123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 |
- *DECK QZVEC
- SUBROUTINE QZVEC (NM, N, A, B, ALFR, ALFI, BETA, Z)
- C***BEGIN PROLOGUE QZVEC
- C***PURPOSE The optional fourth step of the QZ algorithm for
- C generalized eigenproblems. Accepts a matrix in
- C quasi-triangular form and another in upper triangular
- C and computes the eigenvectors of the triangular problem
- C and transforms them back to the original coordinates
- C Usually preceded by QZHES, QZIT, and QZVAL.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C3
- C***TYPE SINGLE PRECISION (QZVEC-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is the optional fourth step of the QZ algorithm
- C for solving generalized matrix eigenvalue problems,
- C SIAM J. NUMER. ANAL. 10, 241-256(1973) by MOLER and STEWART.
- C
- C This subroutine accepts a pair of REAL matrices, one of them in
- C quasi-triangular form (in which each 2-by-2 block corresponds to
- C a pair of complex eigenvalues) and the other in upper triangular
- C form. It computes the eigenvectors of the triangular problem and
- C transforms the results back to the original coordinate system.
- C It is usually preceded by QZHES, QZIT, and QZVAL.
- C
- C On Input
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, A, B, and Z, as declared in the calling
- C program dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrices A and B. N is an INTEGER
- C variable. N must be less than or equal to NM.
- C
- C A contains a real upper quasi-triangular matrix. A is a two-
- C dimensional REAL array, dimensioned A(NM,N).
- C
- C B contains a real upper triangular matrix. In addition,
- C location B(N,1) contains the tolerance quantity (EPSB)
- C computed and saved in QZIT. B is a two-dimensional REAL
- C array, dimensioned B(NM,N).
- C
- C ALFR, ALFI, and BETA are one-dimensional REAL arrays with
- C components whose ratios ((ALFR+I*ALFI)/BETA) are the
- C generalized eigenvalues. They are usually obtained from
- C QZVAL. They are dimensioned ALFR(N), ALFI(N), and BETA(N).
- C
- C Z contains the transformation matrix produced in the reductions
- C by QZHES, QZIT, and QZVAL, if performed. If the
- C eigenvectors of the triangular problem are desired, Z must
- C contain the identity matrix. Z is a two-dimensional REAL
- C array, dimensioned Z(NM,N).
- C
- C On Output
- C
- C A is unaltered. Its subdiagonal elements provide information
- C about the storage of the complex eigenvectors.
- C
- C B has been destroyed.
- C
- C ALFR, ALFI, and BETA are unaltered.
- C
- C Z contains the real and imaginary parts of the eigenvectors.
- C If ALFI(J) .EQ. 0.0, the J-th eigenvalue is real and
- C the J-th column of Z contains its eigenvector.
- C If ALFI(J) .NE. 0.0, the J-th eigenvalue is complex.
- C If ALFI(J) .GT. 0.0, the eigenvalue is the first of
- C a complex pair and the J-th and (J+1)-th columns
- C of Z contain its eigenvector.
- C If ALFI(J) .LT. 0.0, the eigenvalue is the second of
- C a complex pair and the (J-1)-th and J-th columns
- C of Z contain the conjugate of its eigenvector.
- C Each eigenvector is normalized so that the modulus
- C of its largest component is 1.0 .
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE QZVEC
- C
- INTEGER I,J,K,M,N,EN,II,JJ,NA,NM,NN,ISW,ENM2
- REAL A(NM,*),B(NM,*),ALFR(*),ALFI(*),BETA(*),Z(NM,*)
- REAL D,Q,R,S,T,W,X,Y,DI,DR,RA,RR,SA,TI,TR,T1,T2
- REAL W1,X1,ZZ,Z1,ALFM,ALMI,ALMR,BETM,EPSB
- C
- C***FIRST EXECUTABLE STATEMENT QZVEC
- EPSB = B(N,1)
- ISW = 1
- C .......... FOR EN=N STEP -1 UNTIL 1 DO -- ..........
