1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098 |
-
-
-
- SLATEC Common Mathematical Library
-
- Version 4.1
-
- Table of Contents
-
-
- This table of contents of the SLATEC Common Mathematical Library (CML) has
- three sections.
-
- Section I contains the names and purposes of all user-callable CML routines,
- arranged by GAMS category. Those unfamiliar with the GAMS scheme should
- consult the document "Guide to the SLATEC Common Mathematical Library". The
- current library has routines in the following GAMS major categories:
-
- A. Arithmetic, error analysis
- C. Elementary and special functions (search also class L5)
- D. Linear Algebra
- E. Interpolation
- F. Solution of nonlinear equations
- G. Optimization (search also classes K, L8)
- H. Differentiation, integration
- I. Differential and integral equations
- J. Integral transforms
- K. Approximation (search also class L8)
- L. Statistics, probability
- N. Data handling (search also class L2)
- R. Service routines
- Z. Other
-
- The library contains routines which operate on different types of data but
- which are otherwise equivalent. The names of equivalent routines are listed
- vertically before the purpose. Immediately after each name is a hyphen (-)
- and one of the alphabetic characters S, D, C, I, H, L, or A, where
- S indicates a single precision routine, D double precision, C complex,
- I integer, H character, L logical, and A is a pseudo-type given to routines
- that could not reasonably be converted to some other type.
-
- Section II contains the names and purposes of all subsidiary CML routines,
- arranged in alphabetical order. Usually these routines are not referenced
- directly by library users. They are listed here so that users will be able
- to avoid duplicating names that are used by the CML and for the benefit of
- programmers who may be able to use them in the construction of new routines
- for the library.
-
- Section III is an alphabetical list of every routine in the CML and the
- categories to which the routine is assigned. Every user-callable routine
- has at least one category. An asterisk (*) immediately preceding a routine
- name indicates a subsidiary routine.
-
-
- SECTION I. User-callable Routines
-
- A. Arithmetic, error analysis
- A3. Real
- A3D. Extended range
-
- XADD-S To provide single-precision floating-point arithmetic
- DXADD-D with an extended exponent range.
-
- XADJ-S To provide single-precision floating-point arithmetic
- DXADJ-D with an extended exponent range.
-
- XC210-S To provide single-precision floating-point arithmetic
- DXC210-D with an extended exponent range.
-
- XCON-S To provide single-precision floating-point arithmetic
- DXCON-D with an extended exponent range.
-
- XRED-S To provide single-precision floating-point arithmetic
- DXRED-D with an extended exponent range.
-
- XSET-S To provide single-precision floating-point arithmetic
- DXSET-D with an extended exponent range.
-
- A4. Complex
- A4A. Single precision
-
- CARG-C Compute the argument of a complex number.
-
- A6. Change of representation
- A6B. Base conversion
-
- R9PAK-S Pack a base 2 exponent into a floating point number.
- D9PAK-D
-
- R9UPAK-S Unpack a floating point number X so that X = Y*2**N.
- D9UPAK-D
-
- C. Elementary and special functions (search also class L5)
-
- FUNDOC-A Documentation for FNLIB, a collection of routines for
- evaluating elementary and special functions.
-
- C1. Integer-valued functions (e.g., floor, ceiling, factorial, binomial
- coefficient)
-
- BINOM-S Compute the binomial coefficients.
- DBINOM-D
-
- FAC-S Compute the factorial function.
- DFAC-D
-
- POCH-S Evaluate a generalization of Pochhammer's symbol.
- DPOCH-D
-
- POCH1-S Calculate a generalization of Pochhammer's symbol starting
- DPOCH1-D from first order.
-
- C2. Powers, roots, reciprocals
-
- CBRT-S Compute the cube root.
- DCBRT-D
- CCBRT-C
-
- C3. Polynomials
- C3A. Orthogonal
- C3A2. Chebyshev, Legendre
-
- CSEVL-S Evaluate a Chebyshev series.
- DCSEVL-D
-
- INITS-S Determine the number of terms needed in an orthogonal
- INITDS-D polynomial series so that it meets a specified accuracy.
-
- QMOMO-S This routine computes modified Chebyshev moments. The K-th
- DQMOMO-D modified Chebyshev moment is defined as the integral over
- (-1,1) of W(X)*T(K,X), where T(K,X) is the Chebyshev
- polynomial of degree K.
-
- XLEGF-S Compute normalized Legendre polynomials and associated
- DXLEGF-D Legendre functions.
