123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- /* $OpenBSD: polevll.c,v 1.2 2013/11/12 20:35:09 martynas Exp $ */
- /*
- * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
- /* polevll.c
- * p1evll.c
- *
- * Evaluate polynomial
- *
- *
- *
- * SYNOPSIS:
- *
- * int N;
- * long double x, y, coef[N+1], polevl[];
- *
- * y = polevll( x, coef, N );
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates polynomial of degree N:
- *
- * 2 N
- * y = C + C x + C x +...+ C x
- * 0 1 2 N
- *
- * Coefficients are stored in reverse order:
- *
- * coef[0] = C , ..., coef[N] = C .
- * N 0
- *
- * The function p1evll() assumes that coef[N] = 1.0 and is
- * omitted from the array. Its calling arguments are
- * otherwise the same as polevll().
- *
- *
- * SPEED:
- *
- * In the interest of speed, there are no checks for out
- * of bounds arithmetic. This routine is used by most of
- * the functions in the library. Depending on available
- * equipment features, the user may wish to rewrite the
- * program in microcode or assembly language.
- *
- */
- #include <openlibm_math.h>
- #include "math_private.h"
- /*
- * Polynomial evaluator:
- * P[0] x^n + P[1] x^(n-1) + ... + P[n]
- */
- long double
- __polevll(long double x, void *PP, int n)
- {
- long double y;
- long double *P;
- P = (long double *)PP;
- y = *P++;
- do {
- y = y * x + *P++;
- } while (--n);
- return (y);
- }
- /*
- * Polynomial evaluator:
- * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
- */
- long double
- __p1evll(long double x, void *PP, int n)
- {
- long double y;
- long double *P;
- P = (long double *)PP;
- n -= 1;
- y = x + *P++;
- do {
- y = y * x + *P++;
- } while (--n);
- return (y);
- }
|