- DO 800 NN = 1, N
- EN = N + 1 - NN
- NA = EN - 1
- IF (ISW .EQ. 2) GO TO 795
- IF (ALFI(EN) .NE. 0.0E0) GO TO 710
- C .......... REAL VECTOR ..........
- M = EN
- B(EN,EN) = 1.0E0
- IF (NA .EQ. 0) GO TO 800
- ALFM = ALFR(M)
- BETM = BETA(M)
- C .......... FOR I=EN-1 STEP -1 UNTIL 1 DO -- ..........
- DO 700 II = 1, NA
- I = EN - II
- W = BETM * A(I,I) - ALFM * B(I,I)
- R = 0.0E0
- C
- DO 610 J = M, EN
- 610 R = R + (BETM * A(I,J) - ALFM * B(I,J)) * B(J,EN)
- C
- IF (I .EQ. 1 .OR. ISW .EQ. 2) GO TO 630
- IF (BETM * A(I,I-1) .EQ. 0.0E0) GO TO 630
- ZZ = W
- S = R
- GO TO 690
- 630 M = I
- IF (ISW .EQ. 2) GO TO 640
- C .......... REAL 1-BY-1 BLOCK ..........
- T = W
- IF (W .EQ. 0.0E0) T = EPSB
- B(I,EN) = -R / T
- GO TO 700
- C .......... REAL 2-BY-2 BLOCK ..........
- 640 X = BETM * A(I,I+1) - ALFM * B(I,I+1)
- Y = BETM * A(I+1,I)
- Q = W * ZZ - X * Y
- T = (X * S - ZZ * R) / Q
- B(I,EN) = T
- IF (ABS(X) .LE. ABS(ZZ)) GO TO 650
- B(I+1,EN) = (-R - W * T) / X
- GO TO 690
- 650 B(I+1,EN) = (-S - Y * T) / ZZ
- 690 ISW = 3 - ISW
- 700 CONTINUE
- C .......... END REAL VECTOR ..........
- GO TO 800
- C .......... COMPLEX VECTOR ..........
- 710 M = NA
- ALMR = ALFR(M)
- ALMI = ALFI(M)
- BETM = BETA(M)
- C .......... LAST VECTOR COMPONENT CHOSEN IMAGINARY SO THAT
- C EIGENVECTOR MATRIX IS TRIANGULAR ..........
- Y = BETM * A(EN,NA)
- B(NA,NA) = -ALMI * B(EN,EN) / Y
- B(NA,EN) = (ALMR * B(EN,EN) - BETM * A(EN,EN)) / Y
- B(EN,NA) = 0.0E0
- B(EN,EN) = 1.0E0
- ENM2 = NA - 1
- IF (ENM2 .EQ. 0) GO TO 795
- C .......... FOR I=EN-2 STEP -1 UNTIL 1 DO -- ..........
- DO 790 II = 1, ENM2
- I = NA - II
- W = BETM * A(I,I) - ALMR * B(I,I)
- W1 = -ALMI * B(I,I)
- RA = 0.0E0
- SA = 0.0E0
- C
- DO 760 J = M, EN
- X = BETM * A(I,J) - ALMR * B(I,J)
- X1 = -ALMI * B(I,J)
- RA = RA + X * B(J,NA) - X1 * B(J,EN)
- SA = SA + X * B(J,EN) + X1 * B(J,NA)
- 760 CONTINUE
- C
- IF (I .EQ. 1 .OR. ISW .EQ. 2) GO TO 770
- IF (BETM * A(I,I-1) .EQ. 0.0E0) GO TO 770
- ZZ = W
- Z1 = W1
- R = RA
- S = SA
- ISW = 2
- GO TO 790
- 770 M = I
- IF (ISW .EQ. 2) GO TO 780
- C .......... COMPLEX 1-BY-1 BLOCK ..........