-
- XNRMP-S Compute normalized Legendre polynomials.
- DXNRMP-D
-
- C4. Elementary transcendental functions
- C4A. Trigonometric, inverse trigonometric
-
- CACOS-C Compute the complex arc cosine.
-
- CASIN-C Compute the complex arc sine.
-
- CATAN-C Compute the complex arc tangent.
-
- CATAN2-C Compute the complex arc tangent in the proper quadrant.
-
- COSDG-S Compute the cosine of an argument in degrees.
- DCOSDG-D
-
- COT-S Compute the cotangent.
- DCOT-D
- CCOT-C
-
- CTAN-C Compute the complex tangent.
-
- SINDG-S Compute the sine of an argument in degrees.
- DSINDG-D
-
- C4B. Exponential, logarithmic
-
- ALNREL-S Evaluate ln(1+X) accurate in the sense of relative error.
- DLNREL-D
- CLNREL-C
-
- CLOG10-C Compute the principal value of the complex base 10
- logarithm.
-
- EXPREL-S Calculate the relative error exponential (EXP(X)-1)/X.
- DEXPRL-D
- CEXPRL-C
-
- C4C. Hyperbolic, inverse hyperbolic
-
- ACOSH-S Compute the arc hyperbolic cosine.
- DACOSH-D
- CACOSH-C
-
- ASINH-S Compute the arc hyperbolic sine.
- DASINH-D
- CASINH-C
-
- ATANH-S Compute the arc hyperbolic tangent.
- DATANH-D
- CATANH-C
-
- CCOSH-C Compute the complex hyperbolic cosine.
-
- CSINH-C Compute the complex hyperbolic sine.
-
- CTANH-C Compute the complex hyperbolic tangent.
-
- C5. Exponential and logarithmic integrals
-
- ALI-S Compute the logarithmic integral.
- DLI-D
-
- E1-S Compute the exponential integral E1(X).
- DE1-D
-
- EI-S Compute the exponential integral Ei(X).
- DEI-D
-
- EXINT-S Compute an M member sequence of exponential integrals
- DEXINT-D E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0.
-
- SPENC-S Compute a form of Spence's integral due to K. Mitchell.
- DSPENC-D
-
- C7. Gamma
- C7A. Gamma, log gamma, reciprocal gamma
-
- ALGAMS-S Compute the logarithm of the absolute value of the Gamma
- DLGAMS-D function.
-
- ALNGAM-S Compute the logarithm of the absolute value of the Gamma
- DLNGAM-D function.
- CLNGAM-C
-
- C0LGMC-C Evaluate (Z+0.5)*LOG((Z+1.)/Z) - 1.0 with relative
- accuracy.
-
- GAMLIM-S Compute the minimum and maximum bounds for the argument in
- DGAMLM-D the Gamma function.
-
- GAMMA-S Compute the complete Gamma function.
- DGAMMA-D
- CGAMMA-C
-
- GAMR-S Compute the reciprocal of the Gamma function.
- DGAMR-D
- CGAMR-C
-
- POCH-S Evaluate a generalization of Pochhammer's symbol.
- DPOCH-D
-
- POCH1-S Calculate a generalization of Pochhammer's symbol starting
- DPOCH1-D from first order.
-
- C7B. Beta, log beta
-
- ALBETA-S Compute the natural logarithm of the complete Beta
- DLBETA-D function.
- CLBETA-C
-
- BETA-S Compute the complete Beta function.
- DBETA-D
- CBETA-C
-
- C7C. Psi function
-
- PSI-S Compute the Psi (or Digamma) function.
- DPSI-D
- CPSI-C
-
- PSIFN-S Compute derivatives of the Psi function.
- DPSIFN-D
-
- C7E. Incomplete gamma
-
- GAMI-S Evaluate the incomplete Gamma function.
- DGAMI-D
-
- GAMIC-S Calculate the complementary incomplete Gamma function.
- DGAMIC-D
-
- GAMIT-S Calculate Tricomi's form of the incomplete Gamma function.
- DGAMIT-D
-
- C7F. Incomplete beta
-
- BETAI-S Calculate the incomplete Beta function.
- DBETAI-D
-
- C8. Error functions
- C8A. Error functions, their inverses, integrals, including the normal
- distribution function
-
- ERF-S Compute the error function.
- DERF-D
-
- ERFC-S Compute the complementary error function.
- DERFC-D
-
- C8C. Dawson's integral
-
- DAWS-S Compute Dawson's function.
