123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- /*-
- * Copyright (c) 2011 David Schultz
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice unmodified, this list of conditions, and the following
- * disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- /*
- * Hyperbolic tangent of a complex argument z = x + i y.
- *
- * The algorithm is from:
- *
- * W. Kahan. Branch Cuts for Complex Elementary Functions or Much
- * Ado About Nothing's Sign Bit. In The State of the Art in
- * Numerical Analysis, pp. 165 ff. Iserles and Powell, eds., 1987.
- *
- * Method:
- *
- * Let t = tan(x)
- * beta = 1/cos^2(y)
- * s = sinh(x)
- * rho = cosh(x)
- *
- * We have:
- *
- * tanh(z) = sinh(z) / cosh(z)
- *
- * sinh(x) cos(y) + i cosh(x) sin(y)
- * = ---------------------------------
- * cosh(x) cos(y) + i sinh(x) sin(y)
- *
- * cosh(x) sinh(x) / cos^2(y) + i tan(y)
- * = -------------------------------------
- * 1 + sinh^2(x) / cos^2(y)
- *
- * beta rho s + i t
- * = ----------------
- * 1 + beta s^2
- *
- * Modifications:
- *
- * I omitted the original algorithm's handling of overflow in tan(x) after
- * verifying with nearpi.c that this can't happen in IEEE single or double
- * precision. I also handle large x differently.
- */
- #include "cdefs-compat.h"
- //__FBSDID("$FreeBSD: src/lib/msun/src/s_ctanh.c,v 1.2 2011/10/21 06:30:16 das Exp $");
- #include <openlibm_complex.h>
- #include <openlibm_math.h>
- #include "math_private.h"
- OLM_DLLEXPORT double complex
- ctanh(double complex z)
- {
- double x, y;
- double t, beta, s, rho, denom;
- u_int32_t hx, ix, lx;
- x = creal(z);
- y = cimag(z);
- EXTRACT_WORDS(hx, lx, x);
- ix = hx & 0x7fffffff;
- /*
- * ctanh(NaN + i 0) = NaN + i 0
- *
- * ctanh(NaN + i y) = NaN + i NaN for y != 0
- *
- * The imaginary part has the sign of x*sin(2*y), but there's no
- * special effort to get this right.
- *
- * ctanh(+-Inf +- i Inf) = +-1 +- 0
- *
- * ctanh(+-Inf + i y) = +-1 + 0 sin(2y) for y finite
- *
- * The imaginary part of the sign is unspecified. This special
- * case is only needed to avoid a spurious invalid exception when
- * y is infinite.
- */
- if (ix >= 0x7ff00000) {
- if ((ix & 0xfffff) | lx) /* x is NaN */
- return (CMPLX(x, (y == 0 ? y : x * y)));
- SET_HIGH_WORD(x, hx - 0x40000000); /* x = copysign(1, x) */
- return (CMPLX(x, copysign(0, isinf(y) ? y : sin(y) * cos(y))));
- }
- /*
- * ctanh(x + i NAN) = NaN + i NaN
- * ctanh(x +- i Inf) = NaN + i NaN
- */
- if (!isfinite(y))
- return (CMPLX(y - y, y - y));
- /*
- * ctanh(+-huge + i +-y) ~= +-1 +- i 2sin(2y)/exp(2x), using the
- * approximation sinh^2(huge) ~= exp(2*huge) / 4.
- * We use a modified formula to avoid spurious overflow.
- */
- if (ix >= 0x40360000) { /* x >= 22 */
- double exp_mx = exp(-fabs(x));
- return (CMPLX(copysign(1, x),
- 4 * sin(y) * cos(y) * exp_mx * exp_mx));
- }
- /* Kahan's algorithm */
- t = tan(y);
- beta = 1.0 + t * t; /* = 1 / cos^2(y) */
- s = sinh(x);
- rho = sqrt(1 + s * s); /* = cosh(x) */
- denom = 1 + beta * s * s;
- return (CMPLX((beta * rho * s) / denom, t / denom));
- }
- OLM_DLLEXPORT double complex
- ctan(double complex z)
- {
- /* ctan(z) = -I * ctanh(I * z) */
- z = ctanh(CMPLX(-cimag(z), creal(z)));
- return (CMPLX(cimag(z), -creal(z)));
- }
|