-C
  586. STRDI-S Compute the determinant and inverse of a triangular matrix.
  587. DTRDI-D
  588. CTRDI-C
  589. STRSL-S Solve a system of the form T*X=B or TRANS(T)*X=B, where
  590. DTRSL-D T is a triangular matrix.
  591. CTRSL-C
  592. D2A4. Sparse
  593. SBCG-S Preconditioned BiConjugate Gradient Sparse Ax = b Solver.
  594. DBCG-D Routine to solve a Non-Symmetric linear system Ax = b
  595. using the Preconditioned BiConjugate Gradient method.
  596. SCGN-S Preconditioned CG Sparse Ax=b Solver for Normal Equations.
  597. DCGN-D Routine to solve a general linear system Ax = b using the
  598. Preconditioned Conjugate Gradient method applied to the
  599. normal equations AA'y = b, x=A'y.
  600. SCGS-S Preconditioned BiConjugate Gradient Squared Ax=b Solver.
  601. DCGS-D Routine to solve a Non-Symmetric linear system Ax = b
  602. using the Preconditioned BiConjugate Gradient Squared
  603. method.
  604. SGMRES-S Preconditioned GMRES Iterative Sparse Ax=b Solver.
  605. DGMRES-D This routine uses the generalized minimum residual
  606. (GMRES) method with preconditioning to solve
  607. non-symmetric linear systems of the form: Ax = b.
  608. SIR-S Preconditioned Iterative Refinement Sparse Ax = b Solver.
  609. DIR-D Routine to solve a general linear system Ax = b using
  610. iterative refinement with a matrix splitting.
  611. SLPDOC-S Sparse Linear Algebra Package Version 2.0.2 Documentation.
  612. DLPDOC-D Routines to solve large sparse symmetric and nonsymmetric
  613. positive definite linear systems, Ax = b, using precondi-
  614. tioned iterative methods.
  615. SOMN-S Preconditioned Orthomin Sparse Iterative Ax=b Solver.
  616. DOMN-D Routine to solve a general linear system Ax = b using
  617. the Preconditioned Orthomin method.
  618. SSDBCG-S Diagonally Scaled BiConjugate Gradient Sparse Ax=b Solver.
  619. DSDBCG-D Routine to solve a linear system Ax = b using the
  620. BiConjugate Gradient method with diagonal scaling.
  621. SSDCGN-S Diagonally Scaled CG Sparse Ax=b Solver for Normal Eqn's.
  622. DSDCGN-D Routine to solve a general linear system Ax = b using
  623. diagonal scaling with the Conjugate Gradient method
  624. applied to the the normal equations, viz., AA'y = b,
  625. where x = A'y.
  626. SSDCGS-S Diagonally Scaled CGS Sparse Ax=b Solver.
  627. DSDCGS-D Routine to solve a linear system Ax = b using the
  628. BiConjugate Gradient Squared method with diagonal scaling.
  629. SSDGMR-S Diagonally Scaled GMRES Iterative Sparse Ax=b Solver.
  630. DSDGMR-D This routine uses the generalized minimum residual
  631. (GMRES) method with diagonal scaling to solve possibly
  632. non-symmetric linear systems of the form: Ax = b.
  633. SSDOMN-S Diagonally Scaled Orthomin Sparse Iterative Ax=b Solver.
  634. DSDOMN-D Routine to solve a general linear system Ax = b using
  635. the Orthomin method with diagonal scaling.
  636. SSGS-S Gauss-Seidel Method Iterative Sparse Ax = b Solver.
  637. DSGS-D Routine to solve a general linear system Ax = b using
  638. Gauss-Seidel iteration.
  639. SSILUR-S Incomplete LU Iterative Refinement Sparse Ax = b Solver.
  640. DSILUR-D Routine to solve a general linear system Ax = b using
  641. the incomplete LU decomposition with iterative refinement.
  642. SSJAC-S Jacobi's Method Iterative Sparse Ax = b Solver.
  643. DSJAC-D Routine to solve a general linear system Ax = b using
  644. Jacobi iteration.
  645. SSLUBC-S Incomplete LU BiConjugate Gradient Sparse Ax=b Solver.
  646. DSLUBC-D Routine to solve a linear system Ax = b using the
  647. BiConjugate Gradient method with Incomplete LU
  648. decomposition preconditioning.
  649. SSLUCN-S Incomplete LU CG Sparse Ax=b Solver for Normal Equations.
  650. DSLUCN-D Routine to solve a general linear system Ax = b using the
  651. incomplete LU decomposition with the Conjugate Gradient
  652. method applied to the normal equations, viz., AA'y = b,
  653. x = A'y.
  654. SSLUCS-S Incomplete LU BiConjugate Gradient Squared Ax=b Solver.
  655. DSLUCS-D Routine to solve a linear system Ax = b using the
  656. BiConjugate Gradient Squared method with Incomplete LU
  657. decomposition preconditioning.
  658. SSLUGM-S Incomplete LU GMRES Iterative Sparse Ax=b Solver.
  659. DSLUGM-D This routine uses the generalized minimum residual
  660. (GMRES) method with incomplete LU factorization for
  661. preconditioning to solve possibly non-symmetric linear
  662. systems of the form: Ax = b.
  663. SSLUOM-S Incomplete LU Orthomin Sparse Iterative Ax=b Solver.
  664. DSLUOM-D Routine to solve a general linear system Ax = b using
  665. the Orthomin method with Incomplete LU decomposition.
  666. D2B. Real symmetric matrices
  667. D2B1. General
  668. D2B1A. Indefinite
  669. SSICO-S Factor a symmetric matrix by elimination with symmetric
  670. DSICO-D pivoting and estimate the condition number of the matrix.
  671. CHICO-C
  672. CSICO-C
  673. SSIDI-S Compute the determinant, inertia and inverse of a real
  674. DSIDI-D symmetric matrix using the factors from SSIFA.
  675. CHIDI-C
  676. CSIDI-C
  677. SSIFA-S Factor a real symmetric matrix by elimination with
  678. DSIFA-D symmetric pivoting.
  679. CHIFA-C
  680. CSIFA-C
  681. SSISL-S Solve a real symmetric system using the factors obtained
  682. DSISL-D from SSIFA.
  683. CHISL-C
  684. CSISL-C
  685. SSPCO-S Factor a real symmetric matrix stored in packed form
  686. DSPCO-D by elimination with symmetric pivoting and estimate the
  687. CHPCO-C condition number of the matrix.
  688. CSPCO-C
  689. SSPDI-S Compute the determinant, inertia, inverse of a real
  690. DSPDI-D symmetric matrix stored in packed form using the factors
  691. CHPDI-C from SSPFA.
  692. CSPDI-C
  693. SSPFA-S Factor a real symmetric matrix stored in packed form by
  694. DSPFA-D elimination with symmetric pivoting.
  695. CHPFA-C
  696. CSPFA-C
  697. SSPSL-S Solve a real symmetric system using the factors obtained
  698. DSPSL-D from SSPFA.
  699. CHPSL-C
  700. CSPSL-C
  701. D2B1B. Positive definite
  702. SCHDC-S Compute the Cholesky decomposition of a positive definite
  703. DCHDC-D matrix. A pivoting option allows the user to estimate the
  704. CCHDC-C condition number of a positive definite matrix or determine
  705. the rank of a positive semidefinite matrix.
  706. SPOCO-S Factor a real symmetric positive definite matrix
  707. DPOCO-D and estimate the condition number of the matrix.
  708. CPOCO-C
  709. SPODI-S Compute the determinant and inverse of a certain real
  710. DPODI-D symmetric positive definite matrix using the factors
  711. CPODI-C computed by SPOCO, SPOFA or SQRDC.
  712. SPOFA-S Factor a real symmetric positive definite matrix.
  713. DPOFA-D
  714. CPOFA-C
  715. SPOFS-S Solve a positive definite symmetric system of linear
  716. DPOFS-D equations.
  717. CPOFS-C
  718. SPOIR-S Solve a positive definite symmetric system of linear
  719. CPOIR-C equations. Iterative refinement is used to obtain an error
  720. estimate.
  721. SPOSL-S Solve the real symmetric positive definite linear system
  722. DPOSL-D using the factors computed by SPOCO or SPOFA.
  723. CPOSL-C
  724. SPPCO-S Factor a symmetric positive definite matrix stored in
  725. DPPCO-D packed form and estimate the condition number of the
  726. CPPCO-C matrix.
  727. SPPDI-S Compute the determinant and inverse of a real symmetric
  728. DPPDI-D positive definite matrix using factors from SPPCO or SPPFA.
  729. CPPDI-C
  730. SPPFA-S Factor a real symmetric positive definite matrix stored in
  731. DPPFA-D packed form.
  732. CPPFA-C
  733. SPPSL-S Solve the real symmetric positive definite system using
  734. DPPSL-D the factors computed by SPPCO or SPPFA.
  735. CPPSL-C
  736. D2B2. Positive definite banded
  737. SPBCO-S Factor a real symmetric positive definite matrix stored in
  738. DPBCO-D band form and estimate the condition number of the matrix.
  739. CPBCO-C
  740. SPBFA-S Factor a real symmetric positive definite matrix stored in
  741. DPBFA-D band form.
  742. CPBFA-C
  743. SPBSL-S Solve a real symmetric positive definite band system
  744. DPBSL-D using the factors computed by SPBCO or SPBFA.
  745. CPBSL-C
  746. D2B2A. Tridiagonal
  747. SPTSL-S Solve a positive definite tridiagonal linear system.
  748. DPTSL-D
  749. CPTSL-C
  750. D2B4. Sparse
  751. SBCG-S Preconditioned BiConjugate Gradient Sparse Ax = b Solver.
  752. DBCG-D Routine to solve a Non-Symmetric linear system Ax = b
  753. using the Preconditioned BiConjugate Gradient method.
  754. SCG-S Preconditioned Conjugate Gradient Sparse Ax=b Solver.
  755. DCG-D Routine to solve a symmetric positive definite linear
  756. system Ax = b using the Preconditioned Conjugate
  757. Gradient method.
  758. SCGN-S Preconditioned CG Sparse Ax=b Solver for Normal Equations.
  759. DCGN-D Routine to solve a general linear system Ax = b using the
  760. Preconditioned Conjugate Gradient method applied to the
  761. normal equations AA'y = b, x=A'y.
  762. SCGS-S Preconditioned BiConjugate Gradient Squared Ax=b Solver.
  763. DCGS-D Routine to solve a Non-Symmetric linear system Ax = b
  764. using the Preconditioned BiConjugate Gradient Squared
  765. method.
  766. SGMRES-S Preconditioned GMRES Iterative Sparse Ax=b Solver.
  767. DGMRES-D This routine uses the generalized minimum residual
  768. (GMRES) method with preconditioning to solve
  769. non-symmetric linear systems of the form: Ax = b.
  770. SIR-S Preconditioned Iterative Refinement Sparse Ax = b Solver.
  771. DIR-D Routine to solve a general linear system Ax = b using
  772. iterative refinement with a matrix splitting.
  773. SLPDOC-S Sparse Linear Algebra Package Version 2.0.2 Documentation.
  774. DLPDOC-D Routines to solve large sparse symmetric and nonsymmetric
  775. positive definite linear systems, Ax = b, using precondi-
  776. tioned iterative methods.
  777. SOMN-S Preconditioned Orthomin Sparse Iterative Ax=b Solver.
  778. DOMN-D Routine to solve a general linear system Ax = b using
  779. the Preconditioned Orthomin method.
  780. SSDBCG-S Diagonally Scaled BiConjugate Gradient Sparse Ax=b Solver.
  781. DSDBCG-D Routine to solve a linear system Ax = b using the
  782. BiConjugate Gradient method with diagonal scaling.
  783. SSDCG-S Diagonally Scaled Conjugate Gradient Sparse Ax=b Solver.
  784. DSDCG-D Routine to solve a symmetric positive definite linear
  785. system Ax = b using the Preconditioned Conjugate
  786. Gradient method. The preconditioner is diagonal scaling.
  787. SSDCGN-S Diagonally Scaled CG Sparse Ax=b Solver for Normal Eqn's.
  788. DSDCGN-D Routine to solve a general linear system Ax = b using
  789. diagonal scaling with the Conjugate Gradient method
  790. applied to the the normal equations, viz., AA'y = b,
  791. where x = A'y.
  792. SSDCGS-S Diagonally Scaled CGS Sparse Ax=b Solver.
  793. DSDCGS-D Routine to solve a linear system Ax = b using the
  794. BiConjugate Gradient Squared method with diagonal scaling.
  795. SSDGMR-S Diagonally Scaled GMRES Iterative Sparse Ax=b Solver.
  796. DSDGMR-D This routine uses the generalized minimum residual
  797. (GMRES) method with diagonal scaling to solve possibly
  798. non-symmetric linear systems of the form: Ax = b.
  799. SSDOMN-S Diagonally Scaled Orthomin Sparse Iterative Ax=b Solver.
  800. DSDOMN-D Routine to solve a general linear system Ax = b using
  801. the Orthomin method with diagonal scaling.
  802. SSGS-S Gauss-Seidel Method Iterative Sparse Ax = b Solver.
  803. DSGS-D Routine to solve a general linear system Ax = b using
  804. Gauss-Seidel iteration.
  805. SSICCG-S Incomplete Cholesky Conjugate Gradient Sparse Ax=b Solver.
  806. DSICCG-D Routine to solve a symmetric positive definite linear
  807. system Ax = b using the incomplete Cholesky
  808. Preconditioned Conjugate Gradient method.
  809. SSILUR-S Incomplete LU Iterative Refinement Sparse Ax = b Solver.
  810. DSILUR-D Routine to solve a general linear system Ax = b using
  811. the incomplete LU decomposition with iterative refinement.
  812. SSJAC-S Jacobi's Method Iterative Sparse Ax = b Solver.
  813. DSJAC-D Routine to solve a general linear system Ax = b using
  814. Jacobi iteration.
  815. SSLUBC-S Incomplete LU BiConjugate Gradient Sparse Ax=b Solver.
  816. DSLUBC-D Routine to solve a linear system Ax = b using the
  817. BiConjugate Gradient method with Incomplete LU
  818. decomposition preconditioning.
  819. SSLUCN-S Incomplete LU CG Sparse Ax=b Solver for Normal Equations.
  820. DSLUCN-D Routine to solve a general linear system Ax = b using the
  821. incomplete LU decomposition with the Conjugate Gradient
  822. method applied to the normal equations, viz., AA'y = b,
  823. x = A'y.
  824. SSLUCS-S Incomplete LU BiConjugate Gradient Squared Ax=b Solver.
  825. DSLUCS-D Routine to solve a linear system Ax = b using the
  826. BiConjugate Gradient Squared method with Incomplete LU
  827. decomposition preconditioning.
  828. SSLUGM-S Incomplete LU GMRES Iterative Sparse Ax=b Solver.
  829. DSLUGM-D This routine uses the generalized minimum residual
  830. (GMRES) method with incomplete LU factorization for
  831. preconditioning to solve possibly non-symmetric linear
  832. systems of the form: Ax = b.
  833. SSLUOM-S Incomplete LU Orthomin Sparse Iterative Ax=b Solver.
  834. DSLUOM-D Routine to solve a general linear system Ax = b using
  835. the Orthomin method with Incomplete LU decomposition.
  836. D2C. Complex non-Hermitian matrices
  837. D2C1. General
  838. CGECO-C Factor a matrix using Gaussian elimination and estimate
  839. SGECO-S the condition number of the matrix.
  840. DGECO-D
  841. CGEDI-C Compute the determinant and inverse of a matrix using the
  842. SGEDI-S factors computed by CGECO or CGEFA.
  843. DGEDI-D
  844. CGEFA-C Factor a matrix using Gaussian elimination.
  845. SGEFA-S
  846. DGEFA-D
  847. CGEFS-C Solve a general system of linear equations.
  848. SGEFS-S
  849. DGEFS-D
  850. CGEIR-C Solve a general system of linear equations. Iterative
  851. SGEIR-S refinement is used to obtain an error estimate.
  852. CGESL-C Solve the complex system A*X=B or CTRANS(A)*X=B using the
  853. SGESL-S factors computed by CGECO or CGEFA.
  854. DGESL-D
  855. CQRSL-C Apply the output of CQRDC to compute coordinate transfor-
  856. SQRSL-S mations, projections, and least squares solutions.
  857. DQRSL-D
  858. CSICO-C Factor a complex symmetric matrix by elimination with
  859. SSICO-S symmetric pivoting and estimate the condition number of the
  860. DSICO-D matrix.
  861. CHICO-C
  862. CSIDI-C Compute the determinant and inverse of a complex symmetric
  863. SSIDI-S matrix using the factors from CSIFA.
  864. DSIDI-D
  865. CHIDI-C
  866. CSIFA-C Factor a complex symmetric matrix by elimination with
  867. SSIFA-S symmetric pivoting.
  868. DSIFA-D
  869. CHIFA-C
  870. CSISL-C Solve a complex symmetric system using the factors obtained
  871. SSISL-S from CSIFA.
  872. DSISL-D
  873. CHISL-C
  874. CSPCO-C Factor a complex symmetric matrix stored in packed form
  875. SSPCO-S by elimination with symmetric pivoting and estimate the
  876. DSPCO-D condition number of the matrix.
  877. CHPCO-C
  878. CSPDI-C Compute the determinant and inverse of a complex symmetric
  879. SSPDI-S matrix stored in packed form using the factors from CSPFA.
  880. DSPDI-D
  881. CHPDI-C
  882. CSPFA-C Factor a complex symmetric matrix stored in packed form by
  883. SSPFA-S elimination with symmetric pivoting.
  884. DSPFA-D
  885. CHPFA-C
  886. CSPSL-C Solve a complex symmetric system using the factors obtained
  887. SSPSL-S from CSPFA.
  888. DSPSL-D
  889. CHPSL-C
  890. D2C2. Banded
  891. CGBCO-C Factor a band matrix by Gaussian elimination and
  892. SGBCO-S estimate the condition number of the matrix.
  893. DGBCO-D
  894. CGBFA-C Factor a band matrix using Gaussian elimination.
  895. SGBFA-S
  896. DGBFA-D
  897. CGBSL-C Solve the complex band system A*X=B or CTRANS(A)*X=B using
  898. SGBSL-S the factors computed by CGBCO or CGBFA.
  899. DGBSL-D
  900. CNBCO-C Factor a band matrix using Gaussian elimination and
  901. SNBCO-S estimate the condition number.
  902. DNBCO-D
  903. CNBFA-C Factor a band matrix by elimination.
  904. SNBFA-S
  905. DNBFA-D
  906. CNBFS-C Solve a general nonsymmetric banded system of linear
  907. SNBFS-S equations.
  908. DNBFS-D
  909. CNBIR-C Solve a general nonsymmetric banded system of linear
  910. SNBIR-S equations. Iterative refinement is used to obtain an error
  911. estimate.
  912. CNBSL-C Solve a complex band system using the factors computed by
  913. SNBSL-S CNBCO or CNBFA.
  914. DNBSL-D
  915. D2C2A. Tridiagonal
  916. CGTSL-C Solve a tridiagonal linear system.
  917. SGTSL-S
  918. DGTSL-D
  919. D2C3. Triangular
  920. CTRCO-C Estimate the condition number of a triangular matrix.
  921. STRCO-S
  922. DTRCO-D
  923. CTRDI-C Compute the determinant and inverse of a triangular matrix.
  924. STRDI-S
  925. DTRDI-D
  926. CTRSL-C Solve a system of the form T*X=B or CTRANS(T)*X=B, where
  927. STRSL-S T is a triangular matrix. Here CTRANS(T) is the conjugate
  928. DTRSL-D transpose.
  929. D2D. Complex Hermitian matrices
  930. D2D1. General
  931. D2D1A. Indefinite
  932. CHICO-C Factor a complex Hermitian matrix by elimination with sym-
  933. SSICO-S metric pivoting and estimate the condition of the matrix.
  934. DSICO-D
  935. CSICO-C
  936. CHIDI-C Compute the determinant, inertia and inverse of a complex
  937. SSIDI-S Hermitian matrix using the factors obtained from CHIFA.
  938. DSISI-D
  939. CSIDI-C
  940. CHIFA-C Factor a complex Hermitian matrix by elimination
  941. SSIFA-S (symmetric pivoting).
  942. DSIFA-D
  943. CSIFA-C
  944. CHISL-C Solve the complex Hermitian system using factors obtained
  945. SSISL-S from CHIFA.
  946. DSISL-D
  947. CSISL-C
  948. CHPCO-C Factor a complex Hermitian matrix stored in packed form by
  949. SSPCO-S elimination with symmetric pivoting and estimate the
  950. DSPCO-D condition number of the matrix.
  951. CSPCO-C
  952. CHPDI-C Compute the determinant, inertia and inverse of a complex
  953. SSPDI-S Hermitian matrix stored in packed form using the factors
  954. DSPDI-D obtained from CHPFA.
  955. DSPDI-C
  956. CHPFA-C Factor a complex Hermitian matrix stored in packed form by
  957. SSPFA-S elimination with symmetric pivoting.
  958. DSPFA-D
  959. DSPFA-C
  960. CHPSL-C Solve a complex Hermitian system using factors obtained
  961. SSPSL-S from CHPFA.
  962. DSPSL-D
  963. CSPSL-C
  964. D2D1B. Positive definite
  965. CCHDC-C Compute the Cholesky decomposition of a positive definite
  966. SCHDC-S matrix. A pivoting option allows the user to estimate the
  967. DCHDC-D condition number of a positive definite matrix or determine
  968. the rank of a positive semidefinite matrix.
  969. CPOCO-C Factor a complex Hermitian positive definite matrix
  970. SPOCO-S and estimate the condition number of the matrix.
  971. DPOCO-D
  972. CPODI-C Compute the determinant and inverse of a certain complex
  973. SPODI-S Hermitian positive definite matrix using the factors
  974. DPODI-D computed by CPOCO, CPOFA, or CQRDC.
  975. CPOFA-C Factor a complex Hermitian positive definite matrix.
  976. SPOFA-S
  977. DPOFA-D
  978. CPOFS-C Solve a positive definite symmetric complex system of
  979. SPOFS-S linear equations.
  980. DPOFS-D
  981. CPOIR-C Solve a positive definite Hermitian system of linear
  982. SPOIR-S equations. Iterative refinement is used to obtain an
  983. error estimate.