- DDAWS-D
-
- C9. Legendre functions
-
- XLEGF-S Compute normalized Legendre polynomials and associated
- DXLEGF-D Legendre functions.
-
- XNRMP-S Compute normalized Legendre polynomials.
- DXNRMP-D
-
- C10. Bessel functions
- C10A. J, Y, H-(1), H-(2)
- C10A1. Real argument, integer order
-
- BESJ0-S Compute the Bessel function of the first kind of order
- DBESJ0-D zero.
-
- BESJ1-S Compute the Bessel function of the first kind of order one.
- DBESJ1-D
-
- BESY0-S Compute the Bessel function of the second kind of order
- DBESY0-D zero.
-
- BESY1-S Compute the Bessel function of the second kind of order
- DBESY1-D one.
-
- C10A3. Real argument, real order
-
- BESJ-S Compute an N member sequence of J Bessel functions
- DBESJ-D J/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA
- and X.
-
- BESY-S Implement forward recursion on the three term recursion
- DBESY-D relation for a sequence of non-negative order Bessel
- functions Y/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
- X and non-negative orders FNU.
-
- C10A4. Complex argument, real order
-
- CBESH-C Compute a sequence of the Hankel functions H(m,a,z)
- ZBESH-C for superscript m=1 or 2, real nonnegative orders a=b,
- b+1,... where b>0, and nonzero complex argument z. A
- scaling option is available to help avoid overflow.
-
- CBESJ-C Compute a sequence of the Bessel functions J(a,z) for
- ZBESJ-C complex argument z and real nonnegative orders a=b,b+1,
- b+2,... where b>0. A scaling option is available to
- help avoid overflow.
-
- CBESY-C Compute a sequence of the Bessel functions Y(a,z) for
- ZBESY-C complex argument z and real nonnegative orders a=b,b+1,
- b+2,... where b>0. A scaling option is available to
- help avoid overflow.
-
- C10B. I, K
- C10B1. Real argument, integer order
-
- BESI0-S Compute the hyperbolic Bessel function of the first kind
- DBESI0-D of order zero.
-
- BESI0E-S Compute the exponentially scaled modified (hyperbolic)
- DBSI0E-D Bessel function of the first kind of order zero.
-
- BESI1-S Compute the modified (hyperbolic) Bessel function of the
- DBESI1-D first kind of order one.
-
- BESI1E-S Compute the exponentially scaled modified (hyperbolic)
- DBSI1E-D Bessel function of the first kind of order one.
-
- BESK0-S Compute the modified (hyperbolic) Bessel function of the
- DBESK0-D third kind of order zero.
-
- BESK0E-S Compute the exponentially scaled modified (hyperbolic)
- DBSK0E-D Bessel function of the third kind of order zero.
-
- BESK1-S Compute the modified (hyperbolic) Bessel function of the
- DBESK1-D third kind of order one.
-
- BESK1E-S Compute the exponentially scaled modified (hyperbolic)
- DBSK1E-D Bessel function of the third kind of order one.
-
- C10B3. Real argument, real order
-
- BESI-S Compute an N member sequence of I Bessel functions
- DBESI-D I/SUB(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
- EXP(-X)*I/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative
- ALPHA and X.
-
- BESK-S Implement forward recursion on the three term recursion
- DBESK-D relation for a sequence of non-negative order Bessel
- functions K/SUB(FNU+I-1)/(X), or scaled Bessel functions
- EXP(X)*K/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
- X and non-negative orders FNU.
-
- BESKES-S Compute a sequence of exponentially scaled modified Bessel
- DBSKES-D functions of the third kind of fractional order.
-
- BESKS-S Compute a sequence of modified Bessel functions of the
- DBESKS-D third kind of fractional order.
-
- C10B4. Complex argument, real order
-
- CBESI-C Compute a sequence of the Bessel functions I(a,z) for
- ZBESI-C complex argument z and real nonnegative orders a=b,b+1,
- b+2,... where b>0. A scaling option is available to
- help avoid overflow.
-
- CBESK-C Compute a sequence of the Bessel functions K(a,z) for
- ZBESK-C complex argument z and real nonnegative orders a=b,b+1,
- b+2,... where b>0. A scaling option is available to
- help avoid overflow.
-
- C10D. Airy and Scorer functions
-
- AI-S Evaluate the Airy function.
- DAI-D
-
- AIE-S Calculate the Airy function for a negative argument and an
- DAIE-D exponentially scaled Airy function for a non-negative
- argument.
-
- BI-S Evaluate the Bairy function (the Airy function of the
- DBI-D second kind).
