e_log2.c 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. /* @(#)e_log10.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #include <sys/cdefs.h>
  13. __FBSDID("$FreeBSD$");
  14. /*
  15. * Return the base 2 logarithm of x. See e_log.c and k_log.h for most
  16. * comments.
  17. *
  18. * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel,
  19. * then does the combining and scaling steps
  20. * log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k
  21. * in not-quite-routine extra precision.
  22. */
  23. #include <float.h>
  24. #include "math.h"
  25. #include "math_private.h"
  26. #include "k_log.h"
  27. static const double
  28. two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
  29. ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
  30. ivln2lo = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
  31. static const double zero = 0.0;
  32. static volatile double vzero = 0.0;
  33. double
  34. __ieee754_log2(double x)
  35. {
  36. double f,hfsq,hi,lo,r,val_hi,val_lo,w,y;
  37. int32_t i,k,hx;
  38. u_int32_t lx;
  39. EXTRACT_WORDS(hx,lx,x);
  40. k=0;
  41. if (hx < 0x00100000) { /* x < 2**-1022 */
  42. if (((hx&0x7fffffff)|lx)==0)
  43. return -two54/vzero; /* log(+-0)=-inf */
  44. if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
  45. k -= 54; x *= two54; /* subnormal number, scale up x */
  46. GET_HIGH_WORD(hx,x);
  47. }
  48. if (hx >= 0x7ff00000) return x+x;
  49. if (hx == 0x3ff00000 && lx == 0)
  50. return zero; /* log(1) = +0 */
  51. k += (hx>>20)-1023;
  52. hx &= 0x000fffff;
  53. i = (hx+0x95f64)&0x100000;
  54. SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
  55. k += (i>>20);
  56. y = (double)k;
  57. f = x - 1.0;
  58. hfsq = 0.5*f*f;
  59. r = k_log1p(f);
  60. /*
  61. * f-hfsq must (for args near 1) be evaluated in extra precision
  62. * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
  63. * This is fairly efficient since f-hfsq only depends on f, so can
  64. * be evaluated in parallel with R. Not combining hfsq with R also
  65. * keeps R small (though not as small as a true `lo' term would be),
  66. * so that extra precision is not needed for terms involving R.
  67. *
  68. * Compiler bugs involving extra precision used to break Dekker's
  69. * theorem for spitting f-hfsq as hi+lo, unless double_t was used
  70. * or the multi-precision calculations were avoided when double_t
  71. * has extra precision. These problems are now automatically
  72. * avoided as a side effect of the optimization of combining the
  73. * Dekker splitting step with the clear-low-bits step.
  74. *
  75. * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
  76. * precision to avoid a very large cancellation when x is very near
  77. * these values. Unlike the above cancellations, this problem is
  78. * specific to base 2. It is strange that adding +-1 is so much
  79. * harder than adding +-ln2 or +-log10_2.
  80. *
  81. * This uses Dekker's theorem to normalize y+val_hi, so the
  82. * compiler bugs are back in some configurations, sigh. And I
  83. * don't want to used double_t to avoid them, since that gives a
  84. * pessimization and the support for avoiding the pessimization
  85. * is not yet available.
  86. *
  87. * The multi-precision calculations for the multiplications are
  88. * routine.
  89. */
  90. hi = f - hfsq;
  91. SET_LOW_WORD(hi,0);
  92. lo = (f - hi) - hfsq + r;
  93. val_hi = hi*ivln2hi;
  94. val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
  95. /* spadd(val_hi, val_lo, y), except for not using double_t: */
  96. w = y + val_hi;
  97. val_lo += (y - w) + val_hi;
  98. val_hi = w;
  99. return val_lo + val_hi;
  100. }
  101. #if (LDBL_MANT_DIG == 53)
  102. __weak_reference(log2, log2l);
  103. #endif