e_log.c 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141
  1. /* @(#)e_log.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #include "cdefs-compat.h"
  13. //__FBSDID("$FreeBSD: src/lib/msun/src/e_log.c,v 1.15 2008/03/29 16:37:59 das Exp $");
  14. /* __ieee754_log(x)
  15. * Return the logrithm of x
  16. *
  17. * Method :
  18. * 1. Argument Reduction: find k and f such that
  19. * x = 2^k * (1+f),
  20. * where sqrt(2)/2 < 1+f < sqrt(2) .
  21. *
  22. * 2. Approximation of log(1+f).
  23. * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  24. * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  25. * = 2s + s*R
  26. * We use a special Reme algorithm on [0,0.1716] to generate
  27. * a polynomial of degree 14 to approximate R The maximum error
  28. * of this polynomial approximation is bounded by 2**-58.45. In
  29. * other words,
  30. * 2 4 6 8 10 12 14
  31. * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
  32. * (the values of Lg1 to Lg7 are listed in the program)
  33. * and
  34. * | 2 14 | -58.45
  35. * | Lg1*s +...+Lg7*s - R(z) | <= 2
  36. * | |
  37. * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  38. * In order to guarantee error in log below 1ulp, we compute log
  39. * by
  40. * log(1+f) = f - s*(f - R) (if f is not too large)
  41. * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
  42. *
  43. * 3. Finally, log(x) = k*ln2 + log(1+f).
  44. * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
  45. * Here ln2 is split into two floating point number:
  46. * ln2_hi + ln2_lo,
  47. * where n*ln2_hi is always exact for |n| < 2000.
  48. *
  49. * Special cases:
  50. * log(x) is NaN with signal if x < 0 (including -INF) ;
  51. * log(+INF) is +INF; log(0) is -INF with signal;
  52. * log(NaN) is that NaN with no signal.
  53. *
  54. * Accuracy:
  55. * according to an error analysis, the error is always less than
  56. * 1 ulp (unit in the last place).
  57. *
  58. * Constants:
  59. * The hexadecimal values are the intended ones for the following
  60. * constants. The decimal values may be used, provided that the
  61. * compiler will convert from decimal to binary accurately enough
  62. * to produce the hexadecimal values shown.
  63. */
  64. #include <openlibm_math.h>
  65. #include "math_private.h"
  66. static const double
  67. ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
  68. ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
  69. two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
  70. Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
  71. Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
  72. Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
  73. Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
  74. Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
  75. Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
  76. Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
  77. static const double zero = 0.0;
  78. OLM_DLLEXPORT double
  79. __ieee754_log(double x)
  80. {
  81. double hfsq,f,s,z,R,w,t1,t2,dk;
  82. int32_t k,hx,i,j;
  83. u_int32_t lx;
  84. EXTRACT_WORDS(hx,lx,x);
  85. k=0;
  86. if (hx < 0x00100000) { /* x < 2**-1022 */
  87. if (((hx&0x7fffffff)|lx)==0)
  88. return -two54/zero; /* log(+-0)=-inf */
  89. if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
  90. k -= 54; x *= two54; /* subnormal number, scale up x */
  91. GET_HIGH_WORD(hx,x);
  92. }
  93. if (hx >= 0x7ff00000) return x+x;
  94. k += (hx>>20)-1023;
  95. hx &= 0x000fffff;
  96. i = (hx+0x95f64)&0x100000;
  97. SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
  98. k += (i>>20);
  99. f = x-1.0;
  100. if((0x000fffff&(2+hx))<3) { /* -2**-20 <= f < 2**-20 */
  101. if(f==zero) {
  102. if(k==0) {
  103. return zero;
  104. } else {
  105. dk=(double)k;
  106. return dk*ln2_hi+dk*ln2_lo;
  107. }
  108. }
  109. R = f*f*(0.5-0.33333333333333333*f);
  110. if(k==0) return f-R; else {dk=(double)k;
  111. return dk*ln2_hi-((R-dk*ln2_lo)-f);}
  112. }
  113. s = f/(2.0+f);
  114. dk = (double)k;
  115. z = s*s;
  116. i = hx-0x6147a;
  117. w = z*z;
  118. j = 0x6b851-hx;
  119. t1= w*(Lg2+w*(Lg4+w*Lg6));
  120. t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
  121. i |= j;
  122. R = t2+t1;
  123. if(i>0) {
  124. hfsq=0.5*f*f;
  125. if(k==0) return f-(hfsq-s*(hfsq+R)); else
  126. return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
  127. } else {
  128. if(k==0) return f-s*(f-R); else
  129. return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
  130. }
  131. }