123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- *DECK SNBFA
- SUBROUTINE SNBFA (ABE, LDA, N, ML, MU, IPVT, INFO)
- C***BEGIN PROLOGUE SNBFA
- C***PURPOSE Factor a real band matrix by elimination.
- C***LIBRARY SLATEC
- C***CATEGORY D2A2
- C***TYPE SINGLE PRECISION (SNBFA-S, DNBFA-D, CNBFA-C)
- C***KEYWORDS BANDED, LINEAR EQUATIONS, MATRIX FACTORIZATION,
- C NONSYMMETRIC
- C***AUTHOR Voorhees, E. A., (LANL)
- C***DESCRIPTION
- C
- C SNBFA factors a real band matrix by elimination.
- C
- C SNBFA is usually called by SNBCO, but it can be called
- C directly with a saving in time if RCOND is not needed.
- C
- C On Entry
- C
- C ABE REAL(LDA, NC)
- C contains the matrix in band storage. The rows
- C of the original matrix are stored in the rows
- C of ABE and the diagonals of the original matrix
- C are stored in columns 1 through ML+MU+1 of ABE.
- C NC must be .GE. 2*ML+MU+1 .
- C See the comments below for details.
- C
- C LDA INTEGER
- C the leading dimension of the array ABE.
- C LDA must be .GE. N .
- C
- C N INTEGER
- C the order of the original matrix.
- C
- C ML INTEGER
- C number of diagonals below the main diagonal.
- C 0 .LE. ML .LT. N .
- C
- C MU INTEGER
- C number of diagonals above the main diagonal.
- C 0 .LE. MU .LT. N .
- C More efficient if ML .LE. MU .
- C
- C On Return
- C
- C ABE an upper triangular matrix in band storage
- C and the multipliers which were used to obtain it.
- C The factorization can be written A = L*U , where
- C L is a product of permutation and unit lower
- C triangular matrices and U is upper triangular.
- C
- C IPVT INTEGER(N)
- C an integer vector of pivot indices.
- C
- C INFO INTEGER
- C =0 normal value
- C =K if U(K,K) .EQ. 0.0 . This is not an error
- C condition for this subroutine, but it does
- C indicate that SNBSL will divide by zero if
- C called. Use RCOND in SNBCO for a reliable
- C indication of singularity.
- C
- C Band Storage
- C
- C If A is a band matrix, the following program segment
- C will set up the input.
- C
- C ML = (band width below the diagonal)
- C MU = (band width above the diagonal)
- C DO 20 I = 1, N
- C J1 = MAX(1, I-ML)
- C J2 = MIN(N, I+MU)
- C DO 10 J = J1, J2
- C K = J - I + ML + 1
- C ABE(I,K) = A(I,J)
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C This uses columns 1 through ML+MU+1 of ABE .
- C Furthermore, ML additional columns are needed in
- C ABE starting with column ML+MU+2 for elements
- C generated during the triangularization. The total
- C number of columns needed in ABE is 2*ML+MU+1 .
- C
- C Example: If the original matrix is
- C
- C 11 12 13 0 0 0
- C 21 22 23 24 0 0
- C 0 32 33 34 35 0
- C 0 0 43 44 45 46
- C 0 0 0 54 55 56
- C 0 0 0 0 65 66
- C
- C then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain
- C
- C * 11 12 13 + , * = not used
- C 21 22 23 24 + , + = used for pivoting
- C 32 33 34 35 +
- C 43 44 45 46 +
- C 54 55 56 * +
- C 65 66 * * +
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED ISAMAX, SAXPY, SSCAL, SSWAP
- C***REVISION HISTORY (YYMMDD)
- C 800606 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE SNBFA
- INTEGER LDA,N,ML,MU,IPVT(*),INFO
- REAL ABE(LDA,*)
- C
- INTEGER ML1,MB,M,N1,LDB,I,J,K,L,LM,LM1,LM2,MP,ISAMAX
- REAL T
- C***FIRST EXECUTABLE STATEMENT SNBFA
- ML1=ML+1
- MB=ML+MU
- M=ML+MU+1
- N1=N-1
- LDB=LDA-1
- INFO=0
- C
- C SET FILL-IN COLUMNS TO ZERO
- C
- IF(N.LE.1)GO TO 50
- IF(ML.LE.0)GO TO 7
- DO 6 J=1,ML
- DO 5 I=1,N
- ABE(I,M+J)=0.0E0
- 5 CONTINUE
- 6 CONTINUE
- 7 CONTINUE
- C
- C GAUSSIAN ELIMINATION WITH PARTIAL ELIMINATION
- C
- DO 40 K=1,N1
- LM=MIN(N-K,ML)
- LM1=LM+1
- LM2=ML1-LM
- C
- C SEARCH FOR PIVOT INDEX
- C
- L=-ISAMAX(LM1,ABE(LM+K,LM2),LDB)+LM1+K
- IPVT(K)=L
- MP=MIN(MB,N-K)
- C
- C SWAP ROWS IF NECESSARY
- C
- IF(L.NE.K)CALL SSWAP(MP+1,ABE(K,ML1),LDA,ABE(L,ML1+K-L),LDA)
- C
- C SKIP COLUMN REDUCTION IF PIVOT IS ZERO
- C
- IF(ABE(K,ML1).EQ.0.0E0) GO TO 20
- C
- C COMPUTE MULTIPLIERS
- C
- T=-1.0/ABE(K,ML1)
- CALL SSCAL(LM,T,ABE(LM+K,LM2),LDB)
- C
- C ROW ELIMINATION WITH COLUMN INDEXING
- C
- DO 10 J=1,MP
- CALL SAXPY (LM,ABE(K,ML1+J),ABE(LM+K,LM2),LDB,ABE(LM+K,LM2+J),
- 1 LDB)
- 10 CONTINUE
- GO TO 30
- 20 CONTINUE
- INFO=K
- 30 CONTINUE
- 40 CONTINUE
- 50 CONTINUE
- IPVT(N)=N
- IF(ABE(N,ML1).EQ.0.0E0) INFO=N
- RETURN
- END
|