123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- *DECK DCHUD
- SUBROUTINE DCHUD (R, LDR, P, X, Z, LDZ, NZ, Y, RHO, C, S)
- C***BEGIN PROLOGUE DCHUD
- C***PURPOSE Update an augmented Cholesky decomposition of the
- C triangular part of an augmented QR decomposition.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D7B
- C***TYPE DOUBLE PRECISION (SCHUD-S, DCHUD-D, CCHUD-C)
- C***KEYWORDS CHOLESKY DECOMPOSITION, LINEAR ALGEBRA, LINPACK, MATRIX,
- C UPDATE
- C***AUTHOR Stewart, G. W., (U. of Maryland)
- C***DESCRIPTION
- C
- C DCHUD updates an augmented Cholesky decomposition of the
- C triangular part of an augmented QR decomposition. Specifically,
- C given an upper triangular matrix R of order P, a row vector
- C X, a column vector Z, and a scalar Y, DCHUD determines a
- C unitary matrix U and a scalar ZETA such that
- C
- C
- C (R Z) (RR ZZ )
- C U * ( ) = ( ) ,
- C (X Y) ( 0 ZETA)
- C
- C where RR is upper triangular. If R and Z have been
- C obtained from the factorization of a least squares
- C problem, then RR and ZZ are the factors corresponding to
- C the problem with the observation (X,Y) appended. In this
- C case, if RHO is the norm of the residual vector, then the
- C norm of the residual vector of the updated problem is
- C SQRT(RHO**2 + ZETA**2). DCHUD will simultaneously update
- C several triplets (Z,Y,RHO).
- C For a less terse description of what DCHUD does and how
- C it may be applied, see the LINPACK guide.
- C
- C The matrix U is determined as the product U(P)*...*U(1),
- C where U(I) is a rotation in the (I,P+1) plane of the
- C form
- C
- C ( C(I) S(I) )
- C ( ) .
- C ( -S(I) C(I) )
- C
- C The rotations are chosen so that C(I) is double precision.
- C
- C On Entry
- C
- C R DOUBLE PRECISION(LDR,P), where LDR .GE. P.
- C R contains the upper triangular matrix
- C that is to be updated. The part of R
- C below the diagonal is not referenced.
- C
- C LDR INTEGER.
- C LDR is the leading dimension of the array R.
- C
- C P INTEGER.
- C P is the order of the matrix R.
- C
- C X DOUBLE PRECISION(P).
- C X contains the row to be added to R. X is
- C not altered by DCHUD.
- C
- C Z DOUBLE PRECISION(LDZ,N)Z), where LDZ .GE. P.
- C Z is an array containing NZ P-vectors to
- C be updated with R.
- C
- C LDZ INTEGER.
- C LDZ is the leading dimension of the array Z.
- C
- C NZ INTEGER.
- C NZ is the number of vectors to be updated
- C NZ may be zero, in which case Z, Y, and RHO
- C are not referenced.
- C
- C Y DOUBLE PRECISION(NZ).
- C Y contains the scalars for updating the vectors
- C Z. Y is not altered by DCHUD.
- C
- C RHO DOUBLE PRECISION(NZ).
- C RHO contains the norms of the residual
- C vectors that are to be updated. If RHO(J)
- C is negative, it is left unaltered.
- C
- C On Return
- C
- C RC
- C RHO contain the updated quantities.
- C Z
- C
- C C DOUBLE PRECISION(P).
- C C contains the cosines of the transforming
- C rotations.
- C
- C S DOUBLE PRECISION(P).
- C S contains the sines of the transforming
- C rotations.
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED DROTG
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE DCHUD
- INTEGER LDR,P,LDZ,NZ
- DOUBLE PRECISION RHO(*),C(*)
- DOUBLE PRECISION R(LDR,*),X(*),Z(LDZ,*),Y(*),S(*)
- C
- INTEGER I,J,JM1
- DOUBLE PRECISION AZETA,SCALE
- DOUBLE PRECISION T,XJ,ZETA
- C
- C UPDATE R.
- C
- C***FIRST EXECUTABLE STATEMENT DCHUD
- DO 30 J = 1, P
- XJ = X(J)
- C
- C APPLY THE PREVIOUS ROTATIONS.
- C
- JM1 = J - 1
- IF (JM1 .LT. 1) GO TO 20
- DO 10 I = 1, JM1
- T = C(I)*R(I,J) + S(I)*XJ
- XJ = C(I)*XJ - S(I)*R(I,J)
- R(I,J) = T
- 10 CONTINUE
- 20 CONTINUE
- C
- C COMPUTE THE NEXT ROTATION.
- C
- CALL DROTG(R(J,J),XJ,C(J),S(J))
- 30 CONTINUE
- C
- C IF REQUIRED, UPDATE Z AND RHO.
- C
- IF (NZ .LT. 1) GO TO 70
- DO 60 J = 1, NZ
- ZETA = Y(J)
- DO 40 I = 1, P
- T = C(I)*Z(I,J) + S(I)*ZETA
- ZETA = C(I)*ZETA - S(I)*Z(I,J)
- Z(I,J) = T
- 40 CONTINUE
- AZETA = ABS(ZETA)
- IF (AZETA .EQ. 0.0D0 .OR. RHO(J) .LT. 0.0D0) GO TO 50
- SCALE = AZETA + RHO(J)
- RHO(J) = SCALE*SQRT((AZETA/SCALE)**2+(RHO(J)/SCALE)**2)
- 50 CONTINUE
- 60 CONTINUE
- 70 CONTINUE
- RETURN
- END
|