e_j0f.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. /* e_j0f.c -- float version of e_j0.c.
  2. * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
  3. */
  4. /*
  5. * ====================================================
  6. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  7. *
  8. * Developed at SunPro, a Sun Microsystems, Inc. business.
  9. * Permission to use, copy, modify, and distribute this
  10. * software is freely granted, provided that this notice
  11. * is preserved.
  12. * ====================================================
  13. */
  14. #include <assert.h>
  15. #include "cdefs-compat.h"
  16. #include <openlibm_math.h>
  17. #include "math_private.h"
  18. static float pzerof(float), qzerof(float);
  19. static const float
  20. huge = 1e30,
  21. one = 1.0,
  22. invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
  23. tpi = 6.3661974669e-01, /* 0x3f22f983 */
  24. /* R0/S0 on [0, 2.00] */
  25. R02 = 1.5625000000e-02, /* 0x3c800000 */
  26. R03 = -1.8997929874e-04, /* 0xb947352e */
  27. R04 = 1.8295404516e-06, /* 0x35f58e88 */
  28. R05 = -4.6183270541e-09, /* 0xb19eaf3c */
  29. S01 = 1.5619102865e-02, /* 0x3c7fe744 */
  30. S02 = 1.1692678527e-04, /* 0x38f53697 */
  31. S03 = 5.1354652442e-07, /* 0x3509daa6 */
  32. S04 = 1.1661400734e-09; /* 0x30a045e8 */
  33. static const float zero = 0.0;
  34. DLLEXPORT float
  35. __ieee754_j0f(float x)
  36. {
  37. float z, s,c,ss,cc,r,u,v;
  38. int32_t hx,ix;
  39. GET_FLOAT_WORD(hx,x);
  40. ix = hx&0x7fffffff;
  41. if(ix>=0x7f800000) return one/(x*x);
  42. x = fabsf(x);
  43. if(ix >= 0x40000000) { /* |x| >= 2.0 */
  44. s = sinf(x);
  45. c = cosf(x);
  46. ss = s-c;
  47. cc = s+c;
  48. if(ix<0x7f000000) { /* make sure x+x not overflow */
  49. z = -cosf(x+x);
  50. if ((s*c)<zero) cc = z/ss;
  51. else ss = z/cc;
  52. }
  53. /*
  54. * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
  55. * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
  56. */
  57. if(ix>0x58000000) z = (invsqrtpi*cc)/sqrtf(x); /* |x|>2**49 */
  58. else {
  59. u = pzerof(x); v = qzerof(x);
  60. z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
  61. }
  62. return z;
  63. }
  64. if(ix<0x3b000000) { /* |x| < 2**-9 */
  65. if(huge+x>one) { /* raise inexact if x != 0 */
  66. if(ix<0x39800000) return one; /* |x|<2**-12 */
  67. else return one - x*x/4;
  68. }
  69. }
  70. z = x*x;
  71. r = z*(R02+z*(R03+z*(R04+z*R05)));
  72. s = one+z*(S01+z*(S02+z*(S03+z*S04)));
  73. if(ix < 0x3F800000) { /* |x| < 1.00 */
  74. return one + z*((float)-0.25+(r/s));
  75. } else {
  76. u = (float)0.5*x;
  77. return((one+u)*(one-u)+z*(r/s));
  78. }
  79. }
  80. static const float
  81. u00 = -7.3804296553e-02, /* 0xbd9726b5 */
  82. u01 = 1.7666645348e-01, /* 0x3e34e80d */
  83. u02 = -1.3818567619e-02, /* 0xbc626746 */
  84. u03 = 3.4745343146e-04, /* 0x39b62a69 */
  85. u04 = -3.8140706238e-06, /* 0xb67ff53c */
  86. u05 = 1.9559013964e-08, /* 0x32a802ba */
  87. u06 = -3.9820518410e-11, /* 0xae2f21eb */
  88. v01 = 1.2730483897e-02, /* 0x3c509385 */
  89. v02 = 7.6006865129e-05, /* 0x389f65e0 */
  90. v03 = 2.5915085189e-07, /* 0x348b216c */
  91. v04 = 4.4111031494e-10; /* 0x2ff280c2 */
  92. DLLEXPORT float
  93. __ieee754_y0f(float x)
  94. {
  95. float z, s,c,ss,cc,u,v;
  96. int32_t hx,ix;
  97. GET_FLOAT_WORD(hx,x);
  98. ix = 0x7fffffff&hx;
  99. /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
  100. if(ix>=0x7f800000) return one/(x+x*x);
  101. if(ix==0) return -one/zero;
  102. if(hx<0) return zero/zero;
  103. if(ix >= 0x40000000) { /* |x| >= 2.0 */
  104. /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
  105. * where x0 = x-pi/4
  106. * Better formula:
  107. * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
  108. * = 1/sqrt(2) * (sin(x) + cos(x))
  109. * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
  110. * = 1/sqrt(2) * (sin(x) - cos(x))
  111. * To avoid cancellation, use
  112. * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  113. * to compute the worse one.