- TR = -RA
- TI = -SA
- 773 DR = W
- DI = W1
- C .......... COMPLEX DIVIDE (T1,T2) = (TR,TI) / (DR,DI) ..........
- 775 IF (ABS(DI) .GT. ABS(DR)) GO TO 777
- RR = DI / DR
- D = DR + DI * RR
- T1 = (TR + TI * RR) / D
- T2 = (TI - TR * RR) / D
- GO TO (787,782), ISW
- 777 RR = DR / DI
- D = DR * RR + DI
- T1 = (TR * RR + TI) / D
- T2 = (TI * RR - TR) / D
- GO TO (787,782), ISW
- C .......... COMPLEX 2-BY-2 BLOCK ..........
- 780 X = BETM * A(I,I+1) - ALMR * B(I,I+1)
- X1 = -ALMI * B(I,I+1)
- Y = BETM * A(I+1,I)
- TR = Y * RA - W * R + W1 * S
- TI = Y * SA - W * S - W1 * R
- DR = W * ZZ - W1 * Z1 - X * Y
- DI = W * Z1 + W1 * ZZ - X1 * Y
- IF (DR .EQ. 0.0E0 .AND. DI .EQ. 0.0E0) DR = EPSB
- GO TO 775
- 782 B(I+1,NA) = T1
- B(I+1,EN) = T2
- ISW = 1
- IF (ABS(Y) .GT. ABS(W) + ABS(W1)) GO TO 785
- TR = -RA - X * B(I+1,NA) + X1 * B(I+1,EN)
- TI = -SA - X * B(I+1,EN) - X1 * B(I+1,NA)
- GO TO 773
- 785 T1 = (-R - ZZ * B(I+1,NA) + Z1 * B(I+1,EN)) / Y
- T2 = (-S - ZZ * B(I+1,EN) - Z1 * B(I+1,NA)) / Y
- 787 B(I,NA) = T1
- B(I,EN) = T2
- 790 CONTINUE
- C .......... END COMPLEX VECTOR ..........
- 795 ISW = 3 - ISW
- 800 CONTINUE
- C .......... END BACK SUBSTITUTION.
- C TRANSFORM TO ORIGINAL COORDINATE SYSTEM.
- C FOR J=N STEP -1 UNTIL 1 DO -- ..........
- DO 880 JJ = 1, N
- J = N + 1 - JJ
- C
- DO 880 I = 1, N
- ZZ = 0.0E0
- C
- DO 860 K = 1, J
- 860 ZZ = ZZ + Z(I,K) * B(K,J)
- C
- Z(I,J) = ZZ
- 880 CONTINUE
- C .......... NORMALIZE SO THAT MODULUS OF LARGEST
- C COMPONENT OF EACH VECTOR IS 1.
- C (ISW IS 1 INITIALLY FROM BEFORE) ..........
- DO 950 J = 1, N
- D = 0.0E0
- IF (ISW .EQ. 2) GO TO 920
- IF (ALFI(J) .NE. 0.0E0) GO TO 945
- C
- DO 890 I = 1, N
- IF (ABS(Z(I,J)) .GT. D) D = ABS(Z(I,J))
- 890 CONTINUE
- C
- DO 900 I = 1, N
- 900 Z(I,J) = Z(I,J) / D
- C
- GO TO 950
- C
- 920 DO 930 I = 1, N
- R = ABS(Z(I,J-1)) + ABS(Z(I,J))
- IF (R .NE. 0.0E0) R = R * SQRT((Z(I,J-1)/R)**2
- 1 +(Z(I,J)/R)**2)
- IF (R .GT. D) D = R
- 930 CONTINUE
- C
- DO 940 I = 1, N
- Z(I,J-1) = Z(I,J-1) / D
- Z(I,J) = Z(I,J) / D
- 940 CONTINUE
- C
- 945 ISW = 3 - ISW
- 950 CONTINUE
- C
- RETURN
- END
|