123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- *DECK HQR
- SUBROUTINE HQR (NM, N, LOW, IGH, H, WR, WI, IERR)
- C***BEGIN PROLOGUE HQR
- C***PURPOSE Compute the eigenvalues of a real upper Hessenberg matrix
- C using the QR method.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C2B
- C***TYPE SINGLE PRECISION (HQR-S, COMQR-C)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of the ALGOL procedure HQR,
- C NUM. MATH. 14, 219-231(1970) by Martin, Peters, and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 359-371(1971).
- C
- C This subroutine finds the eigenvalues of a REAL
- C UPPER Hessenberg matrix by the QR method.
- C
- C On INPUT
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameter, H, as declared in the calling program
- C dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrix H. N is an INTEGER variable.
- C N must be less than or equal to NM.
- C
- C LOW and IGH are two INTEGER variables determined by the
- C balancing subroutine BALANC. If BALANC has not been
- C used, set LOW=1 and IGH equal to the order of the matrix, N.
- C
- C H contains the upper Hessenberg matrix. Information about
- C the transformations used in the reduction to Hessenberg
- C form by ELMHES or ORTHES, if performed, is stored
- C in the remaining triangle under the Hessenberg matrix.
- C H is a two-dimensional REAL array, dimensioned H(NM,N).
- C
- C On OUTPUT
- C
- C H has been destroyed. Therefore, it must be saved before
- C calling HQR if subsequent calculation and back
- C transformation of eigenvectors is to be performed.
- C
- C WR and WI contain the real and imaginary parts, respectively,
- C of the eigenvalues. The eigenvalues are unordered except
- C that complex conjugate pairs of values appear consecutively
- C with the eigenvalue having the positive imaginary part first.
- C If an error exit is made, the eigenvalues should be correct
- C for indices IERR+1, IERR+2, ..., N. WR and WI are one-
- C dimensional REAL arrays, dimensioned WR(N) and WI(N).
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C J if the J-th eigenvalue has not been
- C determined after a total of 30*N iterations.
- C The eigenvalues should be correct for indices
- C IERR+1, IERR+2, ..., N.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE HQR
- C
- INTEGER I,J,K,L,M,N,EN,LL,MM,NA,NM,IGH,ITN,ITS,LOW,MP2,ENM2,IERR
- REAL H(NM,*),WR(*),WI(*)
- REAL P,Q,R,S,T,W,X,Y,ZZ,NORM,S1,S2
- LOGICAL NOTLAS
- C
- C***FIRST EXECUTABLE STATEMENT HQR
- IERR = 0
- NORM = 0.0E0
- K = 1
- C .......... STORE ROOTS ISOLATED BY BALANC
- C AND COMPUTE MATRIX NORM ..........
- DO 50 I = 1, N
- C
- DO 40 J = K, N
- 40 NORM = NORM + ABS(H(I,J))
- C
- K = I
- IF (I .GE. LOW .AND. I .LE. IGH) GO TO 50
- WR(I) = H(I,I)
- WI(I) = 0.0E0
- 50 CONTINUE
- C
- EN = IGH
- T = 0.0E0
- ITN = 30*N
- C .......... SEARCH FOR NEXT EIGENVALUES ..........
- 60 IF (EN .LT. LOW) GO TO 1001
- ITS = 0
- NA = EN - 1
- ENM2 = NA - 1
- C .......... LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
- C FOR L=EN STEP -1 UNTIL LOW DO -- ..........
- 70 DO 80 LL = LOW, EN
- L = EN + LOW - LL
- IF (L .EQ. LOW) GO TO 100
- S = ABS(H(L-1,L-1)) + ABS(H(L,L))
- IF (S .EQ. 0.0E0) S = NORM
- S2 = S + ABS(H(L,L-1))
- IF (S2 .EQ. S) GO TO 100
- 80 CONTINUE
- C .......... FORM SHIFT ..........
- 100 X = H(EN,EN)
- IF (L .EQ. EN) GO TO 270
- Y = H(NA,NA)
- W = H(EN,NA) * H(NA,EN)
- IF (L .EQ. NA) GO TO 280
- IF (ITN .EQ. 0) GO TO 1000
- IF (ITS .NE. 10 .AND. ITS .NE. 20) GO TO 130
- C .......... FORM EXCEPTIONAL SHIFT ..........
- T = T + X
- C
- DO 120 I = LOW, EN
- 120 H(I,I) = H(I,I) - X
- C
- S = ABS(H(EN,NA)) + ABS(H(NA,ENM2))
- X = 0.75E0 * S
- Y = X
- W = -0.4375E0 * S * S
- 130 ITS = ITS + 1
- ITN = ITN - 1
- C .......... LOOK FOR TWO CONSECUTIVE SMALL
- C SUB-DIAGONAL ELEMENTS.
