123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301 |
- *DECK DSPCO
- SUBROUTINE DSPCO (AP, N, KPVT, RCOND, Z)
- C***BEGIN PROLOGUE DSPCO
- C***PURPOSE Factor a real symmetric matrix stored in packed form
- C by elimination with symmetric pivoting and estimate the
- C condition number of the matrix.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2B1A
- C***TYPE DOUBLE PRECISION (SSPCO-S, DSPCO-D, CHPCO-C, CSPCO-C)
- C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
- C MATRIX FACTORIZATION, PACKED, SYMMETRIC
- C***AUTHOR Moler, C. B., (U. of New Mexico)
- C***DESCRIPTION
- C
- C DSPCO factors a double precision symmetric matrix stored in
- C packed form by elimination with symmetric pivoting and estimates
- C the condition of the matrix.
- C
- C IF RCOND is not needed, DSPFA is slightly faster.
- C To solve A*X = B , follow DSPCO by DSPSL.
- C To compute INVERSE(A)*C , follow DSPCO by DSPSL.
- C To compute INVERSE(A) , follow DSPCO by DSPDI.
- C To compute DETERMINANT(A) , follow DSPCO by DSPDI.
- C To compute INERTIA(A), follow DSPCO by DSPDI.
- C
- C On Entry
- C
- C AP DOUBLE PRECISION (N*(N+1)/2)
- C the packed form of a symmetric matrix A . The
- C columns of the upper triangle are stored sequentially
- C in a one-dimensional array of length N*(N+1)/2 .
- C See comments below for details.
- C
- C N INTEGER
- C the order of the matrix A .
- C
- C Output
- C
- C AP a block diagonal matrix and the multipliers which
- C were used to obtain it stored in packed form.
- C The factorization can be written A = U*D*TRANS(U)
- C where U is a product of permutation and unit
- C upper triangular matrices , TRANS(U) is the
- C transpose of U , and D is block diagonal
- C with 1 by 1 and 2 by 2 blocks.
- C
- C KPVT INTEGER(N)
- C an integer vector of pivot indices.
- C
- C RCOND DOUBLE PRECISION
- C an estimate of the reciprocal condition of A .
- C For the system A*X = B , relative perturbations
- C in A and B of size EPSILON may cause
- C relative perturbations in X of size EPSILON/RCOND .
- C If RCOND is so small that the logical expression
- C 1.0 + RCOND .EQ. 1.0
- C is true, then A may be singular to working
- C precision. In particular, RCOND is zero if
- C exact singularity is detected or the estimate
- C underflows.
- C
- C Z DOUBLE PRECISION(N)
- C a work vector whose contents are usually unimportant.
- C If A is close to a singular matrix, then Z is
- C an approximate null vector in the sense that
- C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
- C
- C Packed Storage
- C
- C The following program segment will pack the upper
- C triangle of a symmetric matrix.
- C
- C K = 0
- C DO 20 J = 1, N
- C DO 10 I = 1, J
- C K = K + 1
- C AP(K) = A(I,J)
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED DASUM, DAXPY, DDOT, DSCAL, DSPFA
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 891107 Modified routine equivalence list. (WRB)
- C 891107 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE DSPCO
- INTEGER N,KPVT(*)
- DOUBLE PRECISION AP(*),Z(*)
- DOUBLE PRECISION RCOND
- C
- DOUBLE PRECISION AK,AKM1,BK,BKM1,DDOT,DENOM,EK,T
- DOUBLE PRECISION ANORM,S,DASUM,YNORM
- INTEGER I,IJ,IK,IKM1,IKP1,INFO,J,JM1,J1
- INTEGER K,KK,KM1K,KM1KM1,KP,KPS,KS
- C
- C FIND NORM OF A USING ONLY UPPER HALF
- C
- C***FIRST EXECUTABLE STATEMENT DSPCO
- J1 = 1
- DO 30 J = 1, N
- Z(J) = DASUM(J,AP(J1),1)
- IJ = J1
- J1 = J1 + J
- JM1 = J - 1
- IF (JM1 .LT. 1) GO TO 20
- DO 10 I = 1, JM1
- Z(I) = Z(I) + ABS(AP(IJ))
- IJ = IJ + 1
- 10 CONTINUE
- 20 CONTINUE
- 30 CONTINUE
- ANORM = 0.0D0
- DO 40 J = 1, N
- ANORM = MAX(ANORM,Z(J))
- 40 CONTINUE
- C
- C FACTOR
- C
- CALL DSPFA(AP,N,KPVT,INFO)
- C
- C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
- C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
- C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
- C GROWTH IN THE ELEMENTS OF W WHERE U*D*W = E .
- C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
- C
- C SOLVE U*D*W = E
- C
- EK = 1.0D0
- DO 50 J = 1, N
- Z(J) = 0.0D0
- 50 CONTINUE
- K = N
- IK = (N*(N - 1))/2
- 60 IF (K .EQ. 0) GO TO 120
- KK = IK + K
- IKM1 = IK - (K - 1)
- KS = 1
- IF (KPVT(K) .LT. 0) KS = 2
- KP = ABS(KPVT(K))
- KPS = K + 1 - KS
- IF (KP .EQ. KPS) GO TO 70
- T = Z(KPS)
- Z(KPS) = Z(KP)
- Z(KP) = T
- 70 CONTINUE
- IF (Z(K) .NE. 0.0D0) EK = SIGN(EK,Z(K))
- Z(K) = Z(K) + EK
- CALL DAXPY(K-KS,Z(K),AP(IK+1),1,Z(1),1)
- IF (KS .EQ. 1) GO TO 80
- IF (Z(K-1) .NE. 0.0D0) EK = SIGN(EK,Z(K-1))
- Z(K-1) = Z(K-1) + EK
- CALL DAXPY(K-KS,Z(K-1),AP(IKM1+1),1,Z(1),1)
- 80 CONTINUE
- IF (KS .EQ. 2) GO TO 100
- IF (ABS(Z(K)) .LE. ABS(AP(KK))) GO TO 90
- S = ABS(AP(KK))/ABS(Z(K))
- CALL DSCAL(N,S,Z,1)
- EK = S*EK
- 90 CONTINUE
- IF (AP(KK) .NE. 0.0D0) Z(K) = Z(K)/AP(KK)
- IF (AP(KK) .EQ. 0.0D0) Z(K) = 1.0D0
- GO TO 110
- 100 CONTINUE
- KM1K = IK + K - 1
- KM1KM1 = IKM1 + K - 1
- AK = AP(KK)/AP(KM1K)
- AKM1 = AP(KM1KM1)/AP(KM1K)
- BK = Z(K)/AP(KM1K)
- BKM1 = Z(K-1)/AP(KM1K)
- DENOM = AK*AKM1 - 1.0D0
- Z(K) = (AKM1*BK - BKM1)/DENOM
- Z(K-1) = (AK*BKM1 - BK)/DENOM
- 110 CONTINUE
- K = K - KS
- IK = IK - K
- IF (KS .EQ. 2) IK = IK - (K + 1)
- GO TO 60
- 120 CONTINUE
- S = 1.0D0/DASUM(N,Z,1)
- CALL DSCAL(N,S,Z,1)
- C
- C SOLVE TRANS(U)*Y = W
- C
- K = 1
- IK = 0
- 130 IF (K .GT. N) GO TO 160
- KS = 1
- IF (KPVT(K) .LT. 0) KS = 2
- IF (K .EQ. 1) GO TO 150
- Z(K) = Z(K) + DDOT(K-1,AP(IK+1),1,Z(1),1)
- IKP1 = IK + K
- IF (KS .EQ. 2)
- 1 Z(K+1) = Z(K+1) + DDOT(K-1,AP(IKP1+1),1,Z(1),1)
- KP = ABS(KPVT(K))
- IF (KP .EQ. K) GO TO 140
- T = Z(K)
- Z(K) = Z(KP)
- Z(KP) = T
- 140 CONTINUE
- 150 CONTINUE
- IK = IK + K
- IF (KS .EQ. 2) IK = IK + (K + 1)
- K = K + KS
- GO TO 130
- 160 CONTINUE
- S = 1.0D0/DASUM(N,Z,1)
- CALL DSCAL(N,S,Z,1)
- C
- YNORM = 1.0D0
- C
- C SOLVE U*D*V = Y
- C
- K = N
- IK = N*(N - 1)/2
- 170 IF (K .EQ. 0) GO TO 230
- KK = IK + K
- IKM1 = IK - (K - 1)
- KS = 1
- IF (KPVT(K) .LT. 0) KS = 2
- IF (K .EQ. KS) GO TO 190
- KP = ABS(KPVT(K))
- KPS = K + 1 - KS
- IF (KP .EQ. KPS) GO TO 180
- T = Z(KPS)
- Z(KPS) = Z(KP)
- Z(KP) = T
- 180 CONTINUE
- CALL DAXPY(K-KS,Z(K),AP(IK+1),1,Z(1),1)
- IF (KS .EQ. 2) CALL DAXPY(K-KS,Z(K-1),AP(IKM1+1),1,Z(1),1)
- 190 CONTINUE
- IF (KS .EQ. 2) GO TO 210
- IF (ABS(Z(K)) .LE. ABS(AP(KK))) GO TO 200
- S = ABS(AP(KK))/ABS(Z(K))
- CALL DSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 200 CONTINUE
- IF (AP(KK) .NE. 0.0D0) Z(K) = Z(K)/AP(KK)
- IF (AP(KK) .EQ. 0.0D0) Z(K) = 1.0D0
- GO TO 220
- 210 CONTINUE
- KM1K = IK + K - 1
- KM1KM1 = IKM1 + K - 1
- AK = AP(KK)/AP(KM1K)
- AKM1 = AP(KM1KM1)/AP(KM1K)
- BK = Z(K)/AP(KM1K)
- BKM1 = Z(K-1)/AP(KM1K)
- DENOM = AK*AKM1 - 1.0D0
- Z(K) = (AKM1*BK - BKM1)/DENOM
- Z(K-1) = (AK*BKM1 - BK)/DENOM
- 220 CONTINUE
- K = K - KS
- IK = IK - K
- IF (KS .EQ. 2) IK = IK - (K + 1)
- GO TO 170
- 230 CONTINUE
- S = 1.0D0/DASUM(N,Z,1)
- CALL DSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- C SOLVE TRANS(U)*Z = V
- C
- K = 1
- IK = 0
- 240 IF (K .GT. N) GO TO 270
- KS = 1
- IF (KPVT(K) .LT. 0) KS = 2
- IF (K .EQ. 1) GO TO 260
- Z(K) = Z(K) + DDOT(K-1,AP(IK+1),1,Z(1),1)
- IKP1 = IK + K
- IF (KS .EQ. 2)
- 1 Z(K+1) = Z(K+1) + DDOT(K-1,AP(IKP1+1),1,Z(1),1)
- KP = ABS(KPVT(K))
- IF (KP .EQ. K) GO TO 250
- T = Z(K)
- Z(K) = Z(KP)
- Z(KP) = T
- 250 CONTINUE
- 260 CONTINUE
- IK = IK + K
- IF (KS .EQ. 2) IK = IK + (K + 1)
- K = K + KS
- GO TO 240
- 270 CONTINUE
- C MAKE ZNORM = 1.0
- S = 1.0D0/DASUM(N,Z,1)
- CALL DSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- IF (ANORM .NE. 0.0D0) RCOND = YNORM/ANORM
- IF (ANORM .EQ. 0.0D0) RCOND = 0.0D0
- RETURN
- END
|