  984. CPOSL-C Solve the complex Hermitian positive definite linear system
  985. SPOSL-S using the factors computed by CPOCO or CPOFA.
  986. DPOSL-D
  987. CPPCO-C Factor a complex Hermitian positive definite matrix stored
  988. SPPCO-S in packed form and estimate the condition number of the
  989. DPPCO-D matrix.
  990. CPPDI-C Compute the determinant and inverse of a complex Hermitian
  991. SPPDI-S positive definite matrix using factors from CPPCO or CPPFA.
  992. DPPDI-D
  993. CPPFA-C Factor a complex Hermitian positive definite matrix stored
  994. SPPFA-S in packed form.
  995. DPPFA-D
  996. CPPSL-C Solve the complex Hermitian positive definite system using
  997. SPPSL-S the factors computed by CPPCO or CPPFA.
  998. DPPSL-D
  999. D2D2. Positive definite banded
  1000. CPBCO-C Factor a complex Hermitian positive definite matrix stored
  1001. SPBCO-S in band form and estimate the condition number of the
  1002. DPBCO-D matrix.
  1003. CPBFA-C Factor a complex Hermitian positive definite matrix stored
  1004. SPBFA-S in band form.
  1005. DPBFA-D
  1006. CPBSL-C Solve the complex Hermitian positive definite band system
  1007. SPBSL-S using the factors computed by CPBCO or CPBFA.
  1008. DPBSL-D
  1009. D2D2A. Tridiagonal
  1010. CPTSL-C Solve a positive definite tridiagonal linear system.
  1011. SPTSL-S
  1012. DPTSL-D
  1013. D2E. Associated operations (e.g., matrix reorderings)
  1014. SLLTI2-S SLAP Backsolve routine for LDL' Factorization.
  1015. DLLTI2-D Routine to solve a system of the form L*D*L' X = B,
  1016. where L is a unit lower triangular matrix and D is a
  1017. diagonal matrix and ' means transpose.
  1018. SS2LT-S Lower Triangle Preconditioner SLAP Set Up.
  1019. DS2LT-D Routine to store the lower triangle of a matrix stored
  1020. in the SLAP Column format.
  1021. SSD2S-S Diagonal Scaling Preconditioner SLAP Normal Eqns Set Up.
  1022. DSD2S-D Routine to compute the inverse of the diagonal of the
  1023. matrix A*A', where A is stored in SLAP-Column format.
  1024. SSDS-S Diagonal Scaling Preconditioner SLAP Set Up.
  1025. DSDS-D Routine to compute the inverse of the diagonal of a matrix
  1026. stored in the SLAP Column format.
  1027. SSDSCL-S Diagonal Scaling of system Ax = b.
  1028. DSDSCL-D This routine scales (and unscales) the system Ax = b
  1029. by symmetric diagonal scaling.
  1030. SSICS-S Incompl. Cholesky Decomposition Preconditioner SLAP Set Up.
  1031. DSICS-D Routine to generate the Incomplete Cholesky decomposition,
  1032. L*D*L-trans, of a symmetric positive definite matrix, A,
  1033. which is stored in SLAP Column format. The unit lower
  1034. triangular matrix L is stored by rows, and the inverse of
  1035. the diagonal matrix D is stored.
  1036. SSILUS-S Incomplete LU Decomposition Preconditioner SLAP Set Up.
  1037. DSILUS-D Routine to generate the incomplete LDU decomposition of a
  1038. matrix. The unit lower triangular factor L is stored by
  1039. rows and the unit upper triangular factor U is stored by
  1040. columns. The inverse of the diagonal matrix D is stored.
  1041. No fill in is allowed.
  1042. SSLLTI-S SLAP MSOLVE for LDL' (IC) Factorization.
  1043. DSLLTI-D This routine acts as an interface between the SLAP generic
  1044. MSOLVE calling convention and the routine that actually
  1045. -1
  1046. computes (LDL') B = X.
  1047. SSLUI-S SLAP MSOLVE for LDU Factorization.
  1048. DSLUI-D This routine acts as an interface between the SLAP generic
  1049. MSOLVE calling convention and the routine that actually
  1050. -1
  1051. computes (LDU) B = X.
  1052. SSLUI2-S SLAP Backsolve for LDU Factorization.
  1053. DSLUI2-D Routine to solve a system of the form L*D*U X = B,
  1054. where L is a unit lower triangular matrix, D is a diagonal
  1055. matrix, and U is a unit upper triangular matrix.
  1056. SSLUI4-S SLAP Backsolve for LDU Factorization.
  1057. DSLUI4-D Routine to solve a system of the form (L*D*U)' X = B,
  1058. where L is a unit lower triangular matrix, D is a diagonal
  1059. matrix, and U is a unit upper triangular matrix and '
  1060. denotes transpose.
  1061. SSLUTI-S SLAP MTSOLV for LDU Factorization.
  1062. DSLUTI-D This routine acts as an interface between the SLAP generic
  1063. MTSOLV calling convention and the routine that actually
  1064. -T
  1065. computes (LDU) B = X.
  1066. SSMMI2-S SLAP Backsolve for LDU Factorization of Normal Equations.
  1067. DSMMI2-D To solve a system of the form (L*D*U)*(L*D*U)' X = B,
  1068. where L is a unit lower triangular matrix, D is a diagonal
  1069. matrix, and U is a unit upper triangular matrix and '
  1070. denotes transpose.
  1071. SSMMTI-S SLAP MSOLVE for LDU Factorization of Normal Equations.
  1072. DSMMTI-D This routine acts as an interface between the SLAP generic
  1073. MMTSLV calling convention and the routine that actually
  1074. -1
  1075. computes [(LDU)*(LDU)'] B = X.
  1076. D3. Determinants
  1077. D3A. Real nonsymmetric matrices
  1078. D3A1. General
  1079. SGEDI-S Compute the determinant and inverse of a matrix using the
  1080. DGEDI-D factors computed by SGECO or SGEFA.
  1081. CGEDI-C
  1082. D3A2. Banded
  1083. SGBDI-S Compute the determinant of a band matrix using the factors
  1084. DGBDI-D computed by SGBCO or SGBFA.
  1085. CGBDI-C
  1086. SNBDI-S Compute the determinant of a band matrix using the factors
  1087. DNBDI-D computed by SNBCO or SNBFA.
  1088. CNBDI-C
  1089. D3A3. Triangular
  1090. STRDI-S Compute the determinant and inverse of a triangular matrix.
  1091. DTRDI-D
  1092. CTRDI-C
  1093. D3B. Real symmetric matrices
  1094. D3B1. General
  1095. D3B1A. Indefinite
  1096. SSIDI-S Compute the determinant, inertia and inverse of a real
  1097. DSIDI-D symmetric matrix using the factors from SSIFA.
  1098. CHIDI-C
  1099. CSIDI-C
  1100. SSPDI-S Compute the determinant, inertia, inverse of a real
  1101. DSPDI-D symmetric matrix stored in packed form using the factors
  1102. CHPDI-C from SSPFA.
  1103. CSPDI-C
  1104. D3B1B. Positive definite
  1105. SPODI-S Compute the determinant and inverse of a certain real
  1106. DPODI-D symmetric positive definite matrix using the factors
  1107. CPODI-C computed by SPOCO, SPOFA or SQRDC.
  1108. SPPDI-S Compute the determinant and inverse of a real symmetric
  1109. DPPDI-D positive definite matrix using factors from SPPCO or SPPFA.
  1110. CPPDI-C
  1111. D3B2. Positive definite banded
  1112. SPBDI-S Compute the determinant of a symmetric positive definite
  1113. DPBDI-D band matrix using the factors computed by SPBCO or SPBFA.
  1114. CPBDI-C
  1115. D3C. Complex non-Hermitian matrices
  1116. D3C1. General
  1117. CGEDI-C Compute the determinant and inverse of a matrix using the
  1118. SGEDI-S factors computed by CGECO or CGEFA.
  1119. DGEDI-D
  1120. CSIDI-C Compute the determinant and inverse of a complex symmetric
  1121. SSIDI-S matrix using the factors from CSIFA.
  1122. DSIDI-D
  1123. CHIDI-C
  1124. CSPDI-C Compute the determinant and inverse of a complex symmetric
  1125. SSPDI-S matrix stored in packed form using the factors from CSPFA.
  1126. DSPDI-D
  1127. CHPDI-C
  1128. D3C2. Banded
  1129. CGBDI-C Compute the determinant of a complex band matrix using the
  1130. SGBDI-S factors from CGBCO or CGBFA.
  1131. DGBDI-D
  1132. CNBDI-C Compute the determinant of a band matrix using the factors
  1133. SNBDI-S computed by CNBCO or CNBFA.
  1134. DNBDI-D
  1135. D3C3. Triangular
  1136. CTRDI-C Compute the determinant and inverse of a triangular matrix.
  1137. STRDI-S
  1138. DTRDI-D
  1139. D3D. Complex Hermitian matrices
  1140. D3D1. General
  1141. D3D1A. Indefinite
  1142. CHIDI-C Compute the determinant, inertia and inverse of a complex
  1143. SSIDI-S Hermitian matrix using the factors obtained from CHIFA.
  1144. DSISI-D
  1145. CSIDI-C
  1146. CHPDI-C Compute the determinant, inertia and inverse of a complex
  1147. SSPDI-S Hermitian matrix stored in packed form using the factors
  1148. DSPDI-D obtained from CHPFA.
  1149. DSPDI-C
  1150. D3D1B. Positive definite
  1151. CPODI-C Compute the determinant and inverse of a certain complex
  1152. SPODI-S Hermitian positive definite matrix using the factors
  1153. DPODI-D computed by CPOCO, CPOFA, or CQRDC.
  1154. CPPDI-C Compute the determinant and inverse of a complex Hermitian
  1155. SPPDI-S positive definite matrix using factors from CPPCO or CPPFA.
  1156. DPPDI-D
  1157. D3D2. Positive definite banded
  1158. CPBDI-C Compute the determinant of a complex Hermitian positive
  1159. SPBDI-S definite band matrix using the factors computed by CPBCO or
  1160. DPBDI-D CPBFA.
  1161. D4. Eigenvalues, eigenvectors
  1162. EISDOC-A Documentation for EISPACK, a collection of subprograms for
  1163. solving matrix eigen-problems.
  1164. D4A. Ordinary eigenvalue problems (Ax = (lambda) * x)
  1165. D4A1. Real symmetric
  1166. RS-S Compute the eigenvalues and, optionally, the eigenvectors
  1167. CH-C of a real symmetric matrix.
  1168. RSP-S Compute the eigenvalues and, optionally, the eigenvectors
  1169. of a real symmetric matrix packed into a one dimensional
  1170. array.
  1171. SSIEV-S Compute the eigenvalues and, optionally, the eigenvectors
  1172. CHIEV-C of a real symmetric matrix.
  1173. SSPEV-S Compute the eigenvalues and, optionally, the eigenvectors
  1174. of a real symmetric matrix stored in packed form.
  1175. D4A2. Real nonsymmetric
  1176. RG-S Compute the eigenvalues and, optionally, the eigenvectors
  1177. CG-C of a real general matrix.
  1178. SGEEV-S Compute the eigenvalues and, optionally, the eigenvectors
  1179. CGEEV-C of a real general matrix.
  1180. D4A3. Complex Hermitian
  1181. CH-C Compute the eigenvalues and, optionally, the eigenvectors
  1182. RS-S of a complex Hermitian matrix.
  1183. CHIEV-C Compute the eigenvalues and, optionally, the eigenvectors
  1184. SSIEV-S of a complex Hermitian matrix.
  1185. D4A4. Complex non-Hermitian
  1186. CG-C Compute the eigenvalues and, optionally, the eigenvectors
  1187. RG-S of a complex general matrix.
  1188. CGEEV-C Compute the eigenvalues and, optionally, the eigenvectors
  1189. SGEEV-S of a complex general matrix.
  1190. D4A5. Tridiagonal
  1191. BISECT-S Compute the eigenvalues of a symmetric tridiagonal matrix
  1192. in a given interval using Sturm sequencing.
  1193. IMTQL1-S Compute the eigenvalues of a symmetric tridiagonal matrix
  1194. using the implicit QL method.
  1195. IMTQL2-S Compute the eigenvalues and eigenvectors of a symmetric
  1196. tridiagonal matrix using the implicit QL method.
  1197. IMTQLV-S Compute the eigenvalues of a symmetric tridiagonal matrix
  1198. using the implicit QL method. Eigenvectors may be computed
  1199. later.
  1200. RATQR-S Compute the largest or smallest eigenvalues of a symmetric
  1201. tridiagonal matrix using the rational QR method with Newton
  1202. correction.
  1203. RST-S Compute the eigenvalues and, optionally, the eigenvectors
  1204. of a real symmetric tridiagonal matrix.
  1205. RT-S Compute the eigenvalues and eigenvectors of a special real
  1206. tridiagonal matrix.
  1207. TQL1-S Compute the eigenvalues of symmetric tridiagonal matrix by
  1208. the QL method.
  1209. TQL2-S Compute the eigenvalues and eigenvectors of symmetric
  1210. tridiagonal matrix.
  1211. TQLRAT-S Compute the eigenvalues of symmetric tridiagonal matrix
  1212. using a rational variant of the QL method.
  1213. TRIDIB-S Compute the eigenvalues of a symmetric tridiagonal matrix
  1214. in a given interval using Sturm sequencing.
  1215. TSTURM-S Find those eigenvalues of a symmetric tridiagonal matrix
  1216. in a given interval and their associated eigenvectors by
  1217. Sturm sequencing.
  1218. D4A6. Banded
  1219. BQR-S Compute some of the eigenvalues of a real symmetric
  1220. matrix using the QR method with shifts of origin.
  1221. RSB-S Compute the eigenvalues and, optionally, the eigenvectors
  1222. of a symmetric band matrix.
  1223. D4B. Generalized eigenvalue problems (e.g., Ax = (lambda)*Bx)
  1224. D4B1. Real symmetric
  1225. RSG-S Compute the eigenvalues and, optionally, the eigenvectors
  1226. of a symmetric generalized eigenproblem.
  1227. RSGAB-S Compute the eigenvalues and, optionally, the eigenvectors
  1228. of a symmetric generalized eigenproblem.
  1229. RSGBA-S Compute the eigenvalues and, optionally, the eigenvectors
  1230. of a symmetric generalized eigenproblem.
  1231. D4B2. Real general
  1232. RGG-S Compute the eigenvalues and eigenvectors for a real
  1233. generalized eigenproblem.
  1234. D4C. Associated operations
  1235. D4C1. Transform problem
  1236. D4C1A. Balance matrix
  1237. BALANC-S Balance a real general matrix and isolate eigenvalues
  1238. CBAL-C whenever possible.
  1239. D4C1B. Reduce to compact form
  1240. D4C1B1. Tridiagonal
  1241. BANDR-S Reduce a real symmetric band matrix to symmetric
  1242. tridiagonal matrix and, optionally, accumulate
  1243. orthogonal similarity transformations.
  1244. HTRID3-S Reduce a complex Hermitian (packed) matrix to a real
  1245. symmetric tridiagonal matrix by unitary similarity
  1246. transformations.
  1247. HTRIDI-S Reduce a complex Hermitian matrix to a real symmetric
  1248. tridiagonal matrix using unitary similarity
  1249. transformations.
  1250. TRED1-S Reduce a real symmetric matrix to symmetric tridiagonal
  1251. matrix using orthogonal similarity transformations.
  1252. TRED2-S Reduce a real symmetric matrix to a symmetric tridiagonal
  1253. matrix using and accumulating orthogonal transformations.
  1254. TRED3-S Reduce a real symmetric matrix stored in packed form to
  1255. symmetric tridiagonal matrix using orthogonal
  1256. transformations.
  1257. D4C1B2. Hessenberg
  1258. ELMHES-S Reduce a real general matrix to upper Hessenberg form
  1259. COMHES-C using stabilized elementary similarity transformations.
  1260. ORTHES-S Reduce a real general matrix to upper Hessenberg form
  1261. CORTH-C using orthogonal similarity transformations.
  1262. D4C1B3. Other
  1263. QZHES-S The first step of the QZ algorithm for solving generalized
  1264. matrix eigenproblems. Accepts a pair of real general
  1265. matrices and reduces one of them to upper Hessenberg
  1266. and the other to upper triangular form using orthogonal
  1267. transformations. Usually followed by QZIT, QZVAL, QZVEC.
  1268. QZIT-S The second step of the QZ algorithm for generalized
  1269. eigenproblems. Accepts an upper Hessenberg and an upper
  1270. triangular matrix and reduces the former to
  1271. quasi-triangular form while preserving the form of the
  1272. latter. Usually preceded by QZHES and followed by QZVAL
  1273. and QZVEC.
  1274. D4C1C. Standardize problem
  1275. FIGI-S Transforms certain real non-symmetric tridiagonal matrix
  1276. to symmetric tridiagonal matrix.
  1277. FIGI2-S Transforms certain real non-symmetric tridiagonal matrix
  1278. to symmetric tridiagonal matrix.
  1279. REDUC-S Reduce a generalized symmetric eigenproblem to a standard
  1280. symmetric eigenproblem using Cholesky factorization.
  1281. REDUC2-S Reduce a certain generalized symmetric eigenproblem to a
  1282. standard symmetric eigenproblem using Cholesky
  1283. factorization.
  1284. D4C2. Compute eigenvalues of matrix in compact form
  1285. D4C2A. Tridiagonal
  1286. BISECT-S Compute the eigenvalues of a symmetric tridiagonal matrix
  1287. in a given interval using Sturm sequencing.
  1288. IMTQL1-S Compute the eigenvalues of a symmetric tridiagonal matrix
  1289. using the implicit QL method.
  1290. IMTQL2-S Compute the eigenvalues and eigenvectors of a symmetric
  1291. tridiagonal matrix using the implicit QL method.
  1292. IMTQLV-S Compute the eigenvalues of a symmetric tridiagonal matrix
  1293. using the implicit QL method. Eigenvectors may be computed
  1294. later.
  1295. RATQR-S Compute the largest or smallest eigenvalues of a symmetric
  1296. tridiagonal matrix using the rational QR method with Newton
  1297. correction.
  1298. TQL1-S Compute the eigenvalues of symmetric tridiagonal matrix by
  1299. the QL method.
  1300. TQL2-S Compute the eigenvalues and eigenvectors of symmetric
  1301. tridiagonal matrix.
  1302. TQLRAT-S Compute the eigenvalues of symmetric tridiagonal matrix
  1303. using a rational variant of the QL method.
  1304. TRIDIB-S Compute the eigenvalues of a symmetric tridiagonal matrix
  1305. in a given interval using Sturm sequencing.
  1306. TSTURM-S Find those eigenvalues of a symmetric tridiagonal matrix
  1307. in a given interval and their associated eigenvectors by
  1308. Sturm sequencing.
  1309. D4C2B. Hessenberg
  1310. COMLR-C Compute the eigenvalues of a complex upper Hessenberg
  1311. matrix using the modified LR method.
  1312. COMLR2-C Compute the eigenvalues and eigenvectors of a complex upper
  1313. Hessenberg matrix using the modified LR method.
  1314. HQR-S Compute the eigenvalues of a real upper Hessenberg matrix
  1315. COMQR-C using the QR method.
  1316. HQR2-S Compute the eigenvalues and eigenvectors of a real upper
  1317. COMQR2-C Hessenberg matrix using QR method.
  1318. INVIT-S Compute the eigenvectors of a real upper Hessenberg
  1319. CINVIT-C matrix associated with specified eigenvalues by inverse
  1320. iteration.
  1321. D4C2C. Other
  1322. QZVAL-S The third step of the QZ algorithm for generalized
  1323. eigenproblems. Accepts a pair of real matrices, one in
  1324. quasi-triangular form and the other in upper triangular
  1325. form and computes the eigenvalues of the associated
  1326. eigenproblem. Usually preceded by QZHES, QZIT, and
  1327. followed by QZVEC.
  1328. D4C3. Form eigenvectors from eigenvalues
  1329. BANDV-S Form the eigenvectors of a real symmetric band matrix
  1330. associated with a set of ordered approximate eigenvalues
  1331. by inverse iteration.
  1332. QZVEC-S The optional fourth step of the QZ algorithm for
  1333. generalized eigenproblems. Accepts a matrix in
  1334. quasi-triangular form and another in upper triangular
  1335. and computes the eigenvectors of the triangular problem
  1336. and transforms them back to the original coordinates
  1337. Usually preceded by QZHES, QZIT, and QZVAL.
  1338. TINVIT-S Compute the eigenvectors of symmetric tridiagonal matrix
  1339. corresponding to specified eigenvalues, using inverse
  1340. iteration.
  1341. D4C4. Back transform eigenvectors
  1342. BAKVEC-S Form the eigenvectors of a certain real non-symmetric
  1343. tridiagonal matrix from a symmetric tridiagonal matrix
  1344. output from FIGI.
  1345. BALBAK-S Form the eigenvectors of a real general matrix from the
  1346. CBABK2-C eigenvectors of matrix output from BALANC.
  1347. ELMBAK-S Form the eigenvectors of a real general matrix from the
  1348. COMBAK-C eigenvectors of the upper Hessenberg matrix output from
  1349. ELMHES.
  1350. ELTRAN-S Accumulates the stabilized elementary similarity
  1351. transformations used in the reduction of a real general
  1352. matrix to upper Hessenberg form by ELMHES.
  1353. HTRIB3-S Compute the eigenvectors of a complex Hermitian matrix from
  1354. the eigenvectors of a real symmetric tridiagonal matrix
  1355. output from HTRID3.
  1356. HTRIBK-S Form the eigenvectors of a complex Hermitian matrix from
  1357. the eigenvectors of a real symmetric tridiagonal matrix
  1358. output from HTRIDI.
  1359. ORTBAK-S Form the eigenvectors of a general real matrix from the
  1360. CORTB-C eigenvectors of the upper Hessenberg matrix output from
  1361. ORTHES.
  1362. ORTRAN-S Accumulate orthogonal similarity transformations in the
  1363. reduction of real general matrix by ORTHES.
  1364. REBAK-S Form the eigenvectors of a generalized symmetric
  1365. eigensystem from the eigenvectors of derived matrix output
  1366. from REDUC or REDUC2.
  1367. REBAKB-S Form the eigenvectors of a generalized symmetric
  1368. eigensystem from the eigenvectors of derived matrix output
  1369. from REDUC2.
  1370. TRBAK1-S Form the eigenvectors of real symmetric matrix from
  1371. the eigenvectors of a symmetric tridiagonal matrix formed
  1372. by TRED1.
  1373. TRBAK3-S Form the eigenvectors of a real symmetric matrix from the
  1374. eigenvectors of a symmetric tridiagonal matrix formed
  1375. by TRED3.
  1376. D5. QR decomposition, Gram-Schmidt orthogonalization
  1377. LLSIA-S Solve a linear least squares problems by performing a QR
  1378. DLLSIA-D factorization of the matrix using Householder
  1379. transformations. Emphasis is put on detecting possible
  1380. rank deficiency.
  1381. SGLSS-S Solve a linear least squares problems by performing a QR
  1382. DGLSS-D factorization of the matrix using Householder
  1383. transformations. Emphasis is put on detecting possible
  1384. rank deficiency.
