123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- *DECK IMTQL2
- SUBROUTINE IMTQL2 (NM, N, D, E, Z, IERR)
- C***BEGIN PROLOGUE IMTQL2
- C***PURPOSE Compute the eigenvalues and eigenvectors of a symmetric
- C tridiagonal matrix using the implicit QL method.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4A5, D4C2A
- C***TYPE SINGLE PRECISION (IMTQL2-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of the ALGOL procedure IMTQL2,
- C NUM. MATH. 12, 377-383(1968) by Martin and Wilkinson,
- C as modified in NUM. MATH. 15, 450(1970) by Dubrulle.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 241-248(1971).
- C
- C This subroutine finds the eigenvalues and eigenvectors
- C of a SYMMETRIC TRIDIAGONAL matrix by the implicit QL method.
- C The eigenvectors of a FULL SYMMETRIC matrix can also
- C be found if TRED2 has been used to reduce this
- C full matrix to tridiagonal form.
- C
- C On INPUT
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameter, Z, as declared in the calling program
- C dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrix. N is an INTEGER variable.
- C N must be less than or equal to NM.
- C
- C D contains the diagonal elements of the symmetric tridiagonal
- C matrix. D is a one-dimensional REAL array, dimensioned D(N).
- C
- C E contains the subdiagonal elements of the symmetric
- C tridiagonal matrix in its last N-1 positions. E(1) is
- C arbitrary. E is a one-dimensional REAL array, dimensioned
- C E(N).
- C
- C Z contains the transformation matrix produced in the reduction
- C by TRED2, if performed. This transformation matrix is
- C necessary if you want to obtain the eigenvectors of the full
- C symmetric matrix. If the eigenvectors of the symmetric
- C tridiagonal matrix are desired, Z must contain the identity
- C matrix. Z is a two-dimensional REAL array, dimensioned
- C Z(NM,N).
- C
- C On OUTPUT
- C
- C D contains the eigenvalues in ascending order. If an
- C error exit is made, the eigenvalues are correct but
- C unordered for indices 1, 2, ..., IERR-1.
- C
- C E has been destroyed.
- C
- C Z contains orthonormal eigenvectors of the full symmetric
- C or symmetric tridiagonal matrix, depending on what it
- C contained on input. If an error exit is made, Z contains
- C the eigenvectors associated with the stored eigenvalues.
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C J if the J-th eigenvalue has not been
- C determined after 30 iterations.
- C The eigenvalues and eigenvectors should be correct
- C for indices 1, 2, ..., IERR-1, but the eigenvalues
- C are not ordered.
- C
- C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED PYTHAG
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE IMTQL2
- C
- INTEGER I,J,K,L,M,N,II,NM,MML,IERR
- REAL D(*),E(*),Z(NM,*)
- REAL B,C,F,G,P,R,S,S1,S2
- REAL PYTHAG
- C
- C***FIRST EXECUTABLE STATEMENT IMTQL2
- IERR = 0
- IF (N .EQ. 1) GO TO 1001
- C
- DO 100 I = 2, N
- 100 E(I-1) = E(I)
- C
- E(N) = 0.0E0
- C
- DO 240 L = 1, N
- J = 0
- C .......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT ..........
- 105 DO 110 M = L, N
- IF (M .EQ. N) GO TO 120
- S1 = ABS(D(M)) + ABS(D(M+1))
- S2 = S1 + ABS(E(M))
- IF (S2 .EQ. S1) GO TO 120
- 110 CONTINUE
- C
- 120 P = D(L)
- IF (M .EQ. L) GO TO 240
- IF (J .EQ. 30) GO TO 1000
- J = J + 1
- C .......... FORM SHIFT ..........
- G = (D(L+1) - P) / (2.0E0 * E(L))
- R = PYTHAG(G,1.0E0)
- G = D(M) - P + E(L) / (G + SIGN(R,G))
- S = 1.0E0
- C = 1.0E0
- P = 0.0E0
- MML = M - L
- C .......... FOR I=M-1 STEP -1 UNTIL L DO -- ..........
- DO 200 II = 1, MML
- I = M - II
- F = S * E(I)
- B = C * E(I)
- IF (ABS(F) .LT. ABS(G)) GO TO 150
- C = G / F
- R = SQRT(C*C+1.0E0)
- E(I+1) = F * R
- S = 1.0E0 / R
- C = C * S
- GO TO 160
- 150 S = F / G
- R = SQRT(S*S+1.0E0)
- E(I+1) = G * R
- C = 1.0E0 / R
- S = S * C
- 160 G = D(I+1) - P
- R = (D(I) - G) * S + 2.0E0 * C * B
- P = S * R
- D(I+1) = G + P
- G = C * R - B
- C .......... FORM VECTOR ..........
- DO 180 K = 1, N
- F = Z(K,I+1)
- Z(K,I+1) = S * Z(K,I) + C * F
- Z(K,I) = C * Z(K,I) - S * F
- 180 CONTINUE
- C
- 200 CONTINUE
- C
- D(L) = D(L) - P
- E(L) = G
- E(M) = 0.0E0
- GO TO 105
- 240 CONTINUE
- C .......... ORDER EIGENVALUES AND EIGENVECTORS ..........
- DO 300 II = 2, N
- I = II - 1
- K = I
- P = D(I)
- C
- DO 260 J = II, N
- IF (D(J) .GE. P) GO TO 260
- K = J
- P = D(J)
- 260 CONTINUE
- C
- IF (K .EQ. I) GO TO 300
- D(K) = D(I)
- D(I) = P
- C
- DO 280 J = 1, N
- P = Z(J,I)
- Z(J,I) = Z(J,K)
- Z(J,K) = P
- 280 CONTINUE
- C
- 300 CONTINUE
- C
- GO TO 1001
- C .......... SET ERROR -- NO CONVERGENCE TO AN
- C EIGENVALUE AFTER 30 ITERATIONS ..........
- 1000 IERR = L
- 1001 RETURN
- END
|