123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- /* @(#)e_log10.c 1.3 95/01/18 */
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- #include "cdefs-compat.h"
- //__FBSDID("$FreeBSD: src/lib/msun/src/e_log2.c,v 1.4 2011/10/15 05:23:28 das Exp $");
- /*
- * Return the base 2 logarithm of x. See e_log.c and k_log.h for most
- * comments.
- *
- * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel,
- * then does the combining and scaling steps
- * log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k
- * in not-quite-routine extra precision.
- */
- #include <openlibm_math.h>
- #include "math_private.h"
- #include "k_log.h"
- static const double
- two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
- ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
- ivln2lo = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
- static const double zero = 0.0;
- DLLEXPORT double
- __ieee754_log2(double x)
- {
- double f,hfsq,hi,lo,r,val_hi,val_lo,w,y;
- int32_t i,k,hx;
- u_int32_t lx;
- EXTRACT_WORDS(hx,lx,x);
- k=0;
- if (hx < 0x00100000) { /* x < 2**-1022 */
- if (((hx&0x7fffffff)|lx)==0)
- return -two54/zero; /* log(+-0)=-inf */
- if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
- k -= 54; x *= two54; /* subnormal number, scale up x */
- GET_HIGH_WORD(hx,x);
- }
- if (hx >= 0x7ff00000) return x+x;
- if (hx == 0x3ff00000 && lx == 0)
- return zero; /* log(1) = +0 */
- k += (hx>>20)-1023;
- hx &= 0x000fffff;
- i = (hx+0x95f64)&0x100000;
- SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
- k += (i>>20);
- y = (double)k;
- f = x - 1.0;
- hfsq = 0.5*f*f;
- r = k_log1p(f);
- /*
- * f-hfsq must (for args near 1) be evaluated in extra precision
- * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
- * This is fairly efficient since f-hfsq only depends on f, so can
- * be evaluated in parallel with R. Not combining hfsq with R also
- * keeps R small (though not as small as a true `lo' term would be),
- * so that extra precision is not needed for terms involving R.
- *
- * Compiler bugs involving extra precision used to break Dekker's
- * theorem for spitting f-hfsq as hi+lo, unless double_t was used
- * or the multi-precision calculations were avoided when double_t
- * has extra precision. These problems are now automatically
- * avoided as a side effect of the optimization of combining the
- * Dekker splitting step with the clear-low-bits step.
- *
- * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
- * precision to avoid a very large cancellation when x is very near
- * these values. Unlike the above cancellations, this problem is
- * specific to base 2. It is strange that adding +-1 is so much
- * harder than adding +-ln2 or +-log10_2.
- *
- * This uses Dekker's theorem to normalize y+val_hi, so the
- * compiler bugs are back in some configurations, sigh. And I
- * don't want to used double_t to avoid them, since that gives a
- * pessimization and the support for avoiding the pessimization
- * is not yet available.
- *
- * The multi-precision calculations for the multiplications are
- * routine.
- */
- hi = f - hfsq;
- SET_LOW_WORD(hi,0);
- lo = (f - hi) - hfsq + r;
- val_hi = hi*ivln2hi;
- val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
- /* spadd(val_hi, val_lo, y), except for not using double_t: */
- w = y + val_hi;
- val_lo += (y - w) + val_hi;
- val_hi = w;
- return val_lo + val_hi;
- }
|