  1385. SQRDC-S Use Householder transformations to compute the QR
  1386. DQRDC-D factorization of an N by P matrix. Column pivoting is a
  1387. CQRDC-C users option.
  1388. D6. Singular value decomposition
  1389. SSVDC-S Perform the singular value decomposition of a rectangular
  1390. DSVDC-D matrix.
  1391. CSVDC-C
  1392. D7. Update matrix decompositions
  1393. D7B. Cholesky
  1394. SCHDD-S Downdate an augmented Cholesky decomposition or the
  1395. DCHDD-D triangular factor of an augmented QR decomposition.
  1396. CCHDD-C
  1397. SCHEX-S Update the Cholesky factorization A=TRANS(R)*R of A
  1398. DCHEX-D positive definite matrix A of order P under diagonal
  1399. CCHEX-C permutations of the form TRANS(E)*A*E, where E is a
  1400. permutation matrix.
  1401. SCHUD-S Update an augmented Cholesky decomposition of the
  1402. DCHUD-D triangular part of an augmented QR decomposition.
  1403. CCHUD-C
  1404. D9. Overdetermined or underdetermined systems of equations, singular systems,
  1405. pseudo-inverses (search also classes D5, D6, K1a, L8a)
  1406. BNDACC-S Compute the LU factorization of a banded matrices using
  1407. DBNDAC-D sequential accumulation of rows of the data matrix.
  1408. Exactly one right-hand side vector is permitted.
  1409. BNDSOL-S Solve the least squares problem for a banded matrix using
  1410. DBNDSL-D sequential accumulation of rows of the data matrix.
  1411. Exactly one right-hand side vector is permitted.
  1412. HFTI-S Solve a linear least squares problems by performing a QR
  1413. DHFTI-D factorization of the matrix using Householder
  1414. transformations.
  1415. LLSIA-S Solve a linear least squares problems by performing a QR
  1416. DLLSIA-D factorization of the matrix using Householder
  1417. transformations. Emphasis is put on detecting possible
  1418. rank deficiency.
  1419. LSEI-S Solve a linearly constrained least squares problem with
  1420. DLSEI-D equality and inequality constraints, and optionally compute
  1421. a covariance matrix.
  1422. MINFIT-S Compute the singular value decomposition of a rectangular
  1423. matrix and solve the related linear least squares problem.
  1424. SGLSS-S Solve a linear least squares problems by performing a QR
  1425. DGLSS-D factorization of the matrix using Householder
  1426. transformations. Emphasis is put on detecting possible
  1427. rank deficiency.
  1428. SQRSL-S Apply the output of SQRDC to compute coordinate transfor-
  1429. DQRSL-D mations, projections, and least squares solutions.
  1430. CQRSL-C
  1431. ULSIA-S Solve an underdetermined linear system of equations by
  1432. DULSIA-D performing an LQ factorization of the matrix using
  1433. Householder transformations. Emphasis is put on detecting
  1434. possible rank deficiency.
  1435. E. Interpolation
  1436. BSPDOC-A Documentation for BSPLINE, a package of subprograms for
  1437. working with piecewise polynomial functions
  1438. in B-representation.
  1439. E1. Univariate data (curve fitting)
  1440. E1A. Polynomial splines (piecewise polynomials)
  1441. BINT4-S Compute the B-representation of a cubic spline
  1442. DBINT4-D which interpolates given data.
  1443. BINTK-S Compute the B-representation of a spline which interpolates
  1444. DBINTK-D given data.
  1445. BSPDOC-A Documentation for BSPLINE, a package of subprograms for
  1446. working with piecewise polynomial functions
  1447. in B-representation.
  1448. PCHDOC-A Documentation for PCHIP, a Fortran package for piecewise
  1449. cubic Hermite interpolation of data.
  1450. PCHIC-S Set derivatives needed to determine a piecewise monotone
  1451. DPCHIC-D piecewise cubic Hermite interpolant to given data.
  1452. User control is available over boundary conditions and/or
  1453. treatment of points where monotonicity switches direction.
  1454. PCHIM-S Set derivatives needed to determine a monotone piecewise
  1455. DPCHIM-D cubic Hermite interpolant to given data. Boundary values
  1456. are provided which are compatible with monotonicity. The
  1457. interpolant will have an extremum at each point where mono-
  1458. tonicity switches direction. (See PCHIC if user control is
  1459. desired over boundary or switch conditions.)
  1460. PCHSP-S Set derivatives needed to determine the Hermite represen-
  1461. DPCHSP-D tation of the cubic spline interpolant to given data, with
  1462. specified boundary conditions.
  1463. E1B. Polynomials
  1464. POLCOF-S Compute the coefficients of the polynomial fit (including
  1465. DPOLCF-D Hermite polynomial fits) produced by a previous call to
  1466. POLINT.
  1467. POLINT-S Produce the polynomial which interpolates a set of discrete
  1468. DPLINT-D data points.
  1469. E3. Service routines (e.g., grid generation, evaluation of fitted functions)
  1470. (search also class N5)
  1471. BFQAD-S Compute the integral of a product of a function and a
  1472. DBFQAD-D derivative of a B-spline.
  1473. BSPDR-S Use the B-representation to construct a divided difference
  1474. DBSPDR-D table preparatory to a (right) derivative calculation.
  1475. BSPEV-S Calculate the value of the spline and its derivatives from
  1476. DBSPEV-D the B-representation.
  1477. BSPPP-S Convert the B-representation of a B-spline to the piecewise
  1478. DBSPPP-D polynomial (PP) form.
  1479. BSPVD-S Calculate the value and all derivatives of order less than
  1480. DBSPVD-D NDERIV of all basis functions which do not vanish at X.
  1481. BSPVN-S Calculate the value of all (possibly) nonzero basis
  1482. DBSPVN-D functions at X.
  1483. BSQAD-S Compute the integral of a K-th order B-spline using the
  1484. DBSQAD-D B-representation.
  1485. BVALU-S Evaluate the B-representation of a B-spline at X for the
  1486. DBVALU-D function value or any of its derivatives.
  1487. CHFDV-S Evaluate a cubic polynomial given in Hermite form and its
  1488. DCHFDV-D first derivative at an array of points. While designed for
  1489. use by PCHFD, it may be useful directly as an evaluator
  1490. for a piecewise cubic Hermite function in applications,
  1491. such as graphing, where the interval is known in advance.
  1492. If only function values are required, use CHFEV instead.
  1493. CHFEV-S Evaluate a cubic polynomial given in Hermite form at an
  1494. DCHFEV-D array of points. While designed for use by PCHFE, it may
  1495. be useful directly as an evaluator for a piecewise cubic
  1496. Hermite function in applications, such as graphing, where
  1497. the interval is known in advance.
  1498. INTRV-S Compute the largest integer ILEFT in 1 .LE. ILEFT .LE. LXT
  1499. DINTRV-D such that XT(ILEFT) .LE. X where XT(*) is a subdivision
  1500. of the X interval.
  1501. PCHBS-S Piecewise Cubic Hermite to B-Spline converter.
  1502. DPCHBS-D
  1503. PCHCM-S Check a cubic Hermite function for monotonicity.
  1504. DPCHCM-D
  1505. PCHFD-S Evaluate a piecewise cubic Hermite function and its first
  1506. DPCHFD-D derivative at an array of points. May be used by itself
  1507. for Hermite interpolation, or as an evaluator for PCHIM
  1508. or PCHIC. If only function values are required, use
  1509. PCHFE instead.
  1510. PCHFE-S Evaluate a piecewise cubic Hermite function at an array of
  1511. DPCHFE-D points. May be used by itself for Hermite interpolation,
  1512. or as an evaluator for PCHIM or PCHIC.
  1513. PCHIA-S Evaluate the definite integral of a piecewise cubic
  1514. DPCHIA-D Hermite function over an arbitrary interval.
  1515. PCHID-S Evaluate the definite integral of a piecewise cubic
  1516. DPCHID-D Hermite function over an interval whose endpoints are data
  1517. points.
  1518. PFQAD-S Compute the integral on (X1,X2) of a product of a function
  1519. DPFQAD-D F and the ID-th derivative of a B-spline,
  1520. (PP-representation).
  1521. POLYVL-S Calculate the value of a polynomial and its first NDER
  1522. DPOLVL-D derivatives where the polynomial was produced by a previous
  1523. call to POLINT.
  1524. PPQAD-S Compute the integral on (X1,X2) of a K-th order B-spline
  1525. DPPQAD-D using the piecewise polynomial (PP) representation.
  1526. PPVAL-S Calculate the value of the IDERIV-th derivative of the
  1527. DPPVAL-D B-spline from the PP-representation.
  1528. F. Solution of nonlinear equations
  1529. F1. Single equation
  1530. F1A. Smooth
  1531. F1A1. Polynomial
  1532. F1A1A. Real coefficients
  1533. RPQR79-S Find the zeros of a polynomial with real coefficients.
  1534. CPQR79-C
  1535. RPZERO-S Find the zeros of a polynomial with real coefficients.
  1536. CPZERO-C
  1537. F1A1B. Complex coefficients
  1538. CPQR79-C Find the zeros of a polynomial with complex coefficients.
  1539. RPQR79-S
  1540. CPZERO-C Find the zeros of a polynomial with complex coefficients.
  1541. RPZERO-S
  1542. F1B. General (no smoothness assumed)
  1543. FZERO-S Search for a zero of a function F(X) in a given interval
  1544. DFZERO-D (B,C). It is designed primarily for problems where F(B)
  1545. and F(C) have opposite signs.
  1546. F2. System of equations
  1547. F2A. Smooth
  1548. SNSQ-S Find a zero of a system of a N nonlinear functions in N
  1549. DNSQ-D variables by a modification of the Powell hybrid method.
  1550. SNSQE-S An easy-to-use code to find a zero of a system of N
  1551. DNSQE-D nonlinear functions in N variables by a modification of
  1552. the Powell hybrid method.
  1553. SOS-S Solve a square system of nonlinear equations.
  1554. DSOS-D
  1555. F3. Service routines (e.g., check user-supplied derivatives)
  1556. CHKDER-S Check the gradients of M nonlinear functions in N
  1557. DCKDER-D variables, evaluated at a point X, for consistency
  1558. with the functions themselves.
  1559. G. Optimization (search also classes K, L8)
  1560. G2. Constrained
  1561. G2A. Linear programming
  1562. G2A2. Sparse matrix of constraints
  1563. SPLP-S Solve linear programming problems involving at
  1564. DSPLP-D most a few thousand constraints and variables.
  1565. Takes advantage of sparsity in the constraint matrix.
  1566. G2E. Quadratic programming
  1567. SBOCLS-S Solve the bounded and constrained least squares
  1568. DBOCLS-D problem consisting of solving the equation
  1569. E*X = F (in the least squares sense)
  1570. subject to the linear constraints
  1571. C*X = Y.
  1572. SBOLS-S Solve the problem
  1573. DBOLS-D E*X = F (in the least squares sense)
  1574. with bounds on selected X values.
  1575. G2H. General nonlinear programming
  1576. G2H1. Simple bounds
  1577. SBOCLS-S Solve the bounded and constrained least squares
  1578. DBOCLS-D problem consisting of solving the equation
  1579. E*X = F (in the least squares sense)
  1580. subject to the linear constraints
  1581. C*X = Y.
  1582. SBOLS-S Solve the problem
  1583. DBOLS-D E*X = F (in the least squares sense)
  1584. with bounds on selected X values.
  1585. G2H2. Linear equality or inequality constraints
  1586. SBOCLS-S Solve the bounded and constrained least squares
  1587. DBOCLS-D problem consisting of solving the equation
  1588. E*X = F (in the least squares sense)
  1589. subject to the linear constraints
  1590. C*X = Y.
  1591. SBOLS-S Solve the problem
  1592. DBOLS-D E*X = F (in the least squares sense)
  1593. with bounds on selected X values.
  1594. G4. Service routines
  1595. G4C. Check user-supplied derivatives
  1596. CHKDER-S Check the gradients of M nonlinear functions in N
  1597. DCKDER-D variables, evaluated at a point X, for consistency
  1598. with the functions themselves.
  1599. H. Differentiation, integration
  1600. H1. Numerical differentiation
  1601. CHFDV-S Evaluate a cubic polynomial given in Hermite form and its
  1602. DCHFDV-D first derivative at an array of points. While designed for
  1603. use by PCHFD, it may be useful directly as an evaluator
  1604. for a piecewise cubic Hermite function in applications,
  1605. such as graphing, where the interval is known in advance.
  1606. If only function values are required, use CHFEV instead.
  1607. PCHFD-S Evaluate a piecewise cubic Hermite function and its first
  1608. DPCHFD-D derivative at an array of points. May be used by itself
  1609. for Hermite interpolation, or as an evaluator for PCHIM
  1610. or PCHIC. If only function values are required, use
  1611. PCHFE instead.
  1612. H2. Quadrature (numerical evaluation of definite integrals)
  1613. QPDOC-A Documentation for QUADPACK, a package of subprograms for
  1614. automatic evaluation of one-dimensional definite integrals.
  1615. H2A. One-dimensional integrals
  1616. H2A1. Finite interval (general integrand)
  1617. H2A1A. Integrand available via user-defined procedure
  1618. H2A1A1. Automatic (user need only specify required accuracy)
  1619. GAUS8-S Integrate a real function of one variable over a finite
  1620. DGAUS8-D interval using an adaptive 8-point Legendre-Gauss
  1621. algorithm. Intended primarily for high accuracy
  1622. integration or integration of smooth functions.
  1623. QAG-S The routine calculates an approximation result to a given
  1624. DQAG-D definite integral I = integral of F over (A,B),
  1625. hopefully satisfying following claim for accuracy
  1626. ABS(I-RESULT)LE.MAX(EPSABS,EPSREL*ABS(I)).
  1627. QAGE-S The routine calculates an approximation result to a given
  1628. DQAGE-D definite integral I = Integral of F over (A,B),
  1629. hopefully satisfying following claim for accuracy
  1630. ABS(I-RESLT).LE.MAX(EPSABS,EPSREL*ABS(I)).
  1631. QAGS-S The routine calculates an approximation result to a given
  1632. DQAGS-D Definite integral I = Integral of F over (A,B),
  1633. Hopefully satisfying following claim for accuracy
  1634. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
  1635. QAGSE-S The routine calculates an approximation result to a given
  1636. DQAGSE-D definite integral I = Integral of F over (A,B),
  1637. hopefully satisfying following claim for accuracy
  1638. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
  1639. QNC79-S Integrate a function using a 7-point adaptive Newton-Cotes
  1640. DQNC79-D quadrature rule.
  1641. QNG-S The routine calculates an approximation result to a
  1642. DQNG-D given definite integral I = integral of F over (A,B),
  1643. hopefully satisfying following claim for accuracy
  1644. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
  1645. H2A1A2. Nonautomatic
  1646. QK15-S To compute I = Integral of F over (A,B), with error
  1647. DQK15-D estimate
  1648. J = integral of ABS(F) over (A,B)
  1649. QK21-S To compute I = Integral of F over (A,B), with error
  1650. DQK21-D estimate
  1651. J = Integral of ABS(F) over (A,B)
  1652. QK31-S To compute I = Integral of F over (A,B) with error
  1653. DQK31-D estimate
  1654. J = Integral of ABS(F) over (A,B)
  1655. QK41-S To compute I = Integral of F over (A,B), with error
  1656. DQK41-D estimate
  1657. J = Integral of ABS(F) over (A,B)
  1658. QK51-S To compute I = Integral of F over (A,B) with error
  1659. DQK51-D estimate
  1660. J = Integral of ABS(F) over (A,B)
  1661. QK61-S To compute I = Integral of F over (A,B) with error
  1662. DQK61-D estimate
  1663. J = Integral of ABS(F) over (A,B)
  1664. H2A1B. Integrand available only on grid
  1665. H2A1B2. Nonautomatic
  1666. AVINT-S Integrate a function tabulated at arbitrarily spaced
  1667. DAVINT-D abscissas using overlapping parabolas.
  1668. PCHIA-S Evaluate the definite integral of a piecewise cubic
  1669. DPCHIA-D Hermite function over an arbitrary interval.
  1670. PCHID-S Evaluate the definite integral of a piecewise cubic
  1671. DPCHID-D Hermite function over an interval whose endpoints are data
  1672. points.
  1673. H2A2. Finite interval (specific or special type integrand including weight
  1674. functions, oscillating and singular integrands, principal value
  1675. integrals, splines, etc.)
  1676. H2A2A. Integrand available via user-defined procedure
  1677. H2A2A1. Automatic (user need only specify required accuracy)
  1678. BFQAD-S Compute the integral of a product of a function and a
  1679. DBFQAD-D derivative of a B-spline.
  1680. BSQAD-S Compute the integral of a K-th order B-spline using the
  1681. DBSQAD-D B-representation.
  1682. PFQAD-S Compute the integral on (X1,X2) of a product of a function
  1683. DPFQAD-D F and the ID-th derivative of a B-spline,
  1684. (PP-representation).
  1685. PPQAD-S Compute the integral on (X1,X2) of a K-th order B-spline
  1686. DPPQAD-D using the piecewise polynomial (PP) representation.
  1687. QAGP-S The routine calculates an approximation result to a given
  1688. DQAGP-D definite integral I = Integral of F over (A,B),
  1689. hopefully satisfying following claim for accuracy
  1690. break points of the integration interval, where local
  1691. difficulties of the integrand may occur(e.g. SINGULARITIES,
  1692. DISCONTINUITIES), are provided by the user.
  1693. QAGPE-S Approximate a given definite integral I = Integral of F
  1694. DQAGPE-D over (A,B), hopefully satisfying the accuracy claim:
  1695. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
  1696. Break points of the integration interval, where local
  1697. difficulties of the integrand may occur (e.g. singularities
  1698. or discontinuities) are provided by the user.
  1699. QAWC-S The routine calculates an approximation result to a
  1700. DQAWC-D Cauchy principal value I = INTEGRAL of F*W over (A,B)
  1701. (W(X) = 1/((X-C), C.NE.A, C.NE.B), hopefully satisfying
  1702. following claim for accuracy
  1703. ABS(I-RESULT).LE.MAX(EPSABE,EPSREL*ABS(I)).
  1704. QAWCE-S The routine calculates an approximation result to a
  1705. DQAWCE-D CAUCHY PRINCIPAL VALUE I = Integral of F*W over (A,B)
  1706. (W(X) = 1/(X-C), (C.NE.A, C.NE.B), hopefully satisfying
  1707. following claim for accuracy
  1708. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
  1709. QAWO-S Calculate an approximation to a given definite integral
  1710. DQAWO-D I = Integral of F(X)*W(X) over (A,B), where
  1711. W(X) = COS(OMEGA*X)
  1712. or W(X) = SIN(OMEGA*X),
  1713. hopefully satisfying the following claim for accuracy
  1714. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
  1715. QAWOE-S Calculate an approximation to a given definite integral
  1716. DQAWOE-D I = Integral of F(X)*W(X) over (A,B), where
  1717. W(X) = COS(OMEGA*X)
  1718. or W(X) = SIN(OMEGA*X),
  1719. hopefully satisfying the following claim for accuracy
  1720. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
  1721. QAWS-S The routine calculates an approximation result to a given
  1722. DQAWS-D definite integral I = Integral of F*W over (A,B),
  1723. (where W shows a singular behaviour at the end points
  1724. see parameter INTEGR).
  1725. Hopefully satisfying following claim for accuracy
  1726. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
  1727. QAWSE-S The routine calculates an approximation result to a given
  1728. DQAWSE-D definite integral I = Integral of F*W over (A,B),
  1729. (where W shows a singular behaviour at the end points,
  1730. see parameter INTEGR).
  1731. Hopefully satisfying following claim for accuracy
  1732. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
  1733. QMOMO-S This routine computes modified Chebyshev moments. The K-th
  1734. DQMOMO-D modified Chebyshev moment is defined as the integral over
  1735. (-1,1) of W(X)*T(K,X), where T(K,X) is the Chebyshev
  1736. polynomial of degree K.
  1737. H2A2A2. Nonautomatic
  1738. QC25C-S To compute I = Integral of F*W over (A,B) with
  1739. DQC25C-D error estimate, where W(X) = 1/(X-C)
  1740. QC25F-S To compute the integral I=Integral of F(X) over (A,B)
  1741. DQC25F-D Where W(X) = COS(OMEGA*X) Or (WX)=SIN(OMEGA*X)
  1742. and to compute J=Integral of ABS(F) over (A,B). For small
  1743. value of OMEGA or small intervals (A,B) 15-point GAUSS-
  1744. KRONROD Rule used. Otherwise generalized CLENSHAW-CURTIS us
  1745. QC25S-S To compute I = Integral of F*W over (BL,BR), with error
  1746. DQC25S-D estimate, where the weight function W has a singular
  1747. behaviour of ALGEBRAICO-LOGARITHMIC type at the points
  1748. A and/or B. (BL,BR) is a part of (A,B).
  1749. QK15W-S To compute I = Integral of F*W over (A,B), with error
  1750. DQK15W-D estimate
  1751. J = Integral of ABS(F*W) over (A,B)
  1752. H2A3. Semi-infinite interval (including e**(-x) weight function)
  1753. H2A3A. Integrand available via user-defined procedure
  1754. H2A3A1. Automatic (user need only specify required accuracy)
  1755. QAGI-S The routine calculates an approximation result to a given
  1756. DQAGI-D INTEGRAL I = Integral of F over (BOUND,+INFINITY)
  1757. OR I = Integral of F over (-INFINITY,BOUND)
  1758. OR I = Integral of F over (-INFINITY,+INFINITY)
  1759. Hopefully satisfying following claim for accuracy
  1760. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
  1761. QAGIE-S The routine calculates an approximation result to a given
  1762. DQAGIE-D integral I = Integral of F over (BOUND,+INFINITY)
  1763. or I = Integral of F over (-INFINITY,BOUND)
  1764. or I = Integral of F over (-INFINITY,+INFINITY),
  1765. hopefully satisfying following claim for accuracy
  1766. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
  1767. QAWF-S The routine calculates an approximation result to a given
  1768. DQAWF-D Fourier integral
  1769. I = Integral of F(X)*W(X) over (A,INFINITY)
  1770. where W(X) = COS(OMEGA*X) or W(X) = SIN(OMEGA*X).