-
- BIE-S Calculate the Bairy function for a negative argument and an
- DBIE-D exponentially scaled Bairy function for a non-negative
- argument.
-
- CAIRY-C Compute the Airy function Ai(z) or its derivative dAi/dz
- ZAIRY-C for complex argument z. A scaling option is available
- to help avoid underflow and overflow.
-
- CBIRY-C Compute the Airy function Bi(z) or its derivative dBi/dz
- ZBIRY-C for complex argument z. A scaling option is available
- to help avoid overflow.
-
- C10F. Integrals of Bessel functions
-
- BSKIN-S Compute repeated integrals of the K-zero Bessel function.
- DBSKIN-D
-
- C11. Confluent hypergeometric functions
-
- CHU-S Compute the logarithmic confluent hypergeometric function.
- DCHU-D
-
- C14. Elliptic integrals
-
- RC-S Calculate an approximation to
- DRC-D RC(X,Y) = Integral from zero to infinity of
- -1/2 -1
- (1/2)(t+X) (t+Y) dt,
- where X is nonnegative and Y is positive.
-
- RD-S Compute the incomplete or complete elliptic integral of the
- DRD-D 2nd kind. For X and Y nonnegative, X+Y and Z positive,
- RD(X,Y,Z) = Integral from zero to infinity of
- -1/2 -1/2 -3/2
- (3/2)(t+X) (t+Y) (t+Z) dt.
- If X or Y is zero, the integral is complete.
-
- RF-S Compute the incomplete or complete elliptic integral of the
- DRF-D 1st kind. For X, Y, and Z non-negative and at most one of
- them zero, RF(X,Y,Z) = Integral from zero to infinity of
- -1/2 -1/2 -1/2
- (1/2)(t+X) (t+Y) (t+Z) dt.
- If X, Y or Z is zero, the integral is complete.
-
- RJ-S Compute the incomplete or complete (X or Y or Z is zero)
- DRJ-D elliptic integral of the 3rd kind. For X, Y, and Z non-
- negative, at most one of them zero, and P positive,
- RJ(X,Y,Z,P) = Integral from zero to infinity of
- -1/2 -1/2 -1/2 -1
- (3/2)(t+X) (t+Y) (t+Z) (t+P) dt.
-
- C19. Other special functions
-
- RC3JJ-S Evaluate the 3j symbol f(L1) = ( L1 L2 L3)
- DRC3JJ-D (-M2-M3 M2 M3)
- for all allowed values of L1, the other parameters
- being held fixed.
-
- RC3JM-S Evaluate the 3j symbol g(M2) = (L1 L2 L3 )
- DRC3JM-D (M1 M2 -M1-M2)
- for all allowed values of M2, the other parameters
- being held fixed.
-
- RC6J-S Evaluate the 6j symbol h(L1) = {L1 L2 L3}
- DRC6J-D {L4 L5 L6}
- for all allowed values of L1, the other parameters
- being held fixed.
-
- D. Linear Algebra
- D1. Elementary vector and matrix operations
- D1A. Elementary vector operations
- D1A2. Minimum and maximum components
-
- ISAMAX-S Find the smallest index of that component of a vector
- IDAMAX-D having the maximum magnitude.
- ICAMAX-C
-
- D1A3. Norm
- D1A3A. L-1 (sum of magnitudes)
-
- SASUM-S Compute the sum of the magnitudes of the elements of a
- DASUM-D vector.
- SCASUM-C
-
- D1A3B. L-2 (Euclidean norm)
-
- SNRM2-S Compute the Euclidean length (L2 norm) of a vector.
- DNRM2-D
- SCNRM2-C
-
- D1A4. Dot product (inner product)
-
- CDOTC-C Dot product of two complex vectors using the complex
- conjugate of the first vector.
-
- DQDOTA-D Compute the inner product of two vectors with extended
- precision accumulation and result.
-
- DQDOTI-D Compute the inner product of two vectors with extended
- precision accumulation and result.
-
- DSDOT-D Compute the inner product of two vectors with extended
- DCDOT-C precision accumulation and result.
-
- SDOT-S Compute the inner product of two vectors.
- DDOT-D
- CDOTU-C
-
- SDSDOT-S Compute the inner product of two vectors with extended
- CDCDOT-C precision accumulation.
-
- D1A5. Copy or exchange (swap)
-
- ICOPY-S Copy a vector.
- DCOPY-D
- CCOPY-C
- ICOPY-I
-
- SCOPY-S Copy a vector.
