b_exp.c 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. /*
  2. * Copyright (c) 1985, 1993
  3. * The Regents of the University of California. All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * 2. Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. * 3. All advertising materials mentioning features or use of this software
  14. * must display the following acknowledgement:
  15. * This product includes software developed by the University of
  16. * California, Berkeley and its contributors.
  17. * 4. Neither the name of the University nor the names of its contributors
  18. * may be used to endorse or promote products derived from this software
  19. * without specific prior written permission.
  20. *
  21. * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  22. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  23. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  24. * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  25. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  26. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  27. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  28. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  29. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  30. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  31. * SUCH DAMAGE.
  32. */
  33. /* @(#)exp.c 8.1 (Berkeley) 6/4/93 */
  34. #include <sys/cdefs.h>
  35. __FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_exp.c,v 1.9 2011/10/16 05:37:20 das Exp $");
  36. /* EXP(X)
  37. * RETURN THE EXPONENTIAL OF X
  38. * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
  39. * CODED IN C BY K.C. NG, 1/19/85;
  40. * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
  41. *
  42. * Required system supported functions:
  43. * scalb(x,n)
  44. * copysign(x,y)
  45. * finite(x)
  46. *
  47. * Method:
  48. * 1. Argument Reduction: given the input x, find r and integer k such
  49. * that
  50. * x = k*ln2 + r, |r| <= 0.5*ln2 .
  51. * r will be represented as r := z+c for better accuracy.
  52. *
  53. * 2. Compute exp(r) by
  54. *
  55. * exp(r) = 1 + r + r*R1/(2-R1),
  56. * where
  57. * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
  58. *
  59. * 3. exp(x) = 2^k * exp(r) .
  60. *
  61. * Special cases:
  62. * exp(INF) is INF, exp(NaN) is NaN;
  63. * exp(-INF)= 0;
  64. * for finite argument, only exp(0)=1 is exact.
  65. *
  66. * Accuracy:
  67. * exp(x) returns the exponential of x nearly rounded. In a test run
  68. * with 1,156,000 random arguments on a VAX, the maximum observed
  69. * error was 0.869 ulps (units in the last place).
  70. */
  71. #include "mathimpl.h"
  72. static const double p1 = 0x1.555555555553ep-3;
  73. static const double p2 = -0x1.6c16c16bebd93p-9;
  74. static const double p3 = 0x1.1566aaf25de2cp-14;
  75. static const double p4 = -0x1.bbd41c5d26bf1p-20;
  76. static const double p5 = 0x1.6376972bea4d0p-25;
  77. static const double ln2hi = 0x1.62e42fee00000p-1;
  78. static const double ln2lo = 0x1.a39ef35793c76p-33;
  79. static const double lnhuge = 0x1.6602b15b7ecf2p9;
  80. static const double lntiny = -0x1.77af8ebeae354p9;
  81. static const double invln2 = 0x1.71547652b82fep0;
  82. #if 0
  83. double exp(x)
  84. double x;
  85. {
  86. double z,hi,lo,c;
  87. int k;
  88. #if !defined(vax)&&!defined(tahoe)
  89. if(x!=x) return(x); /* x is NaN */
  90. #endif /* !defined(vax)&&!defined(tahoe) */
  91. if( x <= lnhuge ) {
  92. if( x >= lntiny ) {
  93. /* argument reduction : x --> x - k*ln2 */
  94. k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */
  95. /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
  96. hi=x-k*ln2hi;
  97. x=hi-(lo=k*ln2lo);
  98. /* return 2^k*[1+x+x*c/(2+c)] */
  99. z=x*x;
  100. c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
  101. return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
  102. }
  103. /* end of x > lntiny */
  104. else
  105. /* exp(-big#) underflows to zero */
  106. if(finite(x)) return(scalb(1.0,-5000));
  107. /* exp(-INF) is zero */
  108. else return(0.0);
  109. }
  110. /* end of x < lnhuge */
  111. else
  112. /* exp(INF) is INF, exp(+big#) overflows to INF */
  113. return( finite(x) ? scalb(1.0,5000) : x);
  114. }
  115. #endif
  116. /* returns exp(r = x + c) for |c| < |x| with no overlap. */
  117. double __exp__D(x, c)
  118. double x, c;
  119. {
  120. double z,hi,lo;
  121. int k;
  122. if (x != x) /* x is NaN */
  123. return(x);
  124. if ( x <= lnhuge ) {
  125. if ( x >= lntiny ) {
  126. /* argument reduction : x --> x - k*ln2 */
  127. z = invln2*x;
  128. k = z + copysign(.5, x);
  129. /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
  130. hi=(x-k*ln2hi); /* Exact. */
  131. x= hi - (lo = k*ln2lo-c);
  132. /* return 2^k*[1+x+x*c/(2+c)] */
  133. z=x*x;
  134. c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
  135. c = (x*c)/(2.0-c);
  136. return scalb(1.+(hi-(lo - c)), k);
  137. }
  138. /* end of x > lntiny */
  139. else
  140. /* exp(-big#) underflows to zero */
  141. if(finite(x)) return(scalb(1.0,-5000));
  142. /* exp(-INF) is zero */
  143. else return(0.0);
  144. }
  145. /* end of x < lnhuge */
  146. else
  147. /* exp(INF) is INF, exp(+big#) overflows to INF */
  148. return( finite(x) ? scalb(1.0,5000) : x);
  149. }