  1771. Hopefully satisfying following claim for accuracy
  1772. ABS(I-RESULT).LE.EPSABS.
  1773. QAWFE-S The routine calculates an approximation result to a
  1774. DQAWFE-D given Fourier integral
  1775. I = Integral of F(X)*W(X) over (A,INFINITY)
  1776. where W(X) = COS(OMEGA*X) or W(X) = SIN(OMEGA*X),
  1777. hopefully satisfying following claim for accuracy
  1778. ABS(I-RESULT).LE.EPSABS.
  1779. H2A3A2. Nonautomatic
  1780. QK15I-S The original (infinite integration range is mapped
  1781. DQK15I-D onto the interval (0,1) and (A,B) is a part of (0,1).
  1782. it is the purpose to compute
  1783. I = Integral of transformed integrand over (A,B),
  1784. J = Integral of ABS(Transformed Integrand) over (A,B).
  1785. H2A4. Infinite interval (including e**(-x**2)) weight function)
  1786. H2A4A. Integrand available via user-defined procedure
  1787. H2A4A1. Automatic (user need only specify required accuracy)
  1788. QAGI-S The routine calculates an approximation result to a given
  1789. DQAGI-D INTEGRAL I = Integral of F over (BOUND,+INFINITY)
  1790. OR I = Integral of F over (-INFINITY,BOUND)
  1791. OR I = Integral of F over (-INFINITY,+INFINITY)
  1792. Hopefully satisfying following claim for accuracy
  1793. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
  1794. QAGIE-S The routine calculates an approximation result to a given
  1795. DQAGIE-D integral I = Integral of F over (BOUND,+INFINITY)
  1796. or I = Integral of F over (-INFINITY,BOUND)
  1797. or I = Integral of F over (-INFINITY,+INFINITY),
  1798. hopefully satisfying following claim for accuracy
  1799. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
  1800. H2A4A2. Nonautomatic
  1801. QK15I-S The original (infinite integration range is mapped
  1802. DQK15I-D onto the interval (0,1) and (A,B) is a part of (0,1).
  1803. it is the purpose to compute
  1804. I = Integral of transformed integrand over (A,B),
  1805. J = Integral of ABS(Transformed Integrand) over (A,B).
  1806. I. Differential and integral equations
  1807. I1. Ordinary differential equations
  1808. I1A. Initial value problems
  1809. I1A1. General, nonstiff or mildly stiff
  1810. I1A1A. One-step methods (e.g., Runge-Kutta)
  1811. DERKF-S Solve an initial value problem in ordinary differential
  1812. DDERKF-D equations using a Runge-Kutta-Fehlberg scheme.
  1813. I1A1B. Multistep methods (e.g., Adams' predictor-corrector)
  1814. DEABM-S Solve an initial value problem in ordinary differential
  1815. DDEABM-D equations using an Adams-Bashforth method.
  1816. SDRIV1-S The function of SDRIV1 is to solve N (200 or fewer)
  1817. DDRIV1-D ordinary differential equations of the form
  1818. CDRIV1-C dY(I)/dT = F(Y(I),T), given the initial conditions
  1819. Y(I) = YI. SDRIV1 uses single precision arithmetic.
  1820. SDRIV2-S The function of SDRIV2 is to solve N ordinary differential
  1821. DDRIV2-D equations of the form dY(I)/dT = F(Y(I),T), given the
  1822. CDRIV2-C initial conditions Y(I) = YI. The program has options to
  1823. allow the solution of both stiff and non-stiff differential
  1824. equations. SDRIV2 uses single precision arithmetic.
  1825. SDRIV3-S The function of SDRIV3 is to solve N ordinary differential
  1826. DDRIV3-D equations of the form dY(I)/dT = F(Y(I),T), given the
  1827. CDRIV3-C initial conditions Y(I) = YI. The program has options to
  1828. allow the solution of both stiff and non-stiff differential
  1829. equations. Other important options are available. SDRIV3
  1830. uses single precision arithmetic.
  1831. SINTRP-S Approximate the solution at XOUT by evaluating the
  1832. DINTP-D polynomial computed in STEPS at XOUT. Must be used in
  1833. conjunction with STEPS.
  1834. STEPS-S Integrate a system of first order ordinary differential
  1835. DSTEPS-D equations one step.
  1836. I1A2. Stiff and mixed algebraic-differential equations
  1837. DEBDF-S Solve an initial value problem in ordinary differential
  1838. DDEBDF-D equations using backward differentiation formulas. It is
  1839. intended primarily for stiff problems.
  1840. SDASSL-S This code solves a system of differential/algebraic
  1841. DDASSL-D equations of the form G(T,Y,YPRIME) = 0.
  1842. SDRIV1-S The function of SDRIV1 is to solve N (200 or fewer)
  1843. DDRIV1-D ordinary differential equations of the form
  1844. CDRIV1-C dY(I)/dT = F(Y(I),T), given the initial conditions
  1845. Y(I) = YI. SDRIV1 uses single precision arithmetic.
  1846. SDRIV2-S The function of SDRIV2 is to solve N ordinary differential
  1847. DDRIV2-D equations of the form dY(I)/dT = F(Y(I),T), given the
  1848. CDRIV2-C initial conditions Y(I) = YI. The program has options to
  1849. allow the solution of both stiff and non-stiff differential
  1850. equations. SDRIV2 uses single precision arithmetic.
  1851. SDRIV3-S The function of SDRIV3 is to solve N ordinary differential
  1852. DDRIV3-D equations of the form dY(I)/dT = F(Y(I),T), given the
  1853. CDRIV3-C initial conditions Y(I) = YI. The program has options to
  1854. allow the solution of both stiff and non-stiff differential
  1855. equations. Other important options are available. SDRIV3
  1856. uses single precision arithmetic.
  1857. I1B. Multipoint boundary value problems
  1858. I1B1. Linear
  1859. BVSUP-S Solve a linear two-point boundary value problem using
  1860. DBVSUP-D superposition coupled with an orthonormalization procedure
  1861. and a variable-step integration scheme.
  1862. I2. Partial differential equations
  1863. I2B. Elliptic boundary value problems
  1864. I2B1. Linear
  1865. I2B1A. Second order
  1866. I2B1A1. Poisson (Laplace) or Helmholz equation
  1867. I2B1A1A. Rectangular domain (or topologically rectangular in the coordinate
  1868. system)
  1869. HSTCRT-S Solve the standard five-point finite difference
  1870. approximation on a staggered grid to the Helmholtz equation
  1871. in Cartesian coordinates.
  1872. HSTCSP-S Solve the standard five-point finite difference
  1873. approximation on a staggered grid to the modified Helmholtz
  1874. equation in spherical coordinates assuming axisymmetry
  1875. (no dependence on longitude).
  1876. HSTCYL-S Solve the standard five-point finite difference
  1877. approximation on a staggered grid to the modified
  1878. Helmholtz equation in cylindrical coordinates.
  1879. HSTPLR-S Solve the standard five-point finite difference
  1880. approximation on a staggered grid to the Helmholtz equation
  1881. in polar coordinates.
  1882. HSTSSP-S Solve the standard five-point finite difference
  1883. approximation on a staggered grid to the Helmholtz
  1884. equation in spherical coordinates and on the surface of
  1885. the unit sphere (radius of 1).
  1886. HW3CRT-S Solve the standard seven-point finite difference
  1887. approximation to the Helmholtz equation in Cartesian
  1888. coordinates.
  1889. HWSCRT-S Solves the standard five-point finite difference
  1890. approximation to the Helmholtz equation in Cartesian
  1891. coordinates.
  1892. HWSCSP-S Solve a finite difference approximation to the modified
  1893. Helmholtz equation in spherical coordinates assuming
  1894. axisymmetry (no dependence on longitude).
  1895. HWSCYL-S Solve a standard finite difference approximation
  1896. to the Helmholtz equation in cylindrical coordinates.
  1897. HWSPLR-S Solve a finite difference approximation to the Helmholtz
  1898. equation in polar coordinates.
  1899. HWSSSP-S Solve a finite difference approximation to the Helmholtz
  1900. equation in spherical coordinates and on the surface of the
  1901. unit sphere (radius of 1).
  1902. I2B1A2. Other separable problems
  1903. SEPELI-S Discretize and solve a second and, optionally, a fourth
  1904. order finite difference approximation on a uniform grid to
  1905. the general separable elliptic partial differential
  1906. equation on a rectangle with any combination of periodic or
  1907. mixed boundary conditions.
  1908. SEPX4-S Solve for either the second or fourth order finite
  1909. difference approximation to the solution of a separable
  1910. elliptic partial differential equation on a rectangle.
  1911. Any combination of periodic or mixed boundary conditions is
  1912. allowed.
  1913. I2B4. Service routines
  1914. I2B4B. Solution of discretized elliptic equations
  1915. BLKTRI-S Solve a block tridiagonal system of linear equations
  1916. CBLKTR-C (usually resulting from the discretization of separable
  1917. two-dimensional elliptic equations).
  1918. GENBUN-S Solve by a cyclic reduction algorithm the linear system
  1919. CMGNBN-C of equations that results from a finite difference
  1920. approximation to certain 2-d elliptic PDE's on a centered
  1921. grid .
  1922. POIS3D-S Solve a three-dimensional block tridiagonal linear system
  1923. which arises from a finite difference approximation to a
  1924. three-dimensional Poisson equation using the Fourier
  1925. transform package FFTPAK written by Paul Swarztrauber.
  1926. POISTG-S Solve a block tridiagonal system of linear equations
  1927. that results from a staggered grid finite difference
  1928. approximation to 2-D elliptic PDE's.
  1929. J. Integral transforms
  1930. J1. Fast Fourier transforms (search class L10 for time series analysis)
  1931. FFTDOC-A Documentation for FFTPACK, a collection of Fast Fourier
  1932. Transform routines.
  1933. J1A. One-dimensional
  1934. J1A1. Real
  1935. EZFFTB-S A simplified real, periodic, backward fast Fourier
  1936. transform.
  1937. EZFFTF-S Compute a simplified real, periodic, fast Fourier forward
  1938. transform.
  1939. EZFFTI-S Initialize a work array for EZFFTF and EZFFTB.
  1940. RFFTB1-S Compute the backward fast Fourier transform of a real
  1941. CFFTB1-C coefficient array.
  1942. RFFTF1-S Compute the forward transform of a real, periodic sequence.
  1943. CFFTF1-C
  1944. RFFTI1-S Initialize a real and an integer work array for RFFTF1 and
  1945. CFFTI1-C RFFTB1.
  1946. J1A2. Complex
  1947. CFFTB1-C Compute the unnormalized inverse of CFFTF1.
  1948. RFFTB1-S
  1949. CFFTF1-C Compute the forward transform of a complex, periodic
  1950. RFFTF1-S sequence.
  1951. CFFTI1-C Initialize a real and an integer work array for CFFTF1 and
  1952. RFFTI1-S CFFTB1.
  1953. J1A3. Trigonometric (sine, cosine)
  1954. COSQB-S Compute the unnormalized inverse cosine transform.
  1955. COSQF-S Compute the forward cosine transform with odd wave numbers.
  1956. COSQI-S Initialize a work array for COSQF and COSQB.
  1957. COST-S Compute the cosine transform of a real, even sequence.
  1958. COSTI-S Initialize a work array for COST.
  1959. SINQB-S Compute the unnormalized inverse of SINQF.
  1960. SINQF-S Compute the forward sine transform with odd wave numbers.
  1961. SINQI-S Initialize a work array for SINQF and SINQB.
  1962. SINT-S Compute the sine transform of a real, odd sequence.
  1963. SINTI-S Initialize a work array for SINT.
  1964. J4. Hilbert transforms
  1965. QAWC-S The routine calculates an approximation result to a
  1966. DQAWC-D Cauchy principal value I = INTEGRAL of F*W over (A,B)
  1967. (W(X) = 1/((X-C), C.NE.A, C.NE.B), hopefully satisfying
  1968. following claim for accuracy
  1969. ABS(I-RESULT).LE.MAX(EPSABE,EPSREL*ABS(I)).
  1970. QAWCE-S The routine calculates an approximation result to a
  1971. DQAWCE-D CAUCHY PRINCIPAL VALUE I = Integral of F*W over (A,B)
  1972. (W(X) = 1/(X-C), (C.NE.A, C.NE.B), hopefully satisfying
  1973. following claim for accuracy
  1974. ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
  1975. QC25C-S To compute I = Integral of F*W over (A,B) with
  1976. DQC25C-D error estimate, where W(X) = 1/(X-C)
  1977. K. Approximation (search also class L8)
  1978. BSPDOC-A Documentation for BSPLINE, a package of subprograms for
  1979. working with piecewise polynomial functions
  1980. in B-representation.
  1981. K1. Least squares (L-2) approximation
  1982. K1A. Linear least squares (search also classes D5, D6, D9)
  1983. K1A1. Unconstrained
  1984. K1A1A. Univariate data (curve fitting)
  1985. K1A1A1. Polynomial splines (piecewise polynomials)
  1986. EFC-S Fit a piecewise polynomial curve to discrete data.
  1987. DEFC-D The piecewise polynomials are represented as B-splines.
  1988. The fitting is done in a weighted least squares sense.
  1989. FC-S Fit a piecewise polynomial curve to discrete data.
  1990. DFC-D The piecewise polynomials are represented as B-splines.
  1991. The fitting is done in a weighted least squares sense.
  1992. Equality and inequality constraints can be imposed on the
  1993. fitted curve.
  1994. K1A1A2. Polynomials
  1995. PCOEF-S Convert the POLFIT coefficients to Taylor series form.
  1996. DPCOEF-D
  1997. POLFIT-S Fit discrete data in a least squares sense by polynomials
  1998. DPOLFT-D in one variable.
  1999. K1A2. Constrained
  2000. K1A2A. Linear constraints
  2001. EFC-S Fit a piecewise polynomial curve to discrete data.
  2002. DEFC-D The piecewise polynomials are represented as B-splines.
  2003. The fitting is done in a weighted least squares sense.
  2004. FC-S Fit a piecewise polynomial curve to discrete data.
  2005. DFC-D The piecewise polynomials are represented as B-splines.
  2006. The fitting is done in a weighted least squares sense.
  2007. Equality and inequality constraints can be imposed on the
  2008. fitted curve.
  2009. LSEI-S Solve a linearly constrained least squares problem with
  2010. DLSEI-D equality and inequality constraints, and optionally compute
  2011. a covariance matrix.
  2012. SBOCLS-S Solve the bounded and constrained least squares
  2013. DBOCLS-D problem consisting of solving the equation
  2014. E*X = F (in the least squares sense)
  2015. subject to the linear constraints
  2016. C*X = Y.
  2017. SBOLS-S Solve the problem
  2018. DBOLS-D E*X = F (in the least squares sense)
  2019. with bounds on selected X values.
  2020. WNNLS-S Solve a linearly constrained least squares problem with
  2021. DWNNLS-D equality constraints and nonnegativity constraints on
  2022. selected variables.
  2023. K1B. Nonlinear least squares
  2024. K1B1. Unconstrained
  2025. SCOV-S Calculate the covariance matrix for a nonlinear data
  2026. DCOV-D fitting problem. It is intended to be used after a
  2027. successful return from either SNLS1 or SNLS1E.
  2028. K1B1A. Smooth functions
  2029. K1B1A1. User provides no derivatives
  2030. SNLS1-S Minimize the sum of the squares of M nonlinear functions
  2031. DNLS1-D in N variables by a modification of the Levenberg-Marquardt
  2032. algorithm.
  2033. SNLS1E-S An easy-to-use code which minimizes the sum of the squares
  2034. DNLS1E-D of M nonlinear functions in N variables by a modification
  2035. of the Levenberg-Marquardt algorithm.
  2036. K1B1A2. User provides first derivatives
  2037. SNLS1-S Minimize the sum of the squares of M nonlinear functions
  2038. DNLS1-D in N variables by a modification of the Levenberg-Marquardt
  2039. algorithm.
  2040. SNLS1E-S An easy-to-use code which minimizes the sum of the squares
  2041. DNLS1E-D of M nonlinear functions in N variables by a modification
  2042. of the Levenberg-Marquardt algorithm.
  2043. K6. Service routines (e.g., mesh generation, evaluation of fitted functions)
  2044. (search also class N5)
  2045. BFQAD-S Compute the integral of a product of a function and a
  2046. DBFQAD-D derivative of a B-spline.
  2047. DBSPDR-D Use the B-representation to construct a divided difference
  2048. BSPDR-S table preparatory to a (right) derivative calculation.
  2049. BSPEV-S Calculate the value of the spline and its derivatives from
  2050. DBSPEV-D the B-representation.
  2051. BSPPP-S Convert the B-representation of a B-spline to the piecewise
  2052. DBSPPP-D polynomial (PP) form.
  2053. BSPVD-S Calculate the value and all derivatives of order less than
  2054. DBSPVD-D NDERIV of all basis functions which do not vanish at X.
  2055. BSPVN-S Calculate the value of all (possibly) nonzero basis
  2056. DBSPVN-D functions at X.
  2057. BSQAD-S Compute the integral of a K-th order B-spline using the
  2058. DBSQAD-D B-representation.
  2059. BVALU-S Evaluate the B-representation of a B-spline at X for the
  2060. DBVALU-D function value or any of its derivatives.
  2061. INTRV-S Compute the largest integer ILEFT in 1 .LE. ILEFT .LE. LXT
  2062. DINTRV-D such that XT(ILEFT) .LE. X where XT(*) is a subdivision
  2063. of the X interval.
  2064. PFQAD-S Compute the integral on (X1,X2) of a product of a function
  2065. DPFQAD-D F and the ID-th derivative of a B-spline,
  2066. (PP-representation).
  2067. PPQAD-S Compute the integral on (X1,X2) of a K-th order B-spline
  2068. DPPQAD-D using the piecewise polynomial (PP) representation.
  2069. PPVAL-S Calculate the value of the IDERIV-th derivative of the
  2070. DPPVAL-D B-spline from the PP-representation.
  2071. PVALUE-S Use the coefficients generated by POLFIT to evaluate the
  2072. DP1VLU-D polynomial fit of degree L, along with the first NDER of
  2073. its derivatives, at a specified point.
  2074. L. Statistics, probability
  2075. L5. Function evaluation (search also class C)
  2076. L5A. Univariate
  2077. L5A1. Cumulative distribution functions, probability density functions
  2078. L5A1E. Error function, exponential, extreme value
  2079. ERF-S Compute the error function.
  2080. DERF-D
  2081. ERFC-S Compute the complementary error function.
  2082. DERFC-D
  2083. L6. Pseudo-random number generation
  2084. L6A. Univariate
  2085. L6A14. Negative binomial, normal
  2086. RGAUSS-S Generate a normally distributed (Gaussian) random number.
  2087. L6A21. Uniform
  2088. RAND-S Generate a uniformly distributed random number.
  2089. RUNIF-S Generate a uniformly distributed random number.
  2090. L7. Experimental design, including analysis of variance
  2091. L7A. Univariate
  2092. L7A3. Analysis of covariance
  2093. CV-S Evaluate the variance function of the curve obtained
  2094. DCV-D by the constrained B-spline fitting subprogram FC.
  2095. L8. Regression (search also classes G, K)
  2096. L8A. Linear least squares (L-2) (search also classes D5, D6, D9)
  2097. L8A3. Piecewise polynomial (i.e. multiphase or spline)
  2098. EFC-S Fit a piecewise polynomial curve to discrete data.
  2099. DEFC-D The piecewise polynomials are represented as B-splines.
  2100. The fitting is done in a weighted least squares sense.
  2101. FC-S Fit a piecewise polynomial curve to discrete data.
  2102. DFC-D The piecewise polynomials are represented as B-splines.
  2103. The fitting is done in a weighted least squares sense.
  2104. Equality and inequality constraints can be imposed on the
  2105. fitted curve.
  2106. N. Data handling (search also class L2)
  2107. N1. Input, output
  2108. SBHIN-S Read a Sparse Linear System in the Boeing/Harwell Format.
  2109. DBHIN-D The matrix is read in and if the right hand side is also
  2110. present in the input file then it too is read in. The
  2111. matrix is then modified to be in the SLAP Column format.
  2112. SCPPLT-S Printer Plot of SLAP Column Format Matrix.
  2113. DCPPLT-D Routine to print out a SLAP Column format matrix in a
  2114. "printer plot" graphical representation.
  2115. STIN-S Read in SLAP Triad Format Linear System.
  2116. DTIN-D Routine to read in a SLAP Triad format matrix and right
  2117. hand side and solution to the system, if known.
  2118. STOUT-S Write out SLAP Triad Format Linear System.
  2119. DTOUT-D Routine to write out a SLAP Triad format matrix and right
  2120. hand side and solution to the system, if known.
  2121. N6. Sorting
  2122. N6A. Internal
  2123. N6A1. Passive (i.e. construct pointer array, rank)
  2124. N6A1A. Integer
  2125. IPSORT-I Return the permutation vector generated by sorting a given
  2126. SPSORT-S array and, optionally, rearrange the elements of the array.
  2127. DPSORT-D The array may be sorted in increasing or decreasing order.
  2128. HPSORT-H A slightly modified quicksort algorithm is used.
  2129. N6A1B. Real
  2130. SPSORT-S Return the permutation vector generated by sorting a given
  2131. DPSORT-D array and, optionally, rearrange the elements of the array.
  2132. IPSORT-I The array may be sorted in increasing or decreasing order.
  2133. HPSORT-H A slightly modified quicksort algorithm is used.
  2134. N6A1C. Character
  2135. HPSORT-H Return the permutation vector generated by sorting a
  2136. SPSORT-S substring within a character array and, optionally,
  2137. DPSORT-D rearrange the elements of the array. The array may be
  2138. IPSORT-I sorted in forward or reverse lexicographical order. A
  2139. slightly modified quicksort algorithm is used.
  2140. N6A2. Active
  2141. N6A2A. Integer
  2142. IPSORT-I Return the permutation vector generated by sorting a given
  2143. SPSORT-S array and, optionally, rearrange the elements of the array.
  2144. DPSORT-D The array may be sorted in increasing or decreasing order.
  2145. HPSORT-H A slightly modified quicksort algorithm is used.
  2146. ISORT-I Sort an array and optionally make the same interchanges in
  2147. SSORT-S an auxiliary array. The array may be sorted in increasing
  2148. DSORT-D or decreasing order. A slightly modified QUICKSORT
  2149. algorithm is used.
  2150. N6A2B. Real
  2151. SPSORT-S Return the permutation vector generated by sorting a given
  2152. DPSORT-D array and, optionally, rearrange the elements of the array.
  2153. IPSORT-I The array may be sorted in increasing or decreasing order.
  2154. HPSORT-H A slightly modified quicksort algorithm is used.
  2155. SSORT-S Sort an array and optionally make the same interchanges in
  2156. DSORT-D an auxiliary array. The array may be sorted in increasing
  2157. ISORT-I or decreasing order. A slightly modified QUICKSORT
  2158. algorithm is used.
  2159. N6A2C. Character
  2160. HPSORT-H Return the permutation vector generated by sorting a
  2161. SPSORT-S substring within a character array and, optionally,
  2162. DPSORT-D rearrange the elements of the array. The array may be
  2163. IPSORT-I sorted in forward or reverse lexicographical order. A
  2164. slightly modified quicksort algorithm is used.
  2165. N8. Permuting
  2166. SPPERM-S Rearrange a given array according to a prescribed
  2167. DPPERM-D permutation vector.
  2168. IPPERM-I
  2169. HPPERM-H
  2170. R. Service routines
  2171. R1. Machine-dependent constants
  2172. I1MACH-I Return integer machine dependent constants.
  2173. R1MACH-S Return floating point machine dependent constants.
  2174. D1MACH-D
  2175. R2. Error checking (e.g., check monotonicity)
  2176. GAMLIM-S Compute the minimum and maximum bounds for the argument in
  2177. DGAMLM-D the Gamma function.
  2178. R3. Error handling
  2179. FDUMP-A Symbolic dump (should be locally written).
  2180. R3A. Set criteria for fatal errors
  2181. XSETF-A Set the error control flag.
  2182. R3B. Set unit number for error messages
  2183. XSETUA-A Set logical unit numbers (up to 5) to which error
  2184. messages are to be sent.
  2185. XSETUN-A Set output file to which error messages are to be sent.
  2186. R3C. Other utility programs
  2187. NUMXER-I Return the most recent error number.
  2188. XERCLR-A Reset current error number to zero.
  2189. XERDMP-A Print the error tables and then clear them.
  2190. XERMAX-A Set maximum number of times any error message is to be
  2191. printed.
  2192. XERMSG-A Process error messages for SLATEC and other libraries.
  2193. XGETF-A Return the current value of the error control flag.
  2194. XGETUA-A Return unit number(s) to which error messages are being
  2195. sent.
  2196. XGETUN-A Return the (first) output file to which error messages
  2197. are being sent.
  2198. Z. Other
  2199. AAAAAA-A SLATEC Common Mathematical Library disclaimer and version.
  2200. BSPDOC-A Documentation for BSPLINE, a package of subprograms for
  2201. working with piecewise polynomial functions
  2202. in B-representation.
  2203. EISDOC-A Documentation for EISPACK, a collection of subprograms for
  2204. solving matrix eigen-problems.
  2205. FFTDOC-A Documentation for FFTPACK, a collection of Fast Fourier
  2206. Transform routines.
  2207. FUNDOC-A Documentation for FNLIB, a collection of routines for
  2208. evaluating elementary and special functions.
  2209. PCHDOC-A Documentation for PCHIP, a Fortran package for piecewise
  2210. cubic Hermite interpolation of data.
  2211. QPDOC-A Documentation for QUADPACK, a package of subprograms for
  2212. automatic evaluation of one-dimensional definite integrals.
  2213. SLPDOC-S Sparse Linear Algebra Package Version 2.0.2 Documentation.
  2214. DLPDOC-D Routines to solve large sparse symmetric and nonsymmetric
  2215. positive definite linear systems, Ax = b, using precondi-
  2216. tioned iterative methods.
  2217. SECTION II. Subsidiary Routines
  2218. ASYIK Subsidiary to BESI and BESK
  2219. ASYJY Subsidiary to BESJ and BESY
  2220. BCRH Subsidiary to CBLKTR
  2221. BDIFF Subsidiary to BSKIN
  2222. BESKNU Subsidiary to BESK
  2223. BESYNU Subsidiary to BESY
  2224. BKIAS Subsidiary to BSKIN
  2225. BKISR Subsidiary to BSKIN
  2226. BKSOL Subsidiary to BVSUP
  2227. BLKTR1 Subsidiary to BLKTRI
  2228. BNFAC Subsidiary to BINT4 and BINTK
  2229. BNSLV Subsidiary to BINT4 and BINTK
  2230. BSGQ8 Subsidiary to BFQAD
  2231. BSPLVD Subsidiary to FC
  2232. BSPLVN Subsidiary to FC
  2233. BSRH Subsidiary to BLKTRI
  2234. BVDER Subsidiary to BVSUP
  2235. BVPOR Subsidiary to BVSUP
  2236. C1MERG Merge two strings of complex numbers. Each string is
  2237. ascending by the real part.
  2238. C9LGMC Compute the log gamma correction factor so that
  2239. LOG(CGAMMA(Z)) = 0.5*LOG(2.*PI) + (Z-0.5)*LOG(Z) - Z
  2240. + C9LGMC(Z).
  2241. C9LN2R Evaluate LOG(1+Z) from second order relative accuracy so
  2242. that LOG(1+Z) = Z - Z**2/2 + Z**3*C9LN2R(Z).
  2243. CACAI Subsidiary to CAIRY
  2244. CACON Subsidiary to CBESH and CBESK
  2245. CASYI Subsidiary to CBESI and CBESK
  2246. CBINU Subsidiary to CAIRY, CBESH, CBESI, CBESJ, CBESK and CBIRY
  2247. CBKNU Subsidiary to CAIRY, CBESH, CBESI and CBESK
  2248. CBLKT1 Subsidiary to CBLKTR
  2249. CBUNI Subsidiary to CBESI and CBESK
  2250. CBUNK Subsidiary to CBESH and CBESK
  2251. CCMPB Subsidiary to CBLKTR
  2252. CDCOR Subroutine CDCOR computes corrections to the Y array.
  2253. CDCST CDCST sets coefficients used by the core integrator CDSTP.
  2254. CDIV Compute the complex quotient of two complex numbers.
  2255. CDNTL Subroutine CDNTL is called to set parameters on the first
  2256. call to CDSTP, on an internal restart, or when the user has
  2257. altered MINT, MITER, and/or H.
  2258. CDNTP Subroutine CDNTP interpolates the K-th derivative of Y at
  2259. TOUT, using the data in the YH array. If K has a value
  2260. greater than NQ, the NQ-th derivative is calculated.
  2261. CDPSC Subroutine CDPSC computes the predicted YH values by
  2262. effectively multiplying the YH array by the Pascal triangle
  2263. matrix when KSGN is +1, and performs the inverse function
  2264. when KSGN is -1.
  2265. CDPST Subroutine CDPST evaluates the Jacobian matrix of the right
  2266. hand side of the differential equations.
  2267. CDSCL Subroutine CDSCL rescales the YH array whenever the step
  2268. size is changed.
  2269. CDSTP CDSTP performs one step of the integration of an initial
  2270. value problem for a system of ordinary differential
  2271. equations.
  2272. CDZRO CDZRO searches for a zero of a function F(N, T, Y, IROOT)
  2273. between the given values B and C until the width of the
  2274. interval (B, C) has collapsed to within a tolerance
  2275. specified by the stopping criterion,
  2276. ABS(B - C) .LE. 2.*(RW*ABS(B) + AE).
  2277. CFFTB Compute the unnormalized inverse of CFFTF.
  2278. CFFTF Compute the forward transform of a complex, periodic
  2279. sequence.
  2280. CFFTI Initialize a work array for CFFTF and CFFTB.
  2281. CFOD Subsidiary to DEBDF
  2282. CHFCM Check a single cubic for monotonicity.
  2283. CHFIE Evaluates integral of a single cubic for PCHIA
  2284. CHKPR4 Subsidiary to SEPX4
  2285. CHKPRM Subsidiary to SEPELI
  2286. CHKSN4 Subsidiary to SEPX4
  2287. CHKSNG Subsidiary to SEPELI
  2288. CKSCL Subsidiary to CBKNU, CUNK1 and CUNK2
  2289. CMLRI Subsidiary to CBESI and CBESK
  2290. CMPCSG Subsidiary to CMGNBN
  2291. CMPOSD Subsidiary to CMGNBN
  2292. CMPOSN Subsidiary to CMGNBN
  2293. CMPOSP Subsidiary to CMGNBN
  2294. CMPTR3 Subsidiary to CMGNBN
  2295. CMPTRX Subsidiary to CMGNBN
  2296. COMPB Subsidiary to BLKTRI
  2297. COSGEN Subsidiary to GENBUN
  2298. COSQB1 Compute the unnormalized inverse of COSQF1.
  2299. COSQF1 Compute the forward cosine transform with odd wave numbers.
  2300. CPADD Subsidiary to CBLKTR
  2301. CPEVL Subsidiary to CPZERO
  2302. CPEVLR Subsidiary to CPZERO
  2303. CPROC Subsidiary to CBLKTR
  2304. CPROCP Subsidiary to CBLKTR
  2305. CPROD Subsidiary to BLKTRI
  2306. CPRODP Subsidiary to BLKTRI
  2307. CRATI Subsidiary to CBESH, CBESI and CBESK
  2308. CS1S2 Subsidiary to CAIRY and CBESK
  2309. CSCALE Subsidiary to BVSUP
  2310. CSERI Subsidiary to CBESI and CBESK
  2311. CSHCH Subsidiary to CBESH and CBESK
  2312. CSROOT Compute the complex square root of a complex number.
  2313. CUCHK Subsidiary to SERI, CUOIK, CUNK1, CUNK2, CUNI1, CUNI2 and
  2314. CKSCL
  2315. CUNHJ Subsidiary to CBESI and CBESK
  2316. CUNI1 Subsidiary to CBESI and CBESK
  2317. CUNI2 Subsidiary to CBESI and CBESK
  2318. CUNIK Subsidiary to CBESI and CBESK
  2319. CUNK1 Subsidiary to CBESK
  2320. CUNK2 Subsidiary to CBESK
  2321. CUOIK Subsidiary to CBESH, CBESI and CBESK
  2322. CWRSK Subsidiary to CBESI and CBESK
  2323. D1MERG Merge two strings of ascending double precision numbers.
  2324. D1MPYQ Subsidiary to DNSQ and DNSQE
  2325. D1UPDT Subsidiary to DNSQ and DNSQE
  2326. D9AIMP Evaluate the Airy modulus and phase.
  2327. D9ATN1 Evaluate DATAN(X) from first order relative accuracy so
  2328. that DATAN(X) = X + X**3*D9ATN1(X).
  2329. D9B0MP Evaluate the modulus and phase for the J0 and Y0 Bessel
  2330. functions.
  2331. D9B1MP Evaluate the modulus and phase for the J1 and Y1 Bessel
  2332. functions.
  2333. D9CHU Evaluate for large Z Z**A * U(A,B,Z) where U is the
  2334. logarithmic confluent hypergeometric function.
  2335. D9GMIC Compute the complementary incomplete Gamma function for A
  2336. near a negative integer and X small.
  2337. D9GMIT Compute Tricomi's incomplete Gamma function for small
  2338. arguments.
  2339. D9KNUS Compute Bessel functions EXP(X)*K-SUB-XNU(X) and EXP(X)*
  2340. K-SUB-XNU+1(X) for 0.0 .LE. XNU .LT. 1.0.
  2341. D9LGIC Compute the log complementary incomplete Gamma function
  2342. for large X and for A .LE. X.
  2343. D9LGIT Compute the logarithm of Tricomi's incomplete Gamma
  2344. function with Perron's continued fraction for large X and
  2345. A .GE. X.
  2346. D9LGMC Compute the log Gamma correction factor so that
  2347. LOG(DGAMMA(X)) = LOG(SQRT(2*PI)) + (X-5.)*LOG(X) - X
  2348. + D9LGMC(X).
  2349. D9LN2R Evaluate LOG(1+X) from second order relative accuracy so
  2350. that LOG(1+X) = X - X**2/2 + X**3*D9LN2R(X)
  2351. DASYIK Subsidiary to DBESI and DBESK
  2352. DASYJY Subsidiary to DBESJ and DBESY
  2353. DBDIFF Subsidiary to DBSKIN
  2354. DBKIAS Subsidiary to DBSKIN
  2355. DBKISR Subsidiary to DBSKIN
  2356. DBKSOL Subsidiary to DBVSUP
  2357. DBNFAC Subsidiary to DBINT4 and DBINTK
  2358. DBNSLV Subsidiary to DBINT4 and DBINTK
  2359. DBOLSM Subsidiary to DBOCLS and DBOLS
  2360. DBSGQ8 Subsidiary to DBFQAD
  2361. DBSKNU Subsidiary to DBESK
  2362. DBSYNU Subsidiary to DBESY
  2363. DBVDER Subsidiary to DBVSUP
  2364. DBVPOR Subsidiary to DBVSUP
  2365. DCFOD Subsidiary to DDEBDF
  2366. DCHFCM Check a single cubic for monotonicity.
  2367. DCHFIE Evaluates integral of a single cubic for DPCHIA
  2368. DCHKW SLAP WORK/IWORK Array Bounds Checker.
  2369. This routine checks the work array lengths and interfaces
  2370. to the SLATEC error handler if a problem is found.
  2371. DCOEF Subsidiary to DBVSUP
  2372. DCSCAL Subsidiary to DBVSUP and DSUDS
  2373. DDAINI Initialization routine for DDASSL.
  2374. DDAJAC Compute the iteration matrix for DDASSL and form the
  2375. LU-decomposition.
  2376. DDANRM Compute vector norm for DDASSL.
  2377. DDASLV Linear system solver for DDASSL.
  2378. DDASTP Perform one step of the DDASSL integration.
  2379. DDATRP Interpolation routine for DDASSL.
  2380. DDAWTS Set error weight vector for DDASSL.
  2381. DDCOR Subroutine DDCOR computes corrections to the Y array.
  2382. DDCST DDCST sets coefficients used by the core integrator DDSTP.
  2383. DDES Subsidiary to DDEABM
  2384. DDNTL Subroutine DDNTL is called to set parameters on the first
  2385. call to DDSTP, on an internal restart, or when the user has
  2386. altered MINT, MITER, and/or H.
  2387. DDNTP Subroutine DDNTP interpolates the K-th derivative of Y at
  2388. TOUT, using the data in the YH array. If K has a value
  2389. greater than NQ, the NQ-th derivative is calculated.
  2390. DDOGLG Subsidiary to DNSQ and DNSQE
  2391. DDPSC Subroutine DDPSC computes the predicted YH values by
  2392. effectively multiplying the YH array by the Pascal triangle
  2393. matrix when KSGN is +1, and performs the inverse function
  2394. when KSGN is -1.
  2395. DDPST Subroutine DDPST evaluates the Jacobian matrix of the right
  2396. hand side of the differential equations.
  2397. DDSCL Subroutine DDSCL rescales the YH array whenever the step
  2398. size is changed.
  2399. DDSTP DDSTP performs one step of the integration of an initial
  2400. value problem for a system of ordinary differential
  2401. equations.
  2402. DDZRO DDZRO searches for a zero of a function F(N, T, Y, IROOT)
  2403. between the given values B and C until the width of the
  2404. interval (B, C) has collapsed to within a tolerance
  2405. specified by the stopping criterion,
  2406. ABS(B - C) .LE. 2.*(RW*ABS(B) + AE).
  2407. DEFCMN Subsidiary to DEFC
  2408. DEFE4 Subsidiary to SEPX4
  2409. DEFEHL Subsidiary to DERKF
  2410. DEFER Subsidiary to SEPELI
  2411. DENORM Subsidiary to DNSQ and DNSQE
  2412. DERKFS Subsidiary to DERKF
  2413. DES Subsidiary to DEABM
  2414. DEXBVP Subsidiary to DBVSUP
  2415. DFCMN Subsidiary to FC
  2416. DFDJC1 Subsidiary to DNSQ and DNSQE
  2417. DFDJC3 Subsidiary to DNLS1 and DNLS1E
  2418. DFEHL Subsidiary to DDERKF
  2419. DFSPVD Subsidiary to DFC
  2420. DFSPVN Subsidiary to DFC
  2421. DFULMT Subsidiary to DSPLP
  2422. DGAMLN Compute the logarithm of the Gamma function
  2423. DGAMRN Subsidiary to DBSKIN
  2424. DH12 Subsidiary to DHFTI, DLSEI and DWNNLS
  2425. DHELS Internal routine for DGMRES.
  2426. DHEQR Internal routine for DGMRES.
  2427. DHKSEQ Subsidiary to DBSKIN
  2428. DHSTRT Subsidiary to DDEABM, DDEBDF and DDERKF
  2429. DHVNRM Subsidiary to DDEABM, DDEBDF and DDERKF
  2430. DINTYD Subsidiary to DDEBDF
  2431. DJAIRY Subsidiary to DBESJ and DBESY
  2432. DLPDP Subsidiary to DLSEI
  2433. DLSI Subsidiary to DLSEI
  2434. DLSOD Subsidiary to DDEBDF
  2435. DLSSUD Subsidiary to DBVSUP and DSUDS
  2436. DMACON Subsidiary to DBVSUP
  2437. DMGSBV Subsidiary to DBVSUP
  2438. DMOUT Subsidiary to DBOCLS and DFC
  2439. DMPAR Subsidiary to DNLS1 and DNLS1E
  2440. DOGLEG Subsidiary to SNSQ and SNSQE
  2441. DOHTRL Subsidiary to DBVSUP and DSUDS
  2442. DORTH Internal routine for DGMRES.
  2443. DORTHR Subsidiary to DBVSUP and DSUDS
  2444. DPCHCE Set boundary conditions for DPCHIC
  2445. DPCHCI Set interior derivatives for DPCHIC
  2446. DPCHCS Adjusts derivative values for DPCHIC
  2447. DPCHDF Computes divided differences for DPCHCE and DPCHSP
  2448. DPCHKT Compute B-spline knot sequence for DPCHBS.
  2449. DPCHNG Subsidiary to DSPLP
  2450. DPCHST DPCHIP Sign-Testing Routine
  2451. DPCHSW Limits excursion from data for DPCHCS
  2452. DPIGMR Internal routine for DGMRES.
  2453. DPINCW Subsidiary to DSPLP
  2454. DPINIT Subsidiary to DSPLP
  2455. DPINTM Subsidiary to DSPLP
  2456. DPJAC Subsidiary to DDEBDF
  2457. DPLPCE Subsidiary to DSPLP
  2458. DPLPDM Subsidiary to DSPLP
  2459. DPLPFE Subsidiary to DSPLP
  2460. DPLPFL Subsidiary to DSPLP
  2461. DPLPMN Subsidiary to DSPLP
  2462. DPLPMU Subsidiary to DSPLP
  2463. DPLPUP Subsidiary to DSPLP
  2464. DPNNZR Subsidiary to DSPLP
  2465. DPOPT Subsidiary to DSPLP
  2466. DPPGQ8 Subsidiary to DPFQAD
  2467. DPRVEC Subsidiary to DBVSUP
  2468. DPRWPG Subsidiary to DSPLP
  2469. DPRWVR Subsidiary to DSPLP
  2470. DPSIXN Subsidiary to DEXINT
  2471. DQCHEB This routine computes the CHEBYSHEV series expansion
  2472. of degrees 12 and 24 of a function using A
  2473. FAST FOURIER TRANSFORM METHOD
  2474. F(X) = SUM(K=1,..,13) (CHEB12(K)*T(K-1,X)),
  2475. F(X) = SUM(K=1,..,25) (CHEB24(K)*T(K-1,X)),
  2476. Where T(K,X) is the CHEBYSHEV POLYNOMIAL OF DEGREE K.
  2477. DQELG The routine determines the limit of a given sequence of
  2478. approximations, by means of the Epsilon algorithm of
  2479. P.Wynn. An estimate of the absolute error is also given.
  2480. The condensed Epsilon table is computed. Only those
  2481. elements needed for the computation of the next diagonal
  2482. are preserved.
  2483. DQFORM Subsidiary to DNSQ and DNSQE
  2484. DQPSRT This routine maintains the descending ordering in the
  2485. list of the local error estimated resulting from the
  2486. interval subdivision process. At each call two error
  2487. estimates are inserted using the sequential search
  2488. method, top-down for the largest error estimate and
  2489. bottom-up for the smallest error estimate.
  2490. DQRFAC Subsidiary to DNLS1, DNLS1E, DNSQ and DNSQE
  2491. DQRSLV Subsidiary to DNLS1 and DNLS1E
  2492. DQWGTC This function subprogram is used together with the
  2493. routine DQAWC and defines the WEIGHT function.
  2494. DQWGTF This function subprogram is used together with the
  2495. routine DQAWF and defines the WEIGHT function.
  2496. DQWGTS This function subprogram is used together with the
  2497. routine DQAWS and defines the WEIGHT function.
  2498. DREADP Subsidiary to DSPLP
  2499. DREORT Subsidiary to DBVSUP
  2500. DRKFAB Subsidiary to DBVSUP
  2501. DRKFS Subsidiary to DDERKF
  2502. DRLCAL Internal routine for DGMRES.
  2503. DRSCO Subsidiary to DDEBDF
  2504. DSLVS Subsidiary to DDEBDF
  2505. DSOSEQ Subsidiary to DSOS
  2506. DSOSSL Subsidiary to DSOS
  2507. DSTOD Subsidiary to DDEBDF
  2508. DSTOR1 Subsidiary to DBVSUP
  2509. DSTWAY Subsidiary to DBVSUP
  2510. DSUDS Subsidiary to DBVSUP
  2511. DSVCO Subsidiary to DDEBDF
  2512. DU11LS Subsidiary to DLLSIA
  2513. DU11US Subsidiary to DULSIA
  2514. DU12LS Subsidiary to DLLSIA
  2515. DU12US Subsidiary to DULSIA
  2516. DUSRMT Subsidiary to DSPLP
  2517. DVECS Subsidiary to DBVSUP
  2518. DVNRMS Subsidiary to DDEBDF
  2519. DVOUT Subsidiary to DSPLP
  2520. DWNLIT Subsidiary to DWNNLS
  2521. DWNLSM Subsidiary to DWNNLS
  2522. DWNLT1 Subsidiary to WNLIT
  2523. DWNLT2 Subsidiary to WNLIT
  2524. DWNLT3 Subsidiary to WNLIT
  2525. DWRITP Subsidiary to DSPLP
  2526. DWUPDT Subsidiary to DNLS1 and DNLS1E
  2527. DX Subsidiary to SEPELI
  2528. DX4 Subsidiary to SEPX4
  2529. DXLCAL Internal routine for DGMRES.
  2530. DXPMU To compute the values of Legendre functions for DXLEGF.
  2531. Method: backward mu-wise recurrence for P(-MU,NU,X) for
  2532. fixed nu to obtain P(-MU2,NU1,X), P(-(MU2-1),NU1,X), ...,
  2533. P(-MU1,NU1,X) and store in ascending mu order.
  2534. DXPMUP To compute the values of Legendre functions for DXLEGF.
  2535. This subroutine transforms an array of Legendre functions
  2536. of the first kind of negative order stored in array PQA
  2537. into Legendre functions of the first kind of positive
  2538. order stored in array PQA. The original array is destroyed.
  2539. DXPNRM To compute the values of Legendre functions for DXLEGF.
  2540. This subroutine transforms an array of Legendre functions
  2541. of the first kind of negative order stored in array PQA
  2542. into normalized Legendre polynomials stored in array PQA.
  2543. The original array is destroyed.
  2544. DXPQNU To compute the values of Legendre functions for DXLEGF.
  2545. This subroutine calculates initial values of P or Q using
  2546. power series, then performs forward nu-wise recurrence to
  2547. obtain P(-MU,NU,X), Q(0,NU,X), or Q(1,NU,X). The nu-wise
  2548. recurrence is stable for P for all mu and for Q for mu=0,1.
  2549. DXPSI To compute values of the Psi function for DXLEGF.
  2550. DXQMU To compute the values of Legendre functions for DXLEGF.
  2551. Method: forward mu-wise recurrence for Q(MU,NU,X) for fixed
  2552. nu to obtain Q(MU1,NU,X), Q(MU1+1,NU,X), ..., Q(MU2,NU,X).
  2553. DXQNU To compute the values of Legendre functions for DXLEGF.
  2554. Method: backward nu-wise recurrence for Q(MU,NU,X) for
  2555. fixed mu to obtain Q(MU1,NU1,X), Q(MU1,NU1+1,X), ...,
  2556. Q(MU1,NU2,X).
  2557. DY Subsidiary to SEPELI
  2558. DY4 Subsidiary to SEPX4
  2559. DYAIRY Subsidiary to DBESJ and DBESY
  2560. EFCMN Subsidiary to EFC
  2561. ENORM Subsidiary to SNLS1, SNLS1E, SNSQ and SNSQE
  2562. EXBVP Subsidiary to BVSUP
  2563. EZFFT1 EZFFTI calls EZFFT1 with appropriate work array
  2564. partitioning.
  2565. FCMN Subsidiary to FC
  2566. FDJAC1 Subsidiary to SNSQ and SNSQE
  2567. FDJAC3 Subsidiary to SNLS1 and SNLS1E
  2568. FULMAT Subsidiary to SPLP
  2569. GAMLN Compute the logarithm of the Gamma function
  2570. GAMRN Subsidiary to BSKIN
  2571. H12 Subsidiary to HFTI, LSEI and WNNLS
  2572. HKSEQ Subsidiary to BSKIN
  2573. HSTART Subsidiary to DEABM, DEBDF and DERKF
  2574. HSTCS1 Subsidiary to HSTCSP
  2575. HVNRM Subsidiary to DEABM, DEBDF and DERKF
  2576. HWSCS1 Subsidiary to HWSCSP
  2577. HWSSS1 Subsidiary to HWSSSP
  2578. I1MERG Merge two strings of ascending integers.
  2579. IDLOC Subsidiary to DSPLP
  2580. INDXA Subsidiary to BLKTRI
  2581. INDXB Subsidiary to BLKTRI
  2582. INDXC Subsidiary to BLKTRI
  2583. INTYD Subsidiary to DEBDF
  2584. INXCA Subsidiary to CBLKTR
  2585. INXCB Subsidiary to CBLKTR
  2586. INXCC Subsidiary to CBLKTR
  2587. IPLOC Subsidiary to SPLP
  2588. ISDBCG Preconditioned BiConjugate Gradient Stop Test.
  2589. This routine calculates the stop test for the BiConjugate
  2590. Gradient iteration scheme. It returns a non-zero if the
  2591. error estimate (the type of which is determined by ITOL)
  2592. is less than the user specified tolerance TOL.
  2593. ISDCG Preconditioned Conjugate Gradient Stop Test.
  2594. This routine calculates the stop test for the Conjugate
  2595. Gradient iteration scheme. It returns a non-zero if the
  2596. error estimate (the type of which is determined by ITOL)
  2597. is less than the user specified tolerance TOL.
  2598. ISDCGN Preconditioned CG on Normal Equations Stop Test.
  2599. This routine calculates the stop test for the Conjugate
  2600. Gradient iteration scheme applied to the normal equations.
  2601. It returns a non-zero if the error estimate (the type of
  2602. which is determined by ITOL) is less than the user
  2603. specified tolerance TOL.
  2604. ISDCGS Preconditioned BiConjugate Gradient Squared Stop Test.
  2605. This routine calculates the stop test for the BiConjugate
  2606. Gradient Squared iteration scheme. It returns a non-zero
  2607. if the error estimate (the type of which is determined by
  2608. ITOL) is less than the user specified tolerance TOL.
  2609. ISDGMR Generalized Minimum Residual Stop Test.
  2610. This routine calculates the stop test for the Generalized
  2611. Minimum RESidual (GMRES) iteration scheme. It returns a
  2612. non-zero if the error estimate (the type of which is
  2613. determined by ITOL) is less than the user specified
  2614. tolerance TOL.
  2615. ISDIR Preconditioned Iterative Refinement Stop Test.
  2616. This routine calculates the stop test for the iterative
  2617. refinement iteration scheme. It returns a non-zero if the
  2618. error estimate (the type of which is determined by ITOL)
  2619. is less than the user specified tolerance TOL.
  2620. ISDOMN Preconditioned Orthomin Stop Test.
  2621. This routine calculates the stop test for the Orthomin
  2622. iteration scheme. It returns a non-zero if the error
  2623. estimate (the type of which is determined by ITOL) is
  2624. less than the user specified tolerance TOL.
  2625. ISSBCG Preconditioned BiConjugate Gradient Stop Test.
  2626. This routine calculates the stop test for the BiConjugate
  2627. Gradient iteration scheme. It returns a non-zero if the
  2628. error estimate (the type of which is determined by ITOL)
  2629. is less than the user specified tolerance TOL.
  2630. ISSCG Preconditioned Conjugate Gradient Stop Test.
  2631. This routine calculates the stop test for the Conjugate
  2632. Gradient iteration scheme. It returns a non-zero if the
  2633. error estimate (the type of which is determined by ITOL)
  2634. is less than the user specified tolerance TOL.
  2635. ISSCGN Preconditioned CG on Normal Equations Stop Test.
  2636. This routine calculates the stop test for the Conjugate
  2637. Gradient iteration scheme applied to the normal equations.
  2638. It returns a non-zero if the error estimate (the type of
  2639. which is determined by ITOL) is less than the user
  2640. specified tolerance TOL.
  2641. ISSCGS Preconditioned BiConjugate Gradient Squared Stop Test.
  2642. This routine calculates the stop test for the BiConjugate
  2643. Gradient Squared iteration scheme. It returns a non-zero
  2644. if the error estimate (the type of which is determined by
  2645. ITOL) is less than the user specified tolerance TOL.
  2646. ISSGMR Generalized Minimum Residual Stop Test.
  2647. This routine calculates the stop test for the Generalized
  2648. Minimum RESidual (GMRES) iteration scheme. It returns a
  2649. non-zero if the error estimate (the type of which is
  2650. determined by ITOL) is less than the user specified
  2651. tolerance TOL.
  2652. ISSIR Preconditioned Iterative Refinement Stop Test.
  2653. This routine calculates the stop test for the iterative
  2654. refinement iteration scheme. It returns a non-zero if the
  2655. error estimate (the type of which is determined by ITOL)
  2656. is less than the user specified tolerance TOL.
  2657. ISSOMN Preconditioned Orthomin Stop Test.
  2658. This routine calculates the stop test for the Orthomin
  2659. iteration scheme. It returns a non-zero if the error
  2660. estimate (the type of which is determined by ITOL) is
  2661. less than the user specified tolerance TOL.
  2662. IVOUT Subsidiary to SPLP
  2663. J4SAVE Save or recall global variables needed by error
  2664. handling routines.
  2665. JAIRY Subsidiary to BESJ and BESY
  2666. LA05AD Subsidiary to DSPLP
  2667. LA05AS Subsidiary to SPLP
  2668. LA05BD Subsidiary to DSPLP
  2669. LA05BS Subsidiary to SPLP
  2670. LA05CD Subsidiary to DSPLP
  2671. LA05CS Subsidiary to SPLP
  2672. LA05ED Subsidiary to DSPLP
  2673. LA05ES Subsidiary to SPLP
  2674. LMPAR Subsidiary to SNLS1 and SNLS1E
  2675. LPDP Subsidiary to LSEI
  2676. LSAME Test two characters to determine if they are the same
  2677. letter, except for case.
  2678. LSI Subsidiary to LSEI
  2679. LSOD Subsidiary to DEBDF
  2680. LSSODS Subsidiary to BVSUP
  2681. LSSUDS Subsidiary to BVSUP
  2682. MACON Subsidiary to BVSUP
  2683. MC20AD Subsidiary to DSPLP
  2684. MC20AS Subsidiary to SPLP
  2685. MGSBV Subsidiary to BVSUP
  2686. MINSO4 Subsidiary to SEPX4
  2687. MINSOL Subsidiary to SEPELI
  2688. MPADD Subsidiary to DQDOTA and DQDOTI
  2689. MPADD2 Subsidiary to DQDOTA and DQDOTI
  2690. MPADD3 Subsidiary to DQDOTA and DQDOTI
  2691. MPBLAS Subsidiary to DQDOTA and DQDOTI
  2692. MPCDM Subsidiary to DQDOTA and DQDOTI
  2693. MPCHK Subsidiary to DQDOTA and DQDOTI
  2694. MPCMD Subsidiary to DQDOTA and DQDOTI
  2695. MPDIVI Subsidiary to DQDOTA and DQDOTI
  2696. MPERR Subsidiary to DQDOTA and DQDOTI
  2697. MPMAXR Subsidiary to DQDOTA and DQDOTI
  2698. MPMLP Subsidiary to DQDOTA and DQDOTI
  2699. MPMUL Subsidiary to DQDOTA and DQDOTI
  2700. MPMUL2 Subsidiary to DQDOTA and DQDOTI
  2701. MPMULI Subsidiary to DQDOTA and DQDOTI
  2702. MPNZR Subsidiary to DQDOTA and DQDOTI
  2703. MPOVFL Subsidiary to DQDOTA and DQDOTI
  2704. MPSTR Subsidiary to DQDOTA and DQDOTI
  2705. MPUNFL Subsidiary to DQDOTA and DQDOTI
  2706. OHTROL Subsidiary to BVSUP
  2707. OHTROR Subsidiary to BVSUP
  2708. ORTHO4 Subsidiary to SEPX4
  2709. ORTHOG Subsidiary to SEPELI
  2710. ORTHOL Subsidiary to BVSUP
  2711. ORTHOR Subsidiary to BVSUP
  2712. PASSB Calculate the fast Fourier transform of subvectors of
  2713. arbitrary length.
  2714. PASSB2 Calculate the fast Fourier transform of subvectors of
  2715. length two.
  2716. PASSB3 Calculate the fast Fourier transform of subvectors of
  2717. length three.
  2718. PASSB4 Calculate the fast Fourier transform of subvectors of
  2719. length four.
  2720. PASSB5 Calculate the fast Fourier transform of subvectors of
  2721. length five.
  2722. PASSF Calculate the fast Fourier transform of subvectors of
  2723. arbitrary length.
  2724. PASSF2 Calculate the fast Fourier transform of subvectors of
  2725. length two.
  2726. PASSF3 Calculate the fast Fourier transform of subvectors of
  2727. length three.
  2728. PASSF4 Calculate the fast Fourier transform of subvectors of
  2729. length four.
  2730. PASSF5 Calculate the fast Fourier transform of subvectors of
  2731. length five.
  2732. PCHCE Set boundary conditions for PCHIC
  2733. PCHCI Set interior derivatives for PCHIC
  2734. PCHCS Adjusts derivative values for PCHIC
  2735. PCHDF Computes divided differences for PCHCE and PCHSP
  2736. PCHKT Compute B-spline knot sequence for PCHBS.
  2737. PCHNGS Subsidiary to SPLP
  2738. PCHST PCHIP Sign-Testing Routine
  2739. PCHSW Limits excursion from data for PCHCS
  2740. PGSF Subsidiary to CBLKTR
  2741. PIMACH Subsidiary to HSTCSP, HSTSSP and HWSCSP
  2742. PINITM Subsidiary to SPLP
  2743. PJAC Subsidiary to DEBDF
  2744. PNNZRS Subsidiary to SPLP
  2745. POISD2 Subsidiary to GENBUN
  2746. POISN2 Subsidiary to GENBUN
  2747. POISP2 Subsidiary to GENBUN
  2748. POS3D1 Subsidiary to POIS3D
  2749. POSTG2 Subsidiary to POISTG
  2750. PPADD Subsidiary to BLKTRI
  2751. PPGQ8 Subsidiary to PFQAD
  2752. PPGSF Subsidiary to CBLKTR
  2753. PPPSF Subsidiary to CBLKTR
  2754. PPSGF Subsidiary to BLKTRI
  2755. PPSPF Subsidiary to BLKTRI
  2756. PROC Subsidiary to CBLKTR
  2757. PROCP Subsidiary to CBLKTR
  2758. PROD Subsidiary to BLKTRI
  2759. PRODP Subsidiary to BLKTRI
  2760. PRVEC Subsidiary to BVSUP
  2761. PRWPGE Subsidiary to SPLP
  2762. PRWVIR Subsidiary to SPLP
  2763. PSGF Subsidiary to BLKTRI
  2764. PSIXN Subsidiary to EXINT
  2765. PYTHAG Compute the complex square root of a complex number without
  2766. destructive overflow or underflow.
  2767. QCHEB This routine computes the CHEBYSHEV series expansion
  2768. of degrees 12 and 24 of a function using A
  2769. FAST FOURIER TRANSFORM METHOD
  2770. F(X) = SUM(K=1,..,13) (CHEB12(K)*T(K-1,X)),
  2771. F(X) = SUM(K=1,..,25) (CHEB24(K)*T(K-1,X)),
  2772. Where T(K,X) is the CHEBYSHEV POLYNOMIAL OF DEGREE K.
  2773. QELG The routine determines the limit of a given sequence of
  2774. approximations, by means of the Epsilon algorithm of
  2775. P. Wynn. An estimate of the absolute error is also given.
  2776. The condensed Epsilon table is computed. Only those
  2777. elements needed for the computation of the next diagonal
  2778. are preserved.
  2779. QFORM Subsidiary to SNSQ and SNSQE
  2780. QPSRT Subsidiary to QAGE, QAGIE, QAGPE, QAGSE, QAWCE, QAWOE and
  2781. QAWSE
  2782. QRFAC Subsidiary to SNLS1, SNLS1E, SNSQ and SNSQE
  2783. QRSOLV Subsidiary to SNLS1 and SNLS1E
  2784. QS2I1D Sort an integer array, moving an integer and DP array.
  2785. This routine sorts the integer array IA and makes the same
  2786. interchanges in the integer array JA and the double pre-
  2787. cision array A. The array IA may be sorted in increasing
  2788. order or decreasing order. A slightly modified QUICKSORT
  2789. algorithm is used.
  2790. QS2I1R Sort an integer array, moving an integer and real array.
  2791. This routine sorts the integer array IA and makes the same
  2792. interchanges in the integer array JA and the real array A.
  2793. The array IA may be sorted in increasing order or decreas-
  2794. ing order. A slightly modified QUICKSORT algorithm is
  2795. used.
  2796. QWGTC This function subprogram is used together with the
  2797. routine QAWC and defines the WEIGHT function.
  2798. QWGTF This function subprogram is used together with the
  2799. routine QAWF and defines the WEIGHT function.
  2800. QWGTS This function subprogram is used together with the
  2801. routine QAWS and defines the WEIGHT function.
  2802. R1MPYQ Subsidiary to SNSQ and SNSQE
  2803. R1UPDT Subsidiary to SNSQ and SNSQE
  2804. R9AIMP Evaluate the Airy modulus and phase.
  2805. R9ATN1 Evaluate ATAN(X) from first order relative accuracy so that
  2806. ATAN(X) = X + X**3*R9ATN1(X).
  2807. R9CHU Evaluate for large Z Z**A * U(A,B,Z) where U is the
  2808. logarithmic confluent hypergeometric function.
  2809. R9GMIC Compute the complementary incomplete Gamma function for A
  2810. near a negative integer and for small X.
  2811. R9GMIT Compute Tricomi's incomplete Gamma function for small
  2812. arguments.
  2813. R9KNUS Compute Bessel functions EXP(X)*K-SUB-XNU(X) and EXP(X)*
  2814. K-SUB-XNU+1(X) for 0.0 .LE. XNU .LT. 1.0.
  2815. R9LGIC Compute the log complementary incomplete Gamma function
  2816. for large X and for A .LE. X.
  2817. R9LGIT Compute the logarithm of Tricomi's incomplete Gamma
  2818. function with Perron's continued fraction for large X and
  2819. A .GE. X.
  2820. R9LGMC Compute the log Gamma correction factor so that
  2821. LOG(GAMMA(X)) = LOG(SQRT(2*PI)) + (X-.5)*LOG(X) - X
  2822. + R9LGMC(X).
  2823. R9LN2R Evaluate LOG(1+X) from second order relative accuracy so
  2824. that LOG(1+X) = X - X**2/2 + X**3*R9LN2R(X).
  2825. RADB2 Calculate the fast Fourier transform of subvectors of
  2826. length two.
  2827. RADB3 Calculate the fast Fourier transform of subvectors of
  2828. length three.
  2829. RADB4 Calculate the fast Fourier transform of subvectors of
  2830. length four.
  2831. RADB5 Calculate the fast Fourier transform of subvectors of
  2832. length five.
  2833. RADBG Calculate the fast Fourier transform of subvectors of
  2834. arbitrary length.
  2835. RADF2 Calculate the fast Fourier transform of subvectors of
  2836. length two.
  2837. RADF3 Calculate the fast Fourier transform of subvectors of
  2838. length three.
  2839. RADF4 Calculate the fast Fourier transform of subvectors of
  2840. length four.
  2841. RADF5 Calculate the fast Fourier transform of subvectors of
  2842. length five.
  2843. RADFG Calculate the fast Fourier transform of subvectors of
  2844. arbitrary length.
  2845. REORT Subsidiary to BVSUP
  2846. RFFTB Compute the backward fast Fourier transform of a real
  2847. coefficient array.
  2848. RFFTF Compute the forward transform of a real, periodic sequence.
  2849. RFFTI Initialize a work array for RFFTF and RFFTB.
  2850. RKFAB Subsidiary to BVSUP
  2851. RSCO Subsidiary to DEBDF
  2852. RWUPDT Subsidiary to SNLS1 and SNLS1E
  2853. S1MERG Merge two strings of ascending real numbers.
  2854. SBOLSM Subsidiary to SBOCLS and SBOLS
  2855. SCHKW SLAP WORK/IWORK Array Bounds Checker.
  2856. This routine checks the work array lengths and interfaces
  2857. to the SLATEC error handler if a problem is found.
  2858. SCLOSM Subsidiary to SPLP
  2859. SCOEF Subsidiary to BVSUP
  2860. SDAINI Initialization routine for SDASSL.
  2861. SDAJAC Compute the iteration matrix for SDASSL and form the
  2862. LU-decomposition.
  2863. SDANRM Compute vector norm for SDASSL.
  2864. SDASLV Linear system solver for SDASSL.
  2865. SDASTP Perform one step of the SDASSL integration.
  2866. SDATRP Interpolation routine for SDASSL.
  2867. SDAWTS Set error weight vector for SDASSL.
  2868. SDCOR Subroutine SDCOR computes corrections to the Y array.
  2869. SDCST SDCST sets coefficients used by the core integrator SDSTP.
  2870. SDNTL Subroutine SDNTL is called to set parameters on the first
  2871. call to SDSTP, on an internal restart, or when the user has
  2872. altered MINT, MITER, and/or H.
  2873. SDNTP Subroutine SDNTP interpolates the K-th derivative of Y at
  2874. TOUT, using the data in the YH array. If K has a value
  2875. greater than NQ, the NQ-th derivative is calculated.
  2876. SDPSC Subroutine SDPSC computes the predicted YH values by
  2877. effectively multiplying the YH array by the Pascal triangle
  2878. matrix when KSGN is +1, and performs the inverse function
  2879. when KSGN is -1.
  2880. SDPST Subroutine SDPST evaluates the Jacobian matrix of the right
  2881. hand side of the differential equations.
  2882. SDSCL Subroutine SDSCL rescales the YH array whenever the step
  2883. size is changed.
  2884. SDSTP SDSTP performs one step of the integration of an initial
  2885. value problem for a system of ordinary differential
  2886. equations.
  2887. SDZRO SDZRO searches for a zero of a function F(N, T, Y, IROOT)
  2888. between the given values B and C until the width of the
  2889. interval (B, C) has collapsed to within a tolerance
  2890. specified by the stopping criterion,
  2891. ABS(B - C) .LE. 2.*(RW*ABS(B) + AE).
  2892. SHELS Internal routine for SGMRES.
  2893. SHEQR Internal routine for SGMRES.
  2894. SLVS Subsidiary to DEBDF
  2895. SMOUT Subsidiary to FC and SBOCLS
  2896. SODS Subsidiary to BVSUP
  2897. SOPENM Subsidiary to SPLP
  2898. SORTH Internal routine for SGMRES.
  2899. SOSEQS Subsidiary to SOS
  2900. SOSSOL Subsidiary to SOS
  2901. SPELI4 Subsidiary to SEPX4
  2902. SPELIP Subsidiary to SEPELI
  2903. SPIGMR Internal routine for SGMRES.
  2904. SPINCW Subsidiary to SPLP
  2905. SPINIT Subsidiary to SPLP
  2906. SPLPCE Subsidiary to SPLP
  2907. SPLPDM Subsidiary to SPLP
  2908. SPLPFE Subsidiary to SPLP
  2909. SPLPFL Subsidiary to SPLP
  2910. SPLPMN Subsidiary to SPLP
  2911. SPLPMU Subsidiary to SPLP
  2912. SPLPUP Subsidiary to SPLP
  2913. SPOPT Subsidiary to SPLP
  2914. SREADP Subsidiary to SPLP
  2915. SRLCAL Internal routine for SGMRES.
  2916. STOD Subsidiary to DEBDF
  2917. STOR1 Subsidiary to BVSUP
  2918. STWAY Subsidiary to BVSUP
  2919. SUDS Subsidiary to BVSUP
  2920. SVCO Subsidiary to DEBDF
  2921. SVD Perform the singular value decomposition of a rectangular
  2922. matrix.
  2923. SVECS Subsidiary to BVSUP
  2924. SVOUT Subsidiary to SPLP
  2925. SWRITP Subsidiary to SPLP
  2926. SXLCAL Internal routine for SGMRES.
  2927. TEVLC Subsidiary to CBLKTR
  2928. TEVLS Subsidiary to BLKTRI
  2929. TRI3 Subsidiary to GENBUN
  2930. TRIDQ Subsidiary to POIS3D
  2931. TRIS4 Subsidiary to SEPX4
  2932. TRISP Subsidiary to SEPELI
  2933. TRIX Subsidiary to GENBUN
  2934. U11LS Subsidiary to LLSIA
  2935. U11US Subsidiary to ULSIA
  2936. U12LS Subsidiary to LLSIA
  2937. U12US Subsidiary to ULSIA
  2938. USRMAT Subsidiary to SPLP
  2939. VNWRMS Subsidiary to DEBDF
  2940. WNLIT Subsidiary to WNNLS
  2941. WNLSM Subsidiary to WNNLS
  2942. WNLT1 Subsidiary to WNLIT
  2943. WNLT2 Subsidiary to WNLIT
  2944. WNLT3 Subsidiary to WNLIT
  2945. XERBLA Error handler for the Level 2 and Level 3 BLAS Routines.
  2946. XERCNT Allow user control over handling of errors.
  2947. XERHLT Abort program execution and print error message.
  2948. XERPRN Print error messages processed by XERMSG.
  2949. XERSVE Record that an error has occurred.
  2950. XPMU To compute the values of Legendre functions for XLEGF.
  2951. Method: backward mu-wise recurrence for P(-MU,NU,X) for
  2952. fixed nu to obtain P(-MU2,NU1,X), P(-(MU2-1),NU1,X), ...,
  2953. P(-MU1,NU1,X) and store in ascending mu order.
  2954. XPMUP To compute the values of Legendre functions for XLEGF.
  2955. This subroutine transforms an array of Legendre functions
  2956. of the first kind of negative order stored in array PQA
  2957. into Legendre functions of the first kind of positive
  2958. order stored in array PQA. The original array is destroyed.
  2959. XPNRM To compute the values of Legendre functions for XLEGF.
  2960. This subroutine transforms an array of Legendre functions
  2961. of the first kind of negative order stored in array PQA
  2962. into normalized Legendre polynomials stored in array PQA.
  2963. The original array is destroyed.
  2964. XPQNU To compute the values of Legendre functions for XLEGF.
  2965. This subroutine calculates initial values of P or Q using
  2966. power series, then performs forward nu-wise recurrence to
  2967. obtain P(-MU,NU,X), Q(0,NU,X), or Q(1,NU,X). The nu-wise
  2968. recurrence is stable for P for all mu and for Q for mu=0,1.
  2969. XPSI To compute values of the Psi function for XLEGF.
  2970. XQMU To compute the values of Legendre functions for XLEGF.
  2971. Method: forward mu-wise recurrence for Q(MU,NU,X) for fixed
  2972. nu to obtain Q(MU1,NU,X), Q(MU1+1,NU,X), ..., Q(MU2,NU,X).
  2973. XQNU To compute the values of Legendre functions for XLEGF.
  2974. Method: backward nu-wise recurrence for Q(MU,NU,X) for
  2975. fixed mu to obtain Q(MU1,NU1,X), Q(MU1,NU1+1,X), ...,
  2976. Q(MU1,NU2,X).
  2977. YAIRY Subsidiary to BESJ and BESY
  2978. ZABS Subsidiary to ZBESH, ZBESI, ZBESJ, ZBESK, ZBESY, ZAIRY and
  2979. ZBIRY
  2980. ZACAI Subsidiary to ZAIRY
  2981. ZACON Subsidiary to ZBESH and ZBESK
  2982. ZASYI Subsidiary to ZBESI and ZBESK
  2983. ZBINU Subsidiary to ZAIRY, ZBESH, ZBESI, ZBESJ, ZBESK and ZBIRY
  2984. ZBKNU Subsidiary to ZAIRY, ZBESH, ZBESI and ZBESK
  2985. ZBUNI Subsidiary to ZBESI and ZBESK
  2986. ZBUNK Subsidiary to ZBESH and ZBESK
  2987. ZDIV Subsidiary to ZBESH, ZBESI, ZBESJ, ZBESK, ZBESY, ZAIRY and
  2988. ZBIRY
  2989. ZEXP Subsidiary to ZBESH, ZBESI, ZBESJ, ZBESK, ZBESY, ZAIRY and
  2990. ZBIRY
  2991. ZKSCL Subsidiary to ZBESK
  2992. ZLOG Subsidiary to ZBESH, ZBESI, ZBESJ, ZBESK, ZBESY, ZAIRY and
  2993. ZBIRY
  2994. ZMLRI Subsidiary to ZBESI and ZBESK
  2995. ZMLT Subsidiary to ZBESH, ZBESI, ZBESJ, ZBESK, ZBESY, ZAIRY and
  2996. ZBIRY
  2997. ZRATI Subsidiary to ZBESH, ZBESI and ZBESK
  2998. ZS1S2 Subsidiary to ZAIRY and ZBESK
  2999. ZSERI Subsidiary to ZBESI and ZBESK
  3000. ZSHCH Subsidiary to ZBESH and ZBESK
  3001. ZSQRT Subsidiary to ZBESH, ZBESI, ZBESJ, ZBESK, ZBESY, ZAIRY and
  3002. ZBIRY
  3003. ZUCHK Subsidiary to SERI, ZUOIK, ZUNK1, ZUNK2, ZUNI1, ZUNI2 and
  3004. ZKSCL
  3005. ZUNHJ Subsidiary to ZBESI and ZBESK
  3006. ZUNI1 Subsidiary to ZBESI and ZBESK
  3007. ZUNI2 Subsidiary to ZBESI and ZBESK
  3008. ZUNIK Subsidiary to ZBESI and ZBESK
  3009. ZUNK1 Subsidiary to ZBESK
  3010. ZUNK2 Subsidiary to ZBESK
  3011. ZUOIK Subsidiary to ZBESH, ZBESI and ZBESK
  3012. ZWRSK Subsidiary to ZBESI and ZBESK
  3013. SECTION III. Alphabetic List of Routines and Categories
  3014. As stated in the introduction, an asterisk (*) immediately
  3015. preceeding a routine name indicates a subsidiary routine.
  3016. AAAAAA Z ACOSH C4C
  3017. AI C10D AIE C10D
  3018. ALBETA C7B ALGAMS C7A
  3019. ALI C5 ALNGAM C7A
  3020. ALNREL C4B ASINH C4C
  3021. *ASYIK *ASYJY
  3022. ATANH C4C AVINT H2A1B2
  3023. BAKVEC D4C4 BALANC D4C1A
  3024. BALBAK D4C4 BANDR D4C1B1
  3025. BANDV D4C3 *BCRH
  3026. *BDIFF BESI C10B3
  3027. BESI0 C10B1 BESI0E C10B1
  3028. BESI1 C10B1 BESI1E C10B1
  3029. BESJ C10A3 BESJ0 C10A1
  3030. BESJ1 C10A1 BESK C10B3
  3031. BESK0 C10B1 BESK0E C10B1
  3032. BESK1 C10B1 BESK1E C10B1
  3033. BESKES C10B3 *BESKNU
  3034. BESKS C10B3 BESY C10A3
  3035. BESY0 C10A1 BESY1 C10A1
  3036. *BESYNU BETA C7B
  3037. BETAI C7F BFQAD H2A2A1, E3, K6
  3038. BI C10D BIE C10D
  3039. BINOM C1 BINT4 E1A
  3040. BINTK E1A BISECT D4A5, D4C2A
  3041. *BKIAS *BKISR
  3042. *BKSOL *BLKTR1
  3043. BLKTRI I2B4B BNDACC D9
  3044. BNDSOL D9 *BNFAC
  3045. *BNSLV BQR D4A6
  3046. *BSGQ8 BSKIN C10F
  3047. BSPDOC E, E1A, K, Z BSPDR E3
  3048. BSPEV E3, K6 *BSPLVD
  3049. *BSPLVN BSPPP E3, K6
  3050. BSPVD E3, K6 BSPVN E3, K6
  3051. BSQAD H2A2A1, E3, K6 *BSRH
  3052. BVALU E3, K6 *BVDER
  3053. *BVPOR BVSUP I1B1
  3054. C0LGMC C7A *C1MERG
  3055. *C9LGMC C7A *C9LN2R C4B
  3056. *CACAI *CACON
  3057. CACOS C4A CACOSH C4C
  3058. CAIRY C10D CARG A4A
  3059. CASIN C4A CASINH C4C
  3060. *CASYI CATAN C4A
  3061. CATAN2 C4A CATANH C4C
  3062. CAXPY D1A7 CBABK2 D4C4
  3063. CBAL D4C1A CBESH C10A4
  3064. CBESI C10B4 CBESJ C10A4
  3065. CBESK C10B4 CBESY C10A4
  3066. CBETA C7B *CBINU
  3067. CBIRY C10D *CBKNU
  3068. *CBLKT1 CBLKTR I2B4B
  3069. CBRT C2 *CBUNI
  3070. *CBUNK CCBRT C2
  3071. CCHDC D2D1B CCHDD D7B
  3072. CCHEX D7B CCHUD D7B
  3073. *CCMPB CCOPY D1A5
  3074. CCOSH C4C CCOT C4A
  3075. CDCDOT D1A4 *CDCOR
  3076. *CDCST *CDIV
  3077. *CDNTL *CDNTP
  3078. CDOTC D1A4 CDOTU D1A4
  3079. *CDPSC *CDPST
  3080. CDRIV1 I1A2, I1A1B CDRIV2 I1A2, I1A1B
  3081. CDRIV3 I1A2, I1A1B *CDSCL
  3082. *CDSTP *CDZRO
  3083. CEXPRL C4B *CFFTB J1A2
  3084. CFFTB1 J1A2 *CFFTF J1A2
  3085. CFFTF1 J1A2 *CFFTI J1A2
  3086. CFFTI1 J1A2 *CFOD
  3087. CG D4A4 CGAMMA C7A
  3088. CGAMR C7A CGBCO D2C2
  3089. CGBDI D3C2 CGBFA D2C2
  3090. CGBMV D1B4 CGBSL D2C2
  3091. CGECO D2C1 CGEDI D2C1, D3C1
  3092. CGEEV D4A4 CGEFA D2C1
  3093. CGEFS D2C1 CGEIR D2C1
  3094. CGEMM D1B6 CGEMV D1B4
  3095. CGERC D1B4 CGERU D1B4
  3096. CGESL D2C1 CGTSL D2C2A
  3097. CH D4A3 CHBMV D1B4
  3098. CHEMM D1B6 CHEMV D1B4
  3099. CHER D1B4 CHER2 D1B4
  3100. CHER2K D1B6 CHERK D1B6
  3101. *CHFCM CHFDV E3, H1
  3102. CHFEV E3 *CHFIE
  3103. CHICO D2D1A CHIDI D2D1A, D3D1A
  3104. CHIEV D4A3 CHIFA D2D1A
  3105. CHISL D2D1A CHKDER F3, G4C
  3106. *CHKPR4 *CHKPRM
  3107. *CHKSN4 *CHKSNG
  3108. CHPCO D2D1A CHPDI D2D1A, D3D1A
  3109. CHPFA D2D1A CHPMV D1B4
  3110. CHPR D1B4 CHPR2 D1B4
  3111. CHPSL D2D1A CHU C11
  3112. CINVIT D4C2B *CKSCL
  3113. CLBETA C7B CLNGAM C7A
  3114. CLNREL C4B CLOG10 C4B
  3115. CMGNBN I2B4B *CMLRI
  3116. *CMPCSG *CMPOSD
  3117. *CMPOSN *CMPOSP
  3118. *CMPTR3 *CMPTRX
  3119. CNBCO D2C2 CNBDI D3C2
  3120. CNBFA D2C2 CNBFS D2C2
  3121. CNBIR D2C2 CNBSL D2C2
  3122. COMBAK D4C4 COMHES D4C1B2
  3123. COMLR D4C2B COMLR2 D4C2B
  3124. *COMPB COMQR D4C2B
  3125. COMQR2 D4C2B CORTB D4C4
  3126. CORTH D4C1B2 COSDG C4A
  3127. *COSGEN COSQB J1A3
  3128. *COSQB1 J1A3 COSQF J1A3
  3129. *COSQF1 J1A3 COSQI J1A3
  3130. COST J1A3 COSTI J1A3
  3131. COT C4A *CPADD
  3132. CPBCO D2D2 CPBDI D3D2
  3133. CPBFA D2D2 CPBSL D2D2
  3134. *CPEVL *CPEVLR
  3135. CPOCO D2D1B CPODI D2D1B, D3D1B
  3136. CPOFA D2D1B CPOFS D2D1B
  3137. CPOIR D2D1B CPOSL D2D1B
  3138. CPPCO D2D1B CPPDI D2D1B, D3D1B
  3139. CPPFA D2D1B CPPSL D2D1B
  3140. CPQR79 F1A1B *CPROC
  3141. *CPROCP *CPROD
  3142. *CPRODP CPSI C7C
  3143. CPTSL D2D2A CPZERO F1A1B
  3144. CQRDC D5 CQRSL D9, D2C1
  3145. *CRATI CROTG D1B10
  3146. *CS1S2 CSCAL D1A6
  3147. *CSCALE *CSERI
  3148. CSEVL C3A2 *CSHCH
  3149. CSICO D2C1 CSIDI D2C1, D3C1
  3150. CSIFA D2C1 CSINH C4C
  3151. CSISL D2C1 CSPCO D2C1
  3152. CSPDI D2C1, D3C1 CSPFA D2C1
  3153. CSPSL D2C1 *CSROOT
  3154. CSROT D1B10 CSSCAL D1A6
  3155. CSVDC D6 CSWAP D1A5
  3156. CSYMM D1B6 CSYR2K D1B6
  3157. CSYRK D1B6 CTAN C4A
  3158. CTANH C4C CTBMV D1B4
  3159. CTBSV D1B4 CTPMV D1B4
  3160. CTPSV D1B4 CTRCO D2C3
  3161. CTRDI D2C3, D3C3 CTRMM D1B6
  3162. CTRMV D1B4 CTRSL D2C3
  3163. CTRSM D1B6 CTRSV D1B4
  3164. *CUCHK *CUNHJ
  3165. *CUNI1 *CUNI2
  3166. *CUNIK *CUNK1
  3167. *CUNK2 *CUOIK
  3168. CV L7A3 *CWRSK
  3169. D1MACH R1 *D1MERG
  3170. *D1MPYQ *D1UPDT
  3171. *D9AIMP C10D *D9ATN1 C4A
  3172. *D9B0MP C10A1 *D9B1MP C10A1
  3173. *D9CHU C11 *D9GMIC C7E
  3174. *D9GMIT C7E *D9KNUS C10B3
  3175. *D9LGIC C7E *D9LGIT C7E
  3176. *D9LGMC C7E *D9LN2R C4B
  3177. D9PAK A6B D9UPAK A6B
  3178. DACOSH C4C DAI C10D
  3179. DAIE C10D DASINH C4C
  3180. DASUM D1A3A *DASYIK
  3181. *DASYJY DATANH C4C
  3182. DAVINT H2A1B2 DAWS C8C
  3183. DAXPY D1A7 DBCG D2A4, D2B4
  3184. *DBDIFF DBESI C10B3
  3185. DBESI0 C10B1 DBESI1 C10B1
  3186. DBESJ C10A3 DBESJ0 C10A1
  3187. DBESJ1 C10A1 DBESK C10B3
  3188. DBESK0 C10B1 DBESK1 C10B1
  3189. DBESKS C10B3 DBESY C10A3
  3190. DBESY0 C10A1 DBESY1 C10A1
  3191. DBETA C7B DBETAI C7F
  3192. DBFQAD H2A2A1, E3, K6 DBHIN N1
  3193. DBI C10D DBIE C10D
  3194. DBINOM C1 DBINT4 E1A
  3195. DBINTK E1A *DBKIAS
  3196. *DBKISR *DBKSOL
  3197. DBNDAC D9 DBNDSL D9
  3198. *DBNFAC *DBNSLV
  3199. DBOCLS K1A2A, G2E, G2H1, G2H2 DBOLS K1A2A, G2E, G2H1, G2H2
  3200. *DBOLSM *DBSGQ8
  3201. DBSI0E C10B1 DBSI1E C10B1
  3202. DBSK0E C10B1 DBSK1E C10B1
  3203. DBSKES C10B3 DBSKIN C10F
  3204. *DBSKNU DBSPDR E3, K6
  3205. DBSPEV E3, K6 DBSPPP E3, K6
  3206. DBSPVD E3, K6 DBSPVN E3, K6
  3207. DBSQAD H2A2A1, E3, K6 *DBSYNU
  3208. DBVALU E3, K6 *DBVDER
  3209. *DBVPOR DBVSUP I1B1
  3210. DCBRT C2 DCDOT D1A4
  3211. *DCFOD DCG D2B4
  3212. DCGN D2A4, D2B4 DCGS D2A4, D2B4
  3213. DCHDC D2B1B DCHDD D7B
  3214. DCHEX D7B *DCHFCM
  3215. DCHFDV E3, H1 DCHFEV E3
  3216. *DCHFIE *DCHKW R2
  3217. DCHU C11 DCHUD D7B
  3218. DCKDER F3, G4C *DCOEF
  3219. DCOPY D1A5 DCOPYM D1A5
  3220. DCOSDG C4A DCOT C4A
  3221. DCOV K1B1 DCPPLT N1
  3222. *DCSCAL DCSEVL C3A2
  3223. DCV L7A3 *DDAINI
  3224. *DDAJAC *DDANRM
  3225. *DDASLV DDASSL I1A2
  3226. *DDASTP *DDATRP
  3227. DDAWS C8C *DDAWTS
  3228. *DDCOR *DDCST
  3229. DDEABM I1A1B DDEBDF I1A2
  3230. DDERKF I1A1A *DDES
  3231. *DDNTL *DDNTP
  3232. *DDOGLG DDOT D1A4
  3233. *DDPSC *DDPST
  3234. DDRIV1 I1A2, I1A1B DDRIV2 I1A2, I1A1B
  3235. DDRIV3 I1A2, I1A1B *DDSCL
  3236. *DDSTP *DDZRO
  3237. DE1 C5 DEABM I1A1B
  3238. DEBDF I1A2 DEFC K1A1A1, K1A2A, L8A3
  3239. *DEFCMN *DEFE4
  3240. *DEFEHL *DEFER
  3241. DEI C5 *DENORM
  3242. DERF C8A, L5A1E DERFC C8A, L5A1E
  3243. DERKF I1A1A *DERKFS
  3244. *DES *DEXBVP
  3245. DEXINT C5 DEXPRL C4B
  3246. DFAC C1 DFC K1A1A1, K1A2A, L8A3
  3247. *DFCMN *DFDJC1
  3248. *DFDJC3 *DFEHL
  3249. *DFSPVD *DFSPVN
  3250. *DFULMT DFZERO F1B
  3251. DGAMI C7E DGAMIC C7E
  3252. DGAMIT C7E DGAMLM C7A, R2
  3253. *DGAMLN C7A DGAMMA C7A
  3254. DGAMR C7A *DGAMRN
  3255. DGAUS8 H2A1A1 DGBCO D2A2
  3256. DGBDI D3A2 DGBFA D2A2
  3257. DGBMV D1B4 DGBSL D2A2
  3258. DGECO D2A1 DGEDI D3A1, D2A1
  3259. DGEFA D2A1 DGEFS D2A1
  3260. DGEMM D1B6 DGEMV D1B4
  3261. DGER D1B4 DGESL D2A1
  3262. DGLSS D9, D5 DGMRES D2A4, D2B4
  3263. DGTSL D2A2A *DH12
  3264. *DHELS D2A4, D2B4 *DHEQR D2A4, D2B4
  3265. DHFTI D9 *DHKSEQ
  3266. *DHSTRT *DHVNRM
  3267. DINTP I1A1B DINTRV E3, K6
  3268. *DINTYD DIR D2A4, D2B4
  3269. *DJAIRY DLBETA C7B
  3270. DLGAMS C7A DLI C5
  3271. DLLSIA D9, D5 DLLTI2 D2E
  3272. DLNGAM C7A DLNREL C4B
  3273. DLPDOC D2A4, D2B4, Z *DLPDP
  3274. DLSEI K1A2A, D9 *DLSI
  3275. *DLSOD *DLSSUD
  3276. *DMACON *DMGSBV
  3277. *DMOUT *DMPAR
  3278. DNBCO D2A2 DNBDI D3A2
  3279. DNBFA D2A2 DNBFS D2A2
  3280. DNBSL D2A2 DNLS1 K1B1A1, K1B1A2
  3281. DNLS1E K1B1A1, K1B1A2 DNRM2 D1A3B
  3282. DNSQ F2A DNSQE F2A
  3283. *DOGLEG *DOHTRL
  3284. DOMN D2A4, D2B4 *DORTH D2A4, D2B4
  3285. *DORTHR DP1VLU K6
  3286. DPBCO D2B2 DPBDI D3B2
  3287. DPBFA D2B2 DPBSL D2B2
  3288. DPCHBS E3 *DPCHCE
  3289. *DPCHCI DPCHCM E3
  3290. *DPCHCS *DPCHDF
  3291. DPCHFD E3, H1 DPCHFE E3
  3292. DPCHIA E3, H2A1B2 DPCHIC E1A
  3293. DPCHID E3, H2A1B2 DPCHIM E1A
  3294. *DPCHKT E3 *DPCHNG
  3295. DPCHSP E1A *DPCHST
  3296. *DPCHSW DPCOEF K1A1A2
  3297. DPFQAD H2A2A1, E3, K6 *DPIGMR D2A4, D2B4
  3298. *DPINCW *DPINIT
  3299. *DPINTM *DPJAC
  3300. DPLINT E1B *DPLPCE
  3301. *DPLPDM *DPLPFE
  3302. *DPLPFL *DPLPMN
  3303. *DPLPMU *DPLPUP
  3304. *DPNNZR DPOCH C1, C7A
  3305. DPOCH1 C1, C7A DPOCO D2B1B
  3306. DPODI D2B1B, D3B1B DPOFA D2B1B
  3307. DPOFS D2B1B DPOLCF E1B
  3308. DPOLFT K1A1A2 DPOLVL E3
  3309. *DPOPT DPOSL D2B1B
  3310. DPPCO D2B1B DPPDI D2B1B, D3B1B
  3311. DPPERM N8 DPPFA D2B1B
  3312. *DPPGQ8 DPPQAD H2A2A1, E3, K6
  3313. DPPSL D2B1B DPPVAL E3, K6
  3314. *DPRVEC *DPRWPG
  3315. *DPRWVR DPSI C7C
  3316. DPSIFN C7C *DPSIXN
  3317. DPSORT N6A1B, N6A2B DPTSL D2B2A
  3318. DQAG H2A1A1 DQAGE H2A1A1
  3319. DQAGI H2A3A1, H2A4A1 DQAGIE H2A3A1, H2A4A1
  3320. DQAGP H2A2A1 DQAGPE H2A2A1
  3321. DQAGS H2A1A1 DQAGSE H2A1A1
  3322. DQAWC H2A2A1, J4 DQAWCE H2A2A1, J4
  3323. DQAWF H2A3A1 DQAWFE H2A3A1
  3324. DQAWO H2A2A1 DQAWOE H2A2A1
  3325. DQAWS H2A2A1 DQAWSE H2A2A1
  3326. DQC25C H2A2A2, J4 DQC25F H2A2A2
  3327. DQC25S H2A2A2 *DQCHEB
  3328. DQDOTA D1A4 DQDOTI D1A4
  3329. *DQELG *DQFORM
  3330. DQK15 H2A1A2 DQK15I H2A3A2, H2A4A2
  3331. DQK15W H2A2A2 DQK21 H2A1A2
  3332. DQK31 H2A1A2 DQK41 H2A1A2
  3333. DQK51 H2A1A2 DQK61 H2A1A2
  3334. DQMOMO H2A2A1, C3A2 DQNC79 H2A1A1
  3335. DQNG H2A1A1 *DQPSRT
  3336. DQRDC D5 *DQRFAC
  3337. DQRSL D9, D2A1 *DQRSLV
  3338. *DQWGTC *DQWGTF
  3339. *DQWGTS DRC C14
  3340. DRC3JJ C19 DRC3JM C19
  3341. DRC6J C19 DRD C14
  3342. *DREADP *DREORT
  3343. DRF C14 DRJ C14
  3344. *DRKFAB *DRKFS
  3345. *DRLCAL D2A4, D2B4 DROT D1A8
  3346. DROTG D1B10 DROTM D1A8
  3347. DROTMG D1B10 *DRSCO
  3348. DS2LT D2E DS2Y D1B9
  3349. DSBMV D1B4 DSCAL D1A6
  3350. DSD2S D2E DSDBCG D2A4, D2B4
  3351. DSDCG D2B4 DSDCGN D2A4, D2B4
  3352. DSDCGS D2A4, D2B4 DSDGMR D2A4, D2B4
  3353. DSDI D1B4 DSDOMN D2A4, D2B4
  3354. DSDOT D1A4 DSDS D2E
  3355. DSDSCL D2E DSGS D2A4, D2B4
  3356. DSICCG D2B4 DSICO D2B1A
  3357. DSICS D2E DSIDI D2B1A, D3B1A
  3358. DSIFA D2B1A DSILUR D2A4, D2B4
  3359. DSILUS D2E DSINDG C4A
  3360. DSISL D2B1A DSJAC D2A4, D2B4
  3361. DSLI D2A3 DSLI2 D2A3
  3362. DSLLTI D2E DSLUBC D2A4, D2B4
  3363. DSLUCN D2A4, D2B4 DSLUCS D2A4, D2B4
  3364. DSLUGM D2A4, D2B4 DSLUI D2E
  3365. DSLUI2 D2E DSLUI4 D2E
  3366. DSLUOM D2A4, D2B4 DSLUTI D2E
  3367. *DSLVS DSMMI2 D2E
  3368. DSMMTI D2E DSMTV D1B4
  3369. DSMV D1B4 DSORT N6A2B
  3370. DSOS F2A *DSOSEQ
  3371. *DSOSSL DSPCO D2B1A
  3372. DSPDI D2B1A, D3B1A DSPENC C5
  3373. DSPFA D2B1A DSPLP G2A2
  3374. DSPMV D1B4 DSPR D1B4
  3375. DSPR2 D1B4 DSPSL D2B1A
  3376. DSTEPS I1A1B *DSTOD
  3377. *DSTOR1 *DSTWAY
  3378. *DSUDS *DSVCO
  3379. DSVDC D6 DSWAP D1A5
  3380. DSYMM D1B6 DSYMV D1B4
  3381. DSYR D1B4 DSYR2 D1B4
  3382. DSYR2K D1B6 DSYRK D1B6
  3383. DTBMV D1B4 DTBSV D1B4
  3384. DTIN N1 DTOUT N1
  3385. DTPMV D1B4 DTPSV D1B4
  3386. DTRCO D2A3 DTRDI D2A3, D3A3
  3387. DTRMM D1B6 DTRMV D1B4
  3388. DTRSL D2A3 DTRSM D1B6
  3389. DTRSV D1B4 *DU11LS
  3390. *DU11US *DU12LS
  3391. *DU12US DULSIA D9
  3392. *DUSRMT *DVECS
  3393. *DVNRMS *DVOUT
  3394. *DWNLIT *DWNLSM
  3395. *DWNLT1 *DWNLT2
  3396. *DWNLT3 DWNNLS K1A2A
  3397. *DWRITP *DWUPDT
  3398. *DX *DX4
  3399. DXADD A3D DXADJ A3D
  3400. DXC210 A3D DXCON A3D
  3401. *DXLCAL D2A4, D2B4 DXLEGF C3A2, C9
  3402. DXNRMP C3A2, C9 *DXPMU C3A2, C9
  3403. *DXPMUP C3A2, C9 *DXPNRM C3A2, C9
  3404. *DXPQNU C3A2, C9 *DXPSI C7C
  3405. *DXQMU C3A2, C9 *DXQNU C3A2, C9
  3406. DXRED A3D DXSET A3D
  3407. *DY *DY4
  3408. *DYAIRY E1 C5
  3409. EFC K1A1A1, K1A2A, L8A3 *EFCMN
  3410. EI C5 EISDOC D4, Z
  3411. ELMBAK D4C4 ELMHES D4C1B2
  3412. ELTRAN D4C4 *ENORM
  3413. ERF C8A, L5A1E ERFC C8A, L5A1E
  3414. *EXBVP EXINT C5
  3415. EXPREL C4B *EZFFT1
  3416. EZFFTB J1A1 EZFFTF J1A1
  3417. EZFFTI J1A1 FAC C1
  3418. FC K1A1A1, K1A2A, L8A3 *FCMN
  3419. *FDJAC1 *FDJAC3
  3420. FDUMP R3 FFTDOC J1, Z
  3421. FIGI D4C1C FIGI2 D4C1C
  3422. *FULMAT FUNDOC C, Z
  3423. FZERO F1B GAMI C7E
  3424. GAMIC C7E GAMIT C7E
  3425. GAMLIM C7A, R2 *GAMLN C7A
  3426. GAMMA C7A GAMR C7A
  3427. *GAMRN GAUS8 H2A1A1
  3428. GENBUN I2B4B *H12
  3429. HFTI D9 *HKSEQ
  3430. HPPERM N8 HPSORT N6A1C, N6A2C
  3431. HQR D4C2B HQR2 D4C2B
  3432. *HSTART HSTCRT I2B1A1A
  3433. *HSTCS1 HSTCSP I2B1A1A
  3434. HSTCYL I2B1A1A HSTPLR I2B1A1A
  3435. HSTSSP I2B1A1A HTRIB3 D4C4
  3436. HTRIBK D4C4 HTRID3 D4C1B1
  3437. HTRIDI D4C1B1 *HVNRM
  3438. HW3CRT I2B1A1A HWSCRT I2B1A1A
  3439. *HWSCS1 HWSCSP I2B1A1A
  3440. HWSCYL I2B1A1A HWSPLR I2B1A1A
  3441. *HWSSS1 HWSSSP I2B1A1A
  3442. I1MACH R1 *I1MERG
  3443. ICAMAX D1A2 ICOPY D1A5
  3444. IDAMAX D1A2 *IDLOC
  3445. IMTQL1 D4A5, D4C2A IMTQL2 D4A5, D4C2A
  3446. IMTQLV D4A5, D4C2A *INDXA
  3447. *INDXB *INDXC
  3448. INITDS C3A2 INITS C3A2
  3449. INTRV E3, K6 *INTYD
  3450. INVIT D4C2B *INXCA
  3451. *INXCB *INXCC
  3452. *IPLOC IPPERM N8
  3453. IPSORT N6A1A, N6A2A ISAMAX D1A2
  3454. *ISDBCG D2A4, D2B4 *ISDCG D2B4
  3455. *ISDCGN D2A4, D2B4 *ISDCGS D2A4, D2B4
  3456. *ISDGMR D2A4, D2B4 *ISDIR D2A4, D2B4
  3457. *ISDOMN D2A4, D2B4 ISORT N6A2A
  3458. *ISSBCG D2A4, D2B4 *ISSCG D2B4
  3459. *ISSCGN D2A4, D2B4 *ISSCGS D2A4, D2B4
  3460. *ISSGMR D2A4, D2B4 *ISSIR D2A4, D2B4
  3461. *ISSOMN D2A4, D2B4 ISWAP D1A5
  3462. *IVOUT *J4SAVE
  3463. *JAIRY *LA05AD
  3464. *LA05AS *LA05BD
  3465. *LA05BS *LA05CD
  3466. *LA05CS *LA05ED
  3467. *LA05ES LLSIA D9, D5
  3468. *LMPAR *LPDP
  3469. *LSAME R, N3 LSEI K1A2A, D9
  3470. *LSI *LSOD
  3471. *LSSODS *LSSUDS
  3472. *MACON *MC20AD
  3473. *MC20AS *MGSBV
  3474. MINFIT D9 *MINSO4
  3475. *MINSOL *MPADD
  3476. *MPADD2 *MPADD3
  3477. *MPBLAS *MPCDM
  3478. *MPCHK *MPCMD
  3479. *MPDIVI *MPERR
  3480. *MPMAXR *MPMLP
  3481. *MPMUL *MPMUL2
  3482. *MPMULI *MPNZR
  3483. *MPOVFL *MPSTR
  3484. *MPUNFL NUMXER R3C
  3485. *OHTROL *OHTROR
  3486. ORTBAK D4C4 ORTHES D4C1B2
  3487. *ORTHO4 *ORTHOG
  3488. *ORTHOL *ORTHOR
  3489. ORTRAN D4C4 *PASSB
  3490. *PASSB2 *PASSB3
  3491. *PASSB4 *PASSB5
  3492. *PASSF *PASSF2
  3493. *PASSF3 *PASSF4
  3494. *PASSF5 PCHBS E3
  3495. *PCHCE *PCHCI
  3496. PCHCM E3 *PCHCS
  3497. *PCHDF PCHDOC E1A, Z
  3498. PCHFD E3, H1 PCHFE E3
  3499. PCHIA E3, H2A1B2 PCHIC E1A
  3500. PCHID E3, H2A1B2 PCHIM E1A
  3501. *PCHKT E3 *PCHNGS
  3502. PCHSP E1A *PCHST
  3503. *PCHSW PCOEF K1A1A2
  3504. PFQAD H2A2A1, E3, K6 *PGSF
  3505. *PIMACH *PINITM
  3506. *PJAC *PNNZRS
  3507. POCH C1, C7A POCH1 C1, C7A
  3508. POIS3D I2B4B *POISD2
  3509. *POISN2 *POISP2
  3510. POISTG I2B4B POLCOF E1B
  3511. POLFIT K1A1A2 POLINT E1B
  3512. POLYVL E3 *POS3D1
  3513. *POSTG2 *PPADD
  3514. *PPGQ8 *PPGSF
  3515. *PPPSF PPQAD H2A2A1, E3, K6
  3516. *PPSGF *PPSPF
  3517. PPVAL E3, K6 *PROC
  3518. *PROCP *PROD
  3519. *PRODP *PRVEC
  3520. *PRWPGE *PRWVIR
  3521. *PSGF PSI C7C
  3522. PSIFN C7C *PSIXN
  3523. PVALUE K6 *PYTHAG
  3524. QAG H2A1A1 QAGE H2A1A1
  3525. QAGI H2A3A1, H2A4A1 QAGIE H2A3A1, H2A4A1
  3526. QAGP H2A2A1 QAGPE H2A2A1
  3527. QAGS H2A1A1 QAGSE H2A1A1
  3528. QAWC H2A2A1, J4 QAWCE H2A2A1, J4
  3529. QAWF H2A3A1 QAWFE H2A3A1
  3530. QAWO H2A2A1 QAWOE H2A2A1
  3531. QAWS H2A2A1 QAWSE H2A2A1
  3532. QC25C H2A2A2, J4 QC25F H2A2A2
  3533. QC25S H2A2A2 *QCHEB
  3534. *QELG *QFORM
  3535. QK15 H2A1A2 QK15I H2A3A2, H2A4A2
  3536. QK15W H2A2A2 QK21 H2A1A2
  3537. QK31 H2A1A2 QK41 H2A1A2
  3538. QK51 H2A1A2 QK61 H2A1A2
  3539. QMOMO H2A2A1, C3A2 QNC79 H2A1A1
  3540. QNG H2A1A1 QPDOC H2, Z
  3541. *QPSRT *QRFAC
  3542. *QRSOLV *QS2I1D N6A2A
  3543. *QS2I1R N6A2A *QWGTC
  3544. *QWGTF *QWGTS
  3545. QZHES D4C1B3 QZIT D4C1B3
  3546. QZVAL D4C2C QZVEC D4C3
  3547. R1MACH R1 *R1MPYQ
  3548. *R1UPDT *R9AIMP C10D
  3549. *R9ATN1 C4A *R9CHU C11
  3550. *R9GMIC C7E *R9GMIT C7E
  3551. *R9KNUS C10B3 *R9LGIC C7E
  3552. *R9LGIT C7E *R9LGMC C7E
  3553. *R9LN2R C4B R9PAK A6B
  3554. R9UPAK A6B *RADB2
  3555. *RADB3 *RADB4
  3556. *RADB5 *RADBG
  3557. *RADF2 *RADF3
  3558. *RADF4 *RADF5
  3559. *RADFG RAND L6A21
  3560. RATQR D4A5, D4C2A RC C14
  3561. RC3JJ C19 RC3JM C19
  3562. RC6J C19 RD C14
  3563. REBAK D4C4 REBAKB D4C4
  3564. REDUC D4C1C REDUC2 D4C1C
  3565. *REORT RF C14
  3566. *RFFTB J1A1 RFFTB1 J1A1
  3567. *RFFTF J1A1 RFFTF1 J1A1
  3568. *RFFTI J1A1 RFFTI1 J1A1
  3569. RG D4A2 RGAUSS L6A14
  3570. RGG D4B2 RJ C14
  3571. *RKFAB RPQR79 F1A1A
  3572. RPZERO F1A1A RS D4A1
  3573. RSB D4A6 *RSCO
  3574. RSG D4B1 RSGAB D4B1
  3575. RSGBA D4B1 RSP D4A1
  3576. RST D4A5 RT D4A5
  3577. RUNIF L6A21 *RWUPDT
  3578. *S1MERG SASUM D1A3A
  3579. SAXPY D1A7 SBCG D2A4, D2B4
  3580. SBHIN N1 SBOCLS K1A2A, G2E, G2H1, G2H2
  3581. SBOLS K1A2A, G2E, G2H1, G2H2 *SBOLSM
  3582. SCASUM D1A3A SCG D2B4
  3583. SCGN D2A4, D2B4 SCGS D2A4, D2B4
  3584. SCHDC D2B1B SCHDD D7B
  3585. SCHEX D7B *SCHKW R2
  3586. SCHUD D7B *SCLOSM
  3587. SCNRM2 D1A3B *SCOEF
  3588. SCOPY D1A5 SCOPYM D1A5
  3589. SCOV K1B1 SCPPLT N1
  3590. *SDAINI *SDAJAC
  3591. *SDANRM *SDASLV
  3592. SDASSL I1A2 *SDASTP
  3593. *SDATRP *SDAWTS
  3594. *SDCOR *SDCST
  3595. *SDNTL *SDNTP
  3596. SDOT D1A4 *SDPSC
  3597. *SDPST SDRIV1 I1A2, I1A1B
  3598. SDRIV2 I1A2, I1A1B SDRIV3 I1A2, I1A1B
  3599. *SDSCL SDSDOT D1A4
  3600. *SDSTP *SDZRO
  3601. SEPELI I2B1A2 SEPX4 I2B1A2
  3602. SGBCO D2A2 SGBDI D3A2
  3603. SGBFA D2A2 SGBMV D1B4
  3604. SGBSL D2A2 SGECO D2A1
  3605. SGEDI D2A1, D3A1 SGEEV D4A2
  3606. SGEFA D2A1 SGEFS D2A1
  3607. SGEIR D2A1 SGEMM D1B6
  3608. SGEMV D1B4 SGER D1B4
  3609. SGESL D2A1 SGLSS D9, D5
  3610. SGMRES D2A4, D2B4 SGTSL D2A2A
  3611. *SHELS D2A4, D2B4 *SHEQR D2A4, D2B4
  3612. SINDG C4A SINQB J1A3
  3613. SINQF J1A3 SINQI J1A3
  3614. SINT J1A3 SINTI J1A3
  3615. SINTRP I1A1B SIR D2A4, D2B4
  3616. SLLTI2 D2E SLPDOC D2A4, D2B4, Z
  3617. *SLVS *SMOUT
  3618. SNBCO D2A2 SNBDI D3A2
  3619. SNBFA D2A2 SNBFS D2A2
  3620. SNBIR D2A2 SNBSL D2A2
  3621. SNLS1 K1B1A1, K1B1A2 SNLS1E K1B1A1, K1B1A2
  3622. SNRM2 D1A3B SNSQ F2A
  3623. SNSQE F2A *SODS
  3624. SOMN D2A4, D2B4 *SOPENM
  3625. *SORTH D2A4, D2B4 SOS F2A
  3626. *SOSEQS *SOSSOL
  3627. SPBCO D2B2 SPBDI D3B2
  3628. SPBFA D2B2 SPBSL D2B2
  3629. *SPELI4 *SPELIP
  3630. SPENC C5 *SPIGMR D2A4, D2B4
  3631. *SPINCW *SPINIT
  3632. SPLP G2A2 *SPLPCE
  3633. *SPLPDM *SPLPFE
  3634. *SPLPFL *SPLPMN
  3635. *SPLPMU *SPLPUP
  3636. SPOCO D2B1B SPODI D2B1B, D3B1B
  3637. SPOFA D2B1B SPOFS D2B1B
  3638. SPOIR D2B1B *SPOPT
  3639. SPOSL D2B1B SPPCO D2B1B
  3640. SPPDI D2B1B, D3B1B SPPERM N8
  3641. SPPFA D2B1B SPPSL D2B1B
  3642. SPSORT N6A1B, N6A2B SPTSL D2B2A
  3643. SQRDC D5 SQRSL D9, D2A1
  3644. *SREADP *SRLCAL D2A4, D2B4
  3645. SROT D1A8 SROTG D1B10
  3646. SROTM D1A8 SROTMG D1B10
  3647. SS2LT D2E SS2Y D1B9
  3648. SSBMV D1B4 SSCAL D1A6
  3649. SSD2S D2E SSDBCG D2A4, D2B4
  3650. SSDCG D2B4 SSDCGN D2A4, D2B4
  3651. SSDCGS D2A4, D2B4 SSDGMR D2A4, D2B4
  3652. SSDI D1B4 SSDOMN D2A4, D2B4
  3653. SSDS D2E SSDSCL D2E
  3654. SSGS D2A4, D2B4 SSICCG D2B4
  3655. SSICO D2B1A SSICS D2E
  3656. SSIDI D2B1A, D3B1A SSIEV D4A1
  3657. SSIFA D2B1A SSILUR D2A4, D2B4
  3658. SSILUS D2E SSISL D2B1A
  3659. SSJAC D2A4, D2B4 SSLI D2A3
  3660. SSLI2 D2A3 SSLLTI D2E
  3661. SSLUBC D2A4, D2B4 SSLUCN D2A4, D2B4
  3662. SSLUCS D2A4, D2B4 SSLUGM D2A4, D2B4
  3663. SSLUI D2E SSLUI2 D2E
  3664. SSLUI4 D2E SSLUOM D2A4, D2B4
  3665. SSLUTI D2E SSMMI2 D2E
  3666. SSMMTI D2E SSMTV D1B4
  3667. SSMV D1B4 SSORT N6A2B
  3668. SSPCO D2B1A SSPDI D2B1A, D3B1A
  3669. SSPEV D4A1 SSPFA D2B1A
  3670. SSPMV D1B4 SSPR D1B4
  3671. SSPR2 D1B4 SSPSL D2B1A
  3672. SSVDC D6 SSWAP D1A5
  3673. SSYMM D1B6 SSYMV D1B4
  3674. SSYR D1B4 SSYR2 D1B4
  3675. SSYR2K D1B6 SSYRK D1B6
  3676. STBMV D1B4 STBSV D1B4
  3677. STEPS I1A1B STIN N1
  3678. *STOD *STOR1
  3679. STOUT N1 STPMV D1B4
  3680. STPSV D1B4 STRCO D2A3
  3681. STRDI D2A3, D3A3 STRMM D1B6
  3682. STRMV D1B4 STRSL D2A3
  3683. STRSM D1B6 STRSV D1B4
  3684. *STWAY *SUDS
  3685. *SVCO *SVD
  3686. *SVECS *SVOUT
  3687. *SWRITP *SXLCAL D2A4, D2B4
  3688. *TEVLC *TEVLS
  3689. TINVIT D4C3 TQL1 D4A5, D4C2A
  3690. TQL2 D4A5, D4C2A TQLRAT D4A5, D4C2A
  3691. TRBAK1 D4C4 TRBAK3 D4C4
  3692. TRED1 D4C1B1 TRED2 D4C1B1
  3693. TRED3 D4C1B1 *TRI3
  3694. TRIDIB D4A5, D4C2A *TRIDQ
  3695. *TRIS4 *TRISP
  3696. *TRIX TSTURM D4A5, D4C2A
  3697. *U11LS *U11US
  3698. *U12LS *U12US
  3699. ULSIA D9 *USRMAT
  3700. *VNWRMS *WNLIT
  3701. *WNLSM *WNLT1
  3702. *WNLT2 *WNLT3
  3703. WNNLS K1A2A XADD A3D
  3704. XADJ A3D XC210 A3D
  3705. XCON A3D *XERBLA R3
  3706. XERCLR R3C *XERCNT R3C
  3707. XERDMP R3C *XERHLT R3C
  3708. XERMAX R3C XERMSG R3C
  3709. *XERPRN R3C *XERSVE R3
  3710. XGETF R3C XGETUA R3C
  3711. XGETUN R3C XLEGF C3A2, C9
  3712. XNRMP C3A2, C9 *XPMU C3A2, C9
  3713. *XPMUP C3A2, C9 *XPNRM C3A2, C9
  3714. *XPQNU C3A2, C9 *XPSI C7C
  3715. *XQMU C3A2, C9 *XQNU C3A2, C9
  3716. XRED A3D XSET A3D
  3717. XSETF R3A XSETUA R3B
  3718. XSETUN R3B *YAIRY
  3719. *ZABS *ZACAI
  3720. *ZACON ZAIRY C10D
  3721. *ZASYI ZBESH C10A4
  3722. ZBESI C10B4 ZBESJ C10A4
  3723. ZBESK C10B4 ZBESY C10A4
  3724. *ZBINU ZBIRY C10D
  3725. *ZBKNU *ZBUNI
  3726. *ZBUNK *ZDIV
  3727. *ZEXP *ZKSCL
  3728. *ZLOG *ZMLRI
  3729. *ZMLT *ZRATI
  3730. *ZS1S2 *ZSERI
  3731. *ZSHCH *ZSQRT
  3732. *ZUCHK *ZUNHJ
  3733. *ZUNI1 *ZUNI2
  3734. *ZUNIK *ZUNK1
  3735. *ZUNK2 *ZUOIK
  3736. *ZWRSK