  114. */
  115. s = sinf(x);
  116. c = cosf(x);
  117. ss = s-c;
  118. cc = s+c;
  119. /*
  120. * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
  121. * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
  122. */
  123. if(ix<0x7f000000) { /* make sure x+x not overflow */
  124. z = -cosf(x+x);
  125. if ((s*c)<zero) cc = z/ss;
  126. else ss = z/cc;
  127. }
  128. if(ix>0x58000000) z = (invsqrtpi*ss)/sqrtf(x); /* |x|>2**49 */
  129. else {
  130. u = pzerof(x); v = qzerof(x);
  131. z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
  132. }
  133. return z;
  134. }
  135. if(ix<=0x39000000) { /* x < 2**-13 */
  136. return(u00 + tpi*__ieee754_logf(x));
  137. }
  138. z = x*x;
  139. u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
  140. v = one+z*(v01+z*(v02+z*(v03+z*v04)));
  141. return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
  142. }
  143. /* The asymptotic expansions of pzero is
  144. * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
  145. * For x >= 2, We approximate pzero by
  146. * pzero(x) = 1 + (R/S)
  147. * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
  148. * S = 1 + pS0*s^2 + ... + pS4*s^10
  149. * and
  150. * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
  151. */
  152. static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  153. 0.0000000000e+00, /* 0x00000000 */
  154. -7.0312500000e-02, /* 0xbd900000 */
  155. -8.0816707611e+00, /* 0xc1014e86 */
  156. -2.5706311035e+02, /* 0xc3808814 */
  157. -2.4852163086e+03, /* 0xc51b5376 */
  158. -5.2530439453e+03, /* 0xc5a4285a */
  159. };
  160. static const float pS8[5] = {
  161. 1.1653436279e+02, /* 0x42e91198 */
  162. 3.8337448730e+03, /* 0x456f9beb */
  163. 4.0597855469e+04, /* 0x471e95db */
  164. 1.1675296875e+05, /* 0x47e4087c */
  165. 4.7627726562e+04, /* 0x473a0bba */
  166. };
  167. static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
  168. -1.1412546255e-11, /* 0xad48c58a */
  169. -7.0312492549e-02, /* 0xbd8fffff */
  170. -4.1596107483e+00, /* 0xc0851b88 */
  171. -6.7674766541e+01, /* 0xc287597b */
  172. -3.3123129272e+02, /* 0xc3a59d9b */
  173. -3.4643338013e+02, /* 0xc3ad3779 */
  174. };
  175. static const float pS5[5] = {
  176. 6.0753936768e+01, /* 0x42730408 */
  177. 1.0512523193e+03, /* 0x44836813 */
  178. 5.9789707031e+03, /* 0x45bad7c4 */
  179. 9.6254453125e+03, /* 0x461665c8 */
  180. 2.4060581055e+03, /* 0x451660ee */
  181. };
  182. static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
  183. -2.5470459075e-09, /* 0xb12f081b */
  184. -7.0311963558e-02, /* 0xbd8fffb8 */
  185. -2.4090321064e+00, /* 0xc01a2d95 */
  186. -2.1965976715e+01, /* 0xc1afba52 */
  187. -5.8079170227e+01, /* 0xc2685112 */
  188. -3.1447946548e+01, /* 0xc1fb9565 */
  189. };
  190. static const float pS3[5] = {
  191. 3.5856033325e+01, /* 0x420f6c94 */
  192. 3.6151397705e+02, /* 0x43b4c1ca */
  193. 1.1936077881e+03, /* 0x44953373 */
  194. 1.1279968262e+03, /* 0x448cffe6 */
  195. 1.7358093262e+02, /* 0x432d94b8 */
  196. };
  197. static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
  198. -8.8753431271e-08, /* 0xb3be98b7 */
  199. -7.0303097367e-02, /* 0xbd8ffb12 */
  200. -1.4507384300e+00, /* 0xbfb9b1cc */
  201. -7.6356959343e+00, /* 0xc0f4579f */
  202. -1.1193166733e+01, /* 0xc1331736 */
  203. -3.2336456776e+00, /* 0xc04ef40d */
  204. };
  205. static const float pS2[5] = {
  206. 2.2220300674e+01, /* 0x41b1c32d */
  207. 1.3620678711e+02, /* 0x430834f0 */
  208. 2.7047027588e+02, /* 0x43873c32 */
  209. 1.5387539673e+02, /* 0x4319e01a */
  210. 1.4657617569e+01, /* 0x416a859a */
  211. };
  212. static float pzerof(float x)
  213. {
  214. const float *p,*q;
  215. float z,r,s;
  216. int32_t ix;
  217. GET_FLOAT_WORD(ix,x);
  218. ix &= 0x7fffffff;
  219. if(ix>=0x41000000) {p = pR8; q= pS8;}
  220. else if(ix>=0x409173eb){p = pR5; q= pS5;}
  221. else if(ix>=0x4036d917){p = pR3; q= pS3;}
  222. else {p = pR2; q= pS2;} /* ix>=0x40000000 */
  223. z = one/(x*x);
  224. r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
  225. s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
  226. return one+ r/s;
  227. }
  228. /* For x >= 8, the asymptotic expansions of qzero is
  229. * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
  230. * We approximate pzero by
  231. * qzero(x) = s*(-1.25 + (R/S))
  232. * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
  233. * S = 1 + qS0*s^2 + ... + qS5*s^12
  234. * and
  235. * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
  236. */
  237. static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  238. 0.0000000000e+00, /* 0x00000000 */
  239. 7.3242187500e-02, /* 0x3d960000 */
  240. 1.1768206596e+01, /* 0x413c4a93 */
  241. 5.5767340088e+02, /* 0x440b6b19 */
  242. 8.8591972656e+03, /* 0x460a6cca */
  243. 3.7014625000e+04, /* 0x471096a0 */
  244. };
  245. static const float qS8[6] = {
  246. 1.6377603149e+02, /* 0x4323c6aa */
  247. 8.0983447266e+03, /* 0x45fd12c2 */
  248. 1.4253829688e+05, /* 0x480b3293 */
  249. 8.0330925000e+05, /* 0x49441ed4 */
  250. 8.4050156250e+05, /* 0x494d3359 */
  251. -3.4389928125e+05, /* 0xc8a7eb69 */
  252. };
  253. static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
  254. 1.8408595828e-11, /* 0x2da1ec79 */
  255. 7.3242180049e-02, /* 0x3d95ffff */
  256. 5.8356351852e+00, /* 0x40babd86 */
  257. 1.3511157227e+02, /* 0x43071c90 */
  258. 1.0272437744e+03, /* 0x448067cd */
  259. 1.9899779053e+03, /* 0x44f8bf4b */
  260. };
  261. static const float qS5[6] = {
  262. 8.2776611328e+01, /* 0x42a58da0 */
  263. 2.0778142090e+03, /* 0x4501dd07 */
  264. 1.8847289062e+04, /* 0x46933e94 */
  265. 5.6751113281e+04, /* 0x475daf1d */
  266. 3.5976753906e+04, /* 0x470c88c1 */
  267. -5.3543427734e+03, /* 0xc5a752be */
  268. };
  269. static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
  270. 4.3774099900e-09, /* 0x3196681b */
  271. 7.3241114616e-02, /* 0x3d95ff70 */
  272. 3.3442313671e+00, /* 0x405607e3 */
  273. 4.2621845245e+01, /* 0x422a7cc5 */
  274. 1.7080809021e+02, /* 0x432acedf */
  275. 1.6673394775e+02, /* 0x4326bbe4 */
  276. };
  277. static const float qS3[6] = {
  278. 4.8758872986e+01, /* 0x42430916 */
  279. 7.0968920898e+02, /* 0x44316c1c */
  280. 3.7041481934e+03, /* 0x4567825f */
  281. 6.4604252930e+03, /* 0x45c9e367 */
  282. 2.5163337402e+03, /* 0x451d4557 */
  283. -1.4924745178e+02, /* 0xc3153f59 */
  284. };
  285. static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
  286. 1.5044444979e-07, /* 0x342189db */
  287. 7.3223426938e-02, /* 0x3d95f62a */
  288. 1.9981917143e+00, /* 0x3fffc4bf */
  289. 1.4495602608e+01, /* 0x4167edfd */
  290. 3.1666231155e+01, /* 0x41fd5471 */
  291. 1.6252708435e+01, /* 0x4182058c */
  292. };
  293. static const float qS2[6] = {
  294. 3.0365585327e+01, /* 0x41f2ecb8 */
  295. 2.6934811401e+02, /* 0x4386ac8f */
  296. 8.4478375244e+02, /* 0x44533229 */
  297. 8.8293585205e+02, /* 0x445cbbe5 */
  298. 2.1266638184e+02, /* 0x4354aa98 */
  299. -5.3109550476e+00, /* 0xc0a9f358 */
  300. };
  301. static float qzerof(float x)
  302. {
  303. const float *p,*q;
  304. float s,r,z;
  305. int32_t ix;
  306. GET_FLOAT_WORD(ix,x);
  307. ix &= 0x7fffffff;
  308. if(ix>=0x41000000) {p = qR8; q= qS8;}
  309. else if(ix>=0x409173eb){p = qR5; q= qS5;}
  310. else if(ix>=0x4036d917){p = qR3; q= qS3;}
  311. else {p = qR2; q= qS2;} /* ix>=0x40000000 */
  312. z = one/(x*x);
  313. r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
  314. s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
  315. return (-(float).125 + r/s)/x;
  316. }