s_ctanh.c 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. /*-
  2. * Copyright (c) 2011 David Schultz
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice unmodified, this list of conditions, and the following
  10. * disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  16. * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  17. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  18. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  19. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  20. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  24. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. /*
  27. * Hyperbolic tangent of a complex argument z = x + i y.
  28. *
  29. * The algorithm is from:
  30. *
  31. * W. Kahan. Branch Cuts for Complex Elementary Functions or Much
  32. * Ado About Nothing's Sign Bit. In The State of the Art in
  33. * Numerical Analysis, pp. 165 ff. Iserles and Powell, eds., 1987.
  34. *
  35. * Method:
  36. *
  37. * Let t = tan(x)
  38. * beta = 1/cos^2(y)
  39. * s = sinh(x)
  40. * rho = cosh(x)
  41. *
  42. * We have:
  43. *
  44. * tanh(z) = sinh(z) / cosh(z)
  45. *
  46. * sinh(x) cos(y) + i cosh(x) sin(y)
  47. * = ---------------------------------
  48. * cosh(x) cos(y) + i sinh(x) sin(y)
  49. *
  50. * cosh(x) sinh(x) / cos^2(y) + i tan(y)
  51. * = -------------------------------------
  52. * 1 + sinh^2(x) / cos^2(y)
  53. *
  54. * beta rho s + i t
  55. * = ----------------
  56. * 1 + beta s^2
  57. *
  58. * Modifications:
  59. *
  60. * I omitted the original algorithm's handling of overflow in tan(x) after
  61. * verifying with nearpi.c that this can't happen in IEEE single or double
  62. * precision. I also handle large x differently.
  63. */
  64. #include "cdefs-compat.h"
  65. //__FBSDID("$FreeBSD: src/lib/msun/src/s_ctanh.c,v 1.2 2011/10/21 06:30:16 das Exp $");
  66. #include <openlibm_complex.h>
  67. #include <openlibm_math.h>
  68. #include "math_private.h"
  69. OLM_DLLEXPORT double complex
  70. ctanh(double complex z)
  71. {
  72. double x, y;
  73. double t, beta, s, rho, denom;
  74. u_int32_t hx, ix, lx;
  75. x = creal(z);
  76. y = cimag(z);
  77. EXTRACT_WORDS(hx, lx, x);
  78. ix = hx & 0x7fffffff;
  79. /*
  80. * ctanh(NaN + i 0) = NaN + i 0
  81. *
  82. * ctanh(NaN + i y) = NaN + i NaN for y != 0
  83. *
  84. * The imaginary part has the sign of x*sin(2*y), but there's no
  85. * special effort to get this right.
  86. *
  87. * ctanh(+-Inf +- i Inf) = +-1 +- 0
  88. *
  89. * ctanh(+-Inf + i y) = +-1 + 0 sin(2y) for y finite
  90. *
  91. * The imaginary part of the sign is unspecified. This special
  92. * case is only needed to avoid a spurious invalid exception when
  93. * y is infinite.
  94. */
  95. if (ix >= 0x7ff00000) {
  96. if ((ix & 0xfffff) | lx) /* x is NaN */
  97. return (CMPLX(x, (y == 0 ? y : x * y)));
  98. SET_HIGH_WORD(x, hx - 0x40000000); /* x = copysign(1, x) */
  99. return (CMPLX(x, copysign(0, isinf(y) ? y : sin(y) * cos(y))));
  100. }
  101. /*
  102. * ctanh(x + i NAN) = NaN + i NaN
  103. * ctanh(x +- i Inf) = NaN + i NaN
  104. */
  105. if (!isfinite(y))
  106. return (CMPLX(y - y, y - y));
  107. /*
  108. * ctanh(+-huge + i +-y) ~= +-1 +- i 2sin(2y)/exp(2x), using the
  109. * approximation sinh^2(huge) ~= exp(2*huge) / 4.
  110. * We use a modified formula to avoid spurious overflow.
  111. */
  112. if (ix >= 0x40360000) { /* x >= 22 */
  113. double exp_mx = exp(-fabs(x));
  114. return (CMPLX(copysign(1, x),
  115. 4 * sin(y) * cos(y) * exp_mx * exp_mx));
  116. }
  117. /* Kahan's algorithm */
  118. t = tan(y);
  119. beta = 1.0 + t * t; /* = 1 / cos^2(y) */
  120. s = sinh(x);
  121. rho = sqrt(1 + s * s); /* = cosh(x) */
  122. denom = 1 + beta * s * s;
  123. return (CMPLX((beta * rho * s) / denom, t / denom));
  124. }
  125. OLM_DLLEXPORT double complex
  126. ctan(double complex z)
  127. {
  128. /* ctan(z) = -I * ctanh(I * z) */
  129. z = ctanh(CMPLX(-cimag(z), creal(z)));
  130. return (CMPLX(cimag(z), -creal(z)));
  131. }