- C FOR M=EN-2 STEP -1 UNTIL L DO -- ..........
- DO 140 MM = L, ENM2
- M = ENM2 + L - MM
- ZZ = H(M,M)
- R = X - ZZ
- S = Y - ZZ
- P = (R * S - W) / H(M+1,M) + H(M,M+1)
- Q = H(M+1,M+1) - ZZ - R - S
- R = H(M+2,M+1)
- S = ABS(P) + ABS(Q) + ABS(R)
- P = P / S
- Q = Q / S
- R = R / S
- IF (M .EQ. L) GO TO 150
- S1 = ABS(P) * (ABS(H(M-1,M-1)) + ABS(ZZ) + ABS(H(M+1,M+1)))
- S2 = S1 + ABS(H(M,M-1)) * (ABS(Q) + ABS(R))
- IF (S2 .EQ. S1) GO TO 150
- 140 CONTINUE
- C
- 150 MP2 = M + 2
- C
- DO 160 I = MP2, EN
- H(I,I-2) = 0.0E0
- IF (I .EQ. MP2) GO TO 160
- H(I,I-3) = 0.0E0
- 160 CONTINUE
- C .......... DOUBLE QR STEP INVOLVING ROWS L TO EN AND
- C COLUMNS M TO EN ..........
- DO 260 K = M, NA
- NOTLAS = K .NE. NA
- IF (K .EQ. M) GO TO 170
- P = H(K,K-1)
- Q = H(K+1,K-1)
- R = 0.0E0
- IF (NOTLAS) R = H(K+2,K-1)
- X = ABS(P) + ABS(Q) + ABS(R)
- IF (X .EQ. 0.0E0) GO TO 260
- P = P / X
- Q = Q / X
- R = R / X
- 170 S = SIGN(SQRT(P*P+Q*Q+R*R),P)
- IF (K .EQ. M) GO TO 180
- H(K,K-1) = -S * X
- GO TO 190
- 180 IF (L .NE. M) H(K,K-1) = -H(K,K-1)
- 190 P = P + S
- X = P / S
- Y = Q / S
- ZZ = R / S
- Q = Q / P
- R = R / P
- C .......... ROW MODIFICATION ..........
- DO 210 J = K, EN
- P = H(K,J) + Q * H(K+1,J)
- IF (.NOT. NOTLAS) GO TO 200
- P = P + R * H(K+2,J)
- H(K+2,J) = H(K+2,J) - P * ZZ
- 200 H(K+1,J) = H(K+1,J) - P * Y
- H(K,J) = H(K,J) - P * X
- 210 CONTINUE
- C
- J = MIN(EN,K+3)
- C .......... COLUMN MODIFICATION ..........
- DO 230 I = L, J
- P = X * H(I,K) + Y * H(I,K+1)
- IF (.NOT. NOTLAS) GO TO 220
- P = P + ZZ * H(I,K+2)
- H(I,K+2) = H(I,K+2) - P * R
- 220 H(I,K+1) = H(I,K+1) - P * Q
- H(I,K) = H(I,K) - P
- 230 CONTINUE
- C
- 260 CONTINUE
- C
- GO TO 70
- C .......... ONE ROOT FOUND ..........
- 270 WR(EN) = X + T
- WI(EN) = 0.0E0
- EN = NA
- GO TO 60
- C .......... TWO ROOTS FOUND ..........
- 280 P = (Y - X) / 2.0E0
- Q = P * P + W
- ZZ = SQRT(ABS(Q))
- X = X + T
- IF (Q .LT. 0.0E0) GO TO 320
- C .......... REAL PAIR ..........
- ZZ = P + SIGN(ZZ,P)
- WR(NA) = X + ZZ
- WR(EN) = WR(NA)
- IF (ZZ .NE. 0.0E0) WR(EN) = X - W / ZZ
- WI(NA) = 0.0E0
- WI(EN) = 0.0E0
- GO TO 330
- C .......... COMPLEX PAIR ..........
- 320 WR(NA) = X + P
- WR(EN) = X + P
- WI(NA) = ZZ
- WI(EN) = -ZZ
- 330 EN = ENM2
- GO TO 60
- C .......... SET ERROR -- NO CONVERGENCE TO AN
- C EIGENVALUE AFTER 30*N ITERATIONS ..........
- 1000 IERR = EN
- 1001 RETURN
- END
|