- DCOPY-D
- CCOPY-C
- ICOPY-I
-
- SCOPYM-S Copy the negative of a vector to a vector.
- DCOPYM-D
-
- SSWAP-S Interchange two vectors.
- DSWAP-D
- CSWAP-C
- ISWAP-I
-
- D1A6. Multiplication by scalar
-
- CSSCAL-C Scale a complex vector.
-
- SSCAL-S Multiply a vector by a constant.
- DSCAL-D
- CSCAL-C
-
- D1A7. Triad (a*x+y for vectors x,y and scalar a)
-
- SAXPY-S Compute a constant times a vector plus a vector.
- DAXPY-D
- CAXPY-C
-
- D1A8. Elementary rotation (Givens transformation)
-
- SROT-S Apply a plane Givens rotation.
- DROT-D
- CSROT-C
-
- SROTM-S Apply a modified Givens transformation.
- DROTM-D
-
- D1B. Elementary matrix operations
- D1B4. Multiplication by vector
-
- CHPR-C Perform the hermitian rank 1 operation.
-
- DGER-D Perform the rank 1 operation.
-
- DSPR-D Perform the symmetric rank 1 operation.
-
- DSYR-D Perform the symmetric rank 1 operation.
-
- SGBMV-S Multiply a real vector by a real general band matrix.
- DGBMV-D
- CGBMV-C
-
- SGEMV-S Multiply a real vector by a real general matrix.
- DGEMV-D
- CGEMV-C
-
- SGER-S Perform rank 1 update of a real general matrix.
-
- CGERC-C Perform conjugated rank 1 update of a complex general
- SGERC-S matrix.
- DGERC-D
-
- CGERU-C Perform unconjugated rank 1 update of a complex general
- SGERU-S matrix.
- DGERU-D
-
- CHBMV-C Multiply a complex vector by a complex Hermitian band
- SHBMV-S matrix.
- DHBMV-D
-
- CHEMV-C Multiply a complex vector by a complex Hermitian matrix.
- SHEMV-S
- DHEMV-D
-
- CHER-C Perform Hermitian rank 1 update of a complex Hermitian
- SHER-S matrix.
- DHER-D
-
- CHER2-C Perform Hermitian rank 2 update of a complex Hermitian
- SHER2-S matrix.
- DHER2-D
-
- CHPMV-C Perform the matrix-vector operation.
- SHPMV-S
- DHPMV-D
-
- CHPR2-C Perform the hermitian rank 2 operation.
- SHPR2-S
- DHPR2-D
-
- SSBMV-S Multiply a real vector by a real symmetric band matrix.
- DSBMV-D
- CSBMV-C
-
- SSDI-S Diagonal Matrix Vector Multiply.
- DSDI-D Routine to calculate the product X = DIAG*B, where DIAG
- is a diagonal matrix.
-
- SSMTV-S SLAP Column Format Sparse Matrix Transpose Vector Product.
- DSMTV-D Routine to calculate the sparse matrix vector product:
- Y = A'*X, where ' denotes transpose.
-
- SSMV-S SLAP Column Format Sparse Matrix Vector Product.
- DSMV-D Routine to calculate the sparse matrix vector product:
- Y = A*X.
-
- SSPMV-S Perform the matrix-vector operation.
- DSPMV-D
- CSPMV-C
-
- SSPR-S Performs the symmetric rank 1 operation.
-
- SSPR2-S Perform the symmetric rank 2 operation.
- DSPR2-D
- CSPR2-C
-
- SSYMV-S Multiply a real vector by a real symmetric matrix.
- DSYMV-D
- CSYMV-C
-
- SSYR-S Perform symmetric rank 1 update of a real symmetric matrix.
-
- SSYR2-S Perform symmetric rank 2 update of a real symmetric matrix.
- DSYR2-D
- CSYR2-C
-
- STBMV-S Multiply a real vector by a real triangular band matrix.
- DTBMV-D
- CTBMV-C
-
- STBSV-S Solve a real triangular banded system of linear equations.
- DTBSV-D
- CTBSV-C
-
- STPMV-S Perform one of the matrix-vector operations.
- DTPMV-D
- CTPMV-C
-
- STPSV-S Solve one of the systems of equations.
- DTPSV-D
- CTPSV-C
-
- STRMV-S Multiply a real vector by a real triangular matrix.
- DTRMV-D
- CTRMV-C
-
- STRSV-S Solve a real triangular system of linear equations.
