123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- *DECK RADF5
- SUBROUTINE RADF5 (IDO, L1, CC, CH, WA1, WA2, WA3, WA4)
- C***BEGIN PROLOGUE RADF5
- C***SUBSIDIARY
- C***PURPOSE Calculate the fast Fourier transform of subvectors of
- C length five.
- C***LIBRARY SLATEC (FFTPACK)
- C***TYPE SINGLE PRECISION (RADF5-S)
- C***AUTHOR Swarztrauber, P. N., (NCAR)
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 790601 DATE WRITTEN
- C 830401 Modified to use SLATEC library source file format.
- C 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
- C (a) changing dummy array size declarations (1) to (*),
- C (b) changing definition of variables PI, TI11, TI12,
- C TR11, TR12 by using FORTRAN intrinsic functions ATAN
- C and SIN instead of DATA statements.
- C 881128 Modified by Dick Valent to meet prologue standards.
- C 890831 Modified array declarations. (WRB)
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900402 Added TYPE section. (WRB)
- C***END PROLOGUE RADF5
- DIMENSION CC(IDO,L1,5), CH(IDO,5,*), WA1(*), WA2(*), WA3(*),
- + WA4(*)
- C***FIRST EXECUTABLE STATEMENT RADF5
- PI = 4.*ATAN(1.)
- TR11 = SIN(.1*PI)
- TI11 = SIN(.4*PI)
- TR12 = -SIN(.3*PI)
- TI12 = SIN(.2*PI)
- DO 101 K=1,L1
- CR2 = CC(1,K,5)+CC(1,K,2)
- CI5 = CC(1,K,5)-CC(1,K,2)
- CR3 = CC(1,K,4)+CC(1,K,3)
- CI4 = CC(1,K,4)-CC(1,K,3)
- CH(1,1,K) = CC(1,K,1)+CR2+CR3
- CH(IDO,2,K) = CC(1,K,1)+TR11*CR2+TR12*CR3
- CH(1,3,K) = TI11*CI5+TI12*CI4
- CH(IDO,4,K) = CC(1,K,1)+TR12*CR2+TR11*CR3
- CH(1,5,K) = TI12*CI5-TI11*CI4
- 101 CONTINUE
- IF (IDO .EQ. 1) RETURN
- IDP2 = IDO+2
- IF((IDO-1)/2.LT.L1) GO TO 104
- DO 103 K=1,L1
- CDIR$ IVDEP
- DO 102 I=3,IDO,2
- IC = IDP2-I
- DR2 = WA1(I-2)*CC(I-1,K,2)+WA1(I-1)*CC(I,K,2)
- DI2 = WA1(I-2)*CC(I,K,2)-WA1(I-1)*CC(I-1,K,2)
- DR3 = WA2(I-2)*CC(I-1,K,3)+WA2(I-1)*CC(I,K,3)
- DI3 = WA2(I-2)*CC(I,K,3)-WA2(I-1)*CC(I-1,K,3)
- DR4 = WA3(I-2)*CC(I-1,K,4)+WA3(I-1)*CC(I,K,4)
- DI4 = WA3(I-2)*CC(I,K,4)-WA3(I-1)*CC(I-1,K,4)
- DR5 = WA4(I-2)*CC(I-1,K,5)+WA4(I-1)*CC(I,K,5)
- DI5 = WA4(I-2)*CC(I,K,5)-WA4(I-1)*CC(I-1,K,5)
- CR2 = DR2+DR5
- CI5 = DR5-DR2
- CR5 = DI2-DI5
- CI2 = DI2+DI5
- CR3 = DR3+DR4
- CI4 = DR4-DR3
- CR4 = DI3-DI4
- CI3 = DI3+DI4
- CH(I-1,1,K) = CC(I-1,K,1)+CR2+CR3
- CH(I,1,K) = CC(I,K,1)+CI2+CI3
- TR2 = CC(I-1,K,1)+TR11*CR2+TR12*CR3
- TI2 = CC(I,K,1)+TR11*CI2+TR12*CI3
- TR3 = CC(I-1,K,1)+TR12*CR2+TR11*CR3
- TI3 = CC(I,K,1)+TR12*CI2+TR11*CI3
- TR5 = TI11*CR5+TI12*CR4
- TI5 = TI11*CI5+TI12*CI4
- TR4 = TI12*CR5-TI11*CR4
- TI4 = TI12*CI5-TI11*CI4
- CH(I-1,3,K) = TR2+TR5
- CH(IC-1,2,K) = TR2-TR5
- CH(I,3,K) = TI2+TI5
- CH(IC,2,K) = TI5-TI2
- CH(I-1,5,K) = TR3+TR4
- CH(IC-1,4,K) = TR3-TR4
- CH(I,5,K) = TI3+TI4
- CH(IC,4,K) = TI4-TI3
- 102 CONTINUE
- 103 CONTINUE
- RETURN
- 104 DO 106 I=3,IDO,2
- IC = IDP2-I
- CDIR$ IVDEP
- DO 105 K=1,L1
- DR2 = WA1(I-2)*CC(I-1,K,2)+WA1(I-1)*CC(I,K,2)
- DI2 = WA1(I-2)*CC(I,K,2)-WA1(I-1)*CC(I-1,K,2)
- DR3 = WA2(I-2)*CC(I-1,K,3)+WA2(I-1)*CC(I,K,3)
- DI3 = WA2(I-2)*CC(I,K,3)-WA2(I-1)*CC(I-1,K,3)
- DR4 = WA3(I-2)*CC(I-1,K,4)+WA3(I-1)*CC(I,K,4)
- DI4 = WA3(I-2)*CC(I,K,4)-WA3(I-1)*CC(I-1,K,4)
- DR5 = WA4(I-2)*CC(I-1,K,5)+WA4(I-1)*CC(I,K,5)
- DI5 = WA4(I-2)*CC(I,K,5)-WA4(I-1)*CC(I-1,K,5)
- CR2 = DR2+DR5
- CI5 = DR5-DR2
- CR5 = DI2-DI5
- CI2 = DI2+DI5
- CR3 = DR3+DR4
- CI4 = DR4-DR3
- CR4 = DI3-DI4
- CI3 = DI3+DI4
- CH(I-1,1,K) = CC(I-1,K,1)+CR2+CR3
- CH(I,1,K) = CC(I,K,1)+CI2+CI3
- TR2 = CC(I-1,K,1)+TR11*CR2+TR12*CR3
- TI2 = CC(I,K,1)+TR11*CI2+TR12*CI3
- TR3 = CC(I-1,K,1)+TR12*CR2+TR11*CR3
- TI3 = CC(I,K,1)+TR12*CI2+TR11*CI3
- TR5 = TI11*CR5+TI12*CR4
- TI5 = TI11*CI5+TI12*CI4
- TR4 = TI12*CR5-TI11*CR4
- TI4 = TI12*CI5-TI11*CI4
- CH(I-1,3,K) = TR2+TR5
- CH(IC-1,2,K) = TR2-TR5
- CH(I,3,K) = TI2+TI5
- CH(IC,2,K) = TI5-TI2
- CH(I-1,5,K) = TR3+TR4
- CH(IC-1,4,K) = TR3-TR4
- CH(I,5,K) = TI3+TI4
- CH(IC,4,K) = TI4-TI3
- 105 CONTINUE
- 106 CONTINUE
- RETURN
- END
|