e_hypot.c 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131
  1. /* @(#)e_hypot.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #include <sys/cdefs.h>
  13. __FBSDID("$FreeBSD$");
  14. /* __ieee754_hypot(x,y)
  15. *
  16. * Method :
  17. * If (assume round-to-nearest) z=x*x+y*y
  18. * has error less than sqrt(2)/2 ulp, than
  19. * sqrt(z) has error less than 1 ulp (exercise).
  20. *
  21. * So, compute sqrt(x*x+y*y) with some care as
  22. * follows to get the error below 1 ulp:
  23. *
  24. * Assume x>y>0;
  25. * (if possible, set rounding to round-to-nearest)
  26. * 1. if x > 2y use
  27. * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
  28. * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
  29. * 2. if x <= 2y use
  30. * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
  31. * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
  32. * y1= y with lower 32 bits chopped, y2 = y-y1.
  33. *
  34. * NOTE: scaling may be necessary if some argument is too
  35. * large or too tiny
  36. *
  37. * Special cases:
  38. * hypot(x,y) is INF if x or y is +INF or -INF; else
  39. * hypot(x,y) is NAN if x or y is NAN.
  40. *
  41. * Accuracy:
  42. * hypot(x,y) returns sqrt(x^2+y^2) with error less
  43. * than 1 ulps (units in the last place)
  44. */
  45. #include <float.h>
  46. #include "math.h"
  47. #include "math_private.h"
  48. double
  49. __ieee754_hypot(double x, double y)
  50. {
  51. double a,b,t1,t2,y1,y2,w;
  52. int32_t j,k,ha,hb;
  53. GET_HIGH_WORD(ha,x);
  54. ha &= 0x7fffffff;
  55. GET_HIGH_WORD(hb,y);
  56. hb &= 0x7fffffff;
  57. if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
  58. a = fabs(a);
  59. b = fabs(b);
  60. if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
  61. k=0;
  62. if(ha > 0x5f300000) { /* a>2**500 */
  63. if(ha >= 0x7ff00000) { /* Inf or NaN */
  64. u_int32_t low;
  65. /* Use original arg order iff result is NaN; quieten sNaNs. */
  66. w = fabs(x+0.0)-fabs(y+0.0);
  67. GET_LOW_WORD(low,a);
  68. if(((ha&0xfffff)|low)==0) w = a;
  69. GET_LOW_WORD(low,b);
  70. if(((hb^0x7ff00000)|low)==0) w = b;
  71. return w;
  72. }
  73. /* scale a and b by 2**-600 */
  74. ha -= 0x25800000; hb -= 0x25800000; k += 600;
  75. SET_HIGH_WORD(a,ha);
  76. SET_HIGH_WORD(b,hb);
  77. }
  78. if(hb < 0x20b00000) { /* b < 2**-500 */
  79. if(hb <= 0x000fffff) { /* subnormal b or 0 */
  80. u_int32_t low;
  81. GET_LOW_WORD(low,b);
  82. if((hb|low)==0) return a;
  83. t1=0;
  84. SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
  85. b *= t1;
  86. a *= t1;
  87. k -= 1022;
  88. } else { /* scale a and b by 2^600 */
  89. ha += 0x25800000; /* a *= 2^600 */
  90. hb += 0x25800000; /* b *= 2^600 */
  91. k -= 600;
  92. SET_HIGH_WORD(a,ha);
  93. SET_HIGH_WORD(b,hb);
  94. }
  95. }
  96. /* medium size a and b */
  97. w = a-b;
  98. if (w>b) {
  99. t1 = 0;
  100. SET_HIGH_WORD(t1,ha);
  101. t2 = a-t1;
  102. w = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
  103. } else {
  104. a = a+a;
  105. y1 = 0;
  106. SET_HIGH_WORD(y1,hb);
  107. y2 = b - y1;
  108. t1 = 0;
  109. SET_HIGH_WORD(t1,ha+0x00100000);
  110. t2 = a - t1;
  111. w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
  112. }
  113. if(k!=0) {
  114. u_int32_t high;
  115. t1 = 1.0;
  116. GET_HIGH_WORD(high,t1);
  117. SET_HIGH_WORD(t1,high+(k<<20));
  118. return t1*w;
  119. } else return w;
  120. }
  121. #if LDBL_MANT_DIG == 53
  122. __weak_reference(hypot, hypotl);
  123. #endif