- DTRSV-D
- CTRSV-C
-
- D1B6. Multiplication
-
- SGEMM-S Multiply a real general matrix by a real general matrix.
- DGEMM-D
- CGEMM-C
-
- CHEMM-C Multiply a complex general matrix by a complex Hermitian
- SHEMM-S matrix.
- DHEMM-D
-
- CHER2K-C Perform Hermitian rank 2k update of a complex.
- SHER2-S
- DHER2-D
- CHER2-C
-
- CHERK-C Perform Hermitian rank k update of a complex Hermitian
- SHERK-S matrix.
- DHERK-D
-
- SSYMM-S Multiply a real general matrix by a real symmetric matrix.
- DSYMM-D
- CSYMM-C
-
- DSYR2K-D Perform one of the symmetric rank 2k operations.
- SSYR2-S
- DSYR2-D
- CSYR2-C
-
- SSYRK-S Perform symmetric rank k update of a real symmetric matrix.
- DSYRK-D
- CSYRK-C
-
- STRMM-S Multiply a real general matrix by a real triangular matrix.
- DTRMM-D
- CTRMM-C
-
- STRSM-S Solve a real triangular system of equations with multiple
- DTRSM-D right-hand sides.
- CTRSM-C
-
- D1B9. Storage mode conversion
-
- SS2Y-S SLAP Triad to SLAP Column Format Converter.
- DS2Y-D Routine to convert from the SLAP Triad to SLAP Column
- format.
-
- D1B10. Elementary rotation (Givens transformation)
-
- CSROT-C Apply a plane Givens rotation.
- SROT-S
- DROT-D
-
- SROTG-S Construct a plane Givens rotation.
- DROTG-D
- CROTG-C
-
- SROTMG-S Construct a modified Givens transformation.
- DROTMG-D
-
- D2. Solution of systems of linear equations (including inversion, LU and
- related decompositions)
- D2A. Real nonsymmetric matrices
- D2A1. General
-
- SGECO-S Factor a matrix using Gaussian elimination and estimate
- DGECO-D the condition number of the matrix.
- CGECO-C
-
- SGEDI-S Compute the determinant and inverse of a matrix using the
- DGEDI-D factors computed by SGECO or SGEFA.
- CGEDI-C
-
- SGEFA-S Factor a matrix using Gaussian elimination.
- DGEFA-D
- CGEFA-C
-
- SGEFS-S Solve a general system of linear equations.
- DGEFS-D
- CGEFS-C
-
- SGEIR-S Solve a general system of linear equations. Iterative
- CGEIR-C refinement is used to obtain an error estimate.
-
- SGESL-S Solve the real system A*X=B or TRANS(A)*X=B using the
- DGESL-D factors of SGECO or SGEFA.
- CGESL-C
-
- SQRSL-S Apply the output of SQRDC to compute coordinate transfor-
- DQRSL-D mations, projections, and least squares solutions.
- CQRSL-C
-
- D2A2. Banded
-
- SGBCO-S Factor a band matrix by Gaussian elimination and
- DGBCO-D estimate the condition number of the matrix.
- CGBCO-C
-
- SGBFA-S Factor a band matrix using Gaussian elimination.
- DGBFA-D
- CGBFA-C
-
- SGBSL-S Solve the real band system A*X=B or TRANS(A)*X=B using
- DGBSL-D the factors computed by SGBCO or SGBFA.
- CGBSL-C
-
- SNBCO-S Factor a band matrix using Gaussian elimination and
- DNBCO-D estimate the condition number.
- CNBCO-C
-
- SNBFA-S Factor a real band matrix by elimination.
- DNBFA-D
- CNBFA-C
-
- SNBFS-S Solve a general nonsymmetric banded system of linear
- DNBFS-D equations.
- CNBFS-C
-
- SNBIR-S Solve a general nonsymmetric banded system of linear
- CNBIR-C equations. Iterative refinement is used to obtain an error
- estimate.
-
- SNBSL-S Solve a real band system using the factors computed by
- DNBSL-D SNBCO or SNBFA.
- CNBSL-C
-
- D2A2A. Tridiagonal
-
- SGTSL-S Solve a tridiagonal linear system.
- DGTSL-D
- CGTSL-C
-
- D2A3. Triangular
-
- SSLI-S SLAP MSOLVE for Lower Triangle Matrix.
- DSLI-D This routine acts as an interface between the SLAP generic
- MSOLVE calling convention and the routine that actually
- -1
- computes L B = X.
-
- SSLI2-S SLAP Lower Triangle Matrix Backsolve.
- DSLI2-D Routine to solve a system of the form Lx = b , where L
- is a lower triangular matrix.
-
- STRCO-S Estimate the condition number of a triangular matrix.
- DTRCO-D
- CTRCO-C
-
- STRDI-S Compute the determinant and inverse of a triangular matrix.
- DTRDI-D
- CTRDI-C
-
- STRSL-S Solve a system of the form T*X=B or TRANS(T)*X=B, where
- DTRSL-D T is a triangular matrix.
- CTRSL-C
-
- D2A4. Sparse
-
- SBCG-S Preconditioned BiConjugate Gradient Sparse Ax = b Solver.
- DBCG-D Routine to solve a Non-Symmetric linear system Ax = b
- using the Preconditioned BiConjugate Gradient method.
-
- SCGN-S Preconditioned CG Sparse Ax=b Solver for Normal Equations.
- DCGN-D Routine to solve a general linear system Ax = b using the
- Preconditioned Conjugate Gradient method applied to the
- normal equations AA'y = b, x=A'y.
-
- SCGS-S Preconditioned BiConjugate Gradient Squared Ax=b Solver.
- DCGS-D Routine to solve a Non-Symmetric linear system Ax = b
- using the Preconditioned BiConjugate Gradient Squared
- method.
-
- SGMRES-S Preconditioned GMRES Iterative Sparse Ax=b Solver.
- DGMRES-D This routine uses the generalized minimum residual
- (GMRES) method with preconditioning to solve
- non-symmetric linear systems of the form: Ax = b.
-
- SIR-S Preconditioned Iterative Refinement Sparse Ax = b Solver.
- DIR-D Routine to solve a general linear system Ax = b using
- iterative refinement with a matrix splitting.
-
- SLPDOC-S Sparse Linear Algebra Package Version 2.0.2 Documentation.
- DLPDOC-D Routines to solve large sparse symmetric and nonsymmetric
- positive definite linear systems, Ax = b, using precondi-
- tioned iterative methods.
-
- SOMN-S Preconditioned Orthomin Sparse Iterative Ax=b Solver.
- DOMN-D Routine to solve a general linear system Ax = b using
- the Preconditioned Orthomin method.
-
- SSDBCG-S Diagonally Scaled BiConjugate Gradient Sparse Ax=b Solver.
- DSDBCG-D Routine to solve a linear system Ax = b using the
- BiConjugate Gradient method with diagonal scaling.
-
- SSDCGN-S Diagonally Scaled CG Sparse Ax=b Solver for Normal Eqn's.
- DSDCGN-D Routine to solve a general linear system Ax = b using
- diagonal scaling with the Conjugate Gradient method
- applied to the the normal equations, viz., AA'y = b,
- where x = A'y.
-
- SSDCGS-S Diagonally Scaled CGS Sparse Ax=b Solver.
- DSDCGS-D Routine to solve a linear system Ax = b using the
- BiConjugate Gradient Squared method with diagonal scaling.
-
- SSDGMR-S Diagonally Scaled GMRES Iterative Sparse Ax=b Solver.
- DSDGMR-D This routine uses the generalized minimum residual
- (GMRES) method with diagonal scaling to solve possibly
- non-symmetric linear systems of the form: Ax = b.
-
- SSDOMN-S Diagonally Scaled Orthomin Sparse Iterative Ax=b Solver.
- DSDOMN-D Routine to solve a general linear system Ax = b using
- the Orthomin method with diagonal scaling.
-
- SSGS-S Gauss-Seidel Method Iterative Sparse Ax = b Solver.
- DSGS-D Routine to solve a general linear system Ax = b using
- Gauss-Seidel iteration.
-
- SSILUR-S Incomplete LU Iterative Refinement Sparse Ax = b Solver.
- DSILUR-D Routine to solve a general linear system Ax = b using
- the incomplete LU decomposition with iterative refinement.
-
- SSJAC-S Jacobi's Method Iterative Sparse Ax = b Solver.
- DSJAC-D Routine to solve a general linear system Ax = b using
- Jacobi iteration.
-
- SSLUBC-S Incomplete LU BiConjugate Gradient Sparse Ax=b Solver.
- DSLUBC-D Routine to solve a linear system Ax = b using the
- BiConjugate Gradient method with Incomplete LU
- decomposition preconditioning.
-
- SSLUCN-S Incomplete LU CG Sparse Ax=b Solver for Normal Equations.
- DSLUCN-D Routine to solve a general linear system Ax = b using the
- incomplete LU decomposition with the Conjugate Gradient
- method applied to the normal equations, viz., AA'y = b,
- x = A'y.
-
- SSLUCS-S Incomplete LU BiConjugate Gradient Squared Ax=b Solver.
- DSLUCS-D Routine to solve a linear system Ax = b using the
- BiConjugate Gradient Squared method with Incomplete LU
- decomposition preconditioning.
-
- SSLUGM-S Incomplete LU GMRES Iterative Sparse Ax=b Solver.
- DSLUGM-D This routine uses the generalized minimum residual
- (GMRES) method with incomplete LU factorization for
- preconditioning to solve possibly non-symmetric linear
- systems of the form: Ax = b.
-
- SSLUOM-S Incomplete LU Orthomin Sparse Iterative Ax=b Solver.
- DSLUOM-D Routine to solve a general linear system Ax = b using
- the Orthomin method with Incomplete LU decomposition.
-
- D2B. Real symmetric matrices
- D2B1. General
- D2B1A. Indefinite
-
- SSICO-S Factor a symmetric matrix by elimination with symmetric
- DSICO-D pivoting and estimate the condition number of the matrix.
- CHICO-C
- CSICO-C
-
- SSIDI-S Compute the determinant, inertia and inverse of a real
- DSIDI-D symmetric matrix using the factors from SSIFA.
- CHIDI-C
- CSIDI-C
-
- SSIFA-S Factor a real symmetric matrix by elimination with
- DSIFA-D symmetric pivoting.
- CHIFA-C
- CSIFA-C
-
- SSISL-S Solve a real symmetric system using the factors obtained
- DSISL-D from SSIFA.
- CHISL-C
- CSISL-C
-
- SSPCO-S Factor a real symmetric matrix stored in packed form
- DSPCO-D by elimination with symmetric pivoting and estimate the
- CHPCO-C condition number of the matrix.
- CSPCO-C
-
- SSPDI-S Compute the determinant, inertia, inverse of a real
- DSPDI-D symmetric matrix stored in packed form using the factors
- CHPDI-C from SSPFA.
- CSPDI-C
-
- SSPFA-S Factor a real symmetric matrix stored in packed form by
- DSPFA-D elimination with symmetric pivoting.
- CHPFA-C
- CSPFA-C
-
- SSPSL-S Solve a real symmetric system using the factors obtained
- DSPSL-D from SSPFA.
- CHPSL-C
- CSPSL-C
-
- D2B1B. Positive definite
-
- SCHDC-S Compute the Cholesky decomposition of a positive definite
- DCHDC-D matrix. A pivoting option allows the user to estimate the
- CCHDC-C condition number of a positive definite matrix or determine
- the rank of a positive semidefinite matrix.
-
- SPOCO-S Factor a real symmetric positive definite matrix
- DPOCO-D and estimate the condition number of the matrix.
- CPOCO-C
-
- SPODI-S Compute the determinant and inverse of a certain real
- DPODI-D symmetric positive definite matrix using the factors
- CPODI-C computed by SPOCO, SPOFA or SQRDC.
-
- SPOFA-S Factor a real symmetric positive definite matrix.
- DPOFA-D
- CPOFA-C
-
- SPOFS-S Solve a positive definite symmetric system of linear
- DPOFS-D equations.
- CPOFS-C
-
- SPOIR-S Solve a positive definite symmetric system of linear
- CPOIR-C equations. Iterative refinement is used to obtain an error
- estimate.
-
- SPOSL-S Solve the real symmetric positive definite linear system
- DPOSL-D using the factors computed by SPOCO or SPOFA.
- CPOSL-C
-
- SPPCO-S Factor a symmetric positive definite matrix stored in
- DPPCO-D packed form and estimate the condition number of the
- CPPCO-C matrix.
-
- SPPDI-S Compute the determinant and inverse of a real symmetric
- DPPDI-D positive definite matrix using factors from SPPCO or SPPFA.
- CPPDI-C
-
- SPPFA-S Factor a real symmetric positive definite matrix stored in
- DPPFA-D packed form.
- CPPFA-C
-
- SPPSL-S Solve the real symmetric positive definite system using
- DPPSL-D the factors computed by SPPCO or SPPFA.
- CPPSL-C
-
- D2B2. Positive definite banded
-
- SPBCO-S Factor a real symmetric positive definite matrix stored in
- DPBCO-D band form and estimate the condition number of the matrix.
- CPBCO-C
-
- SPBFA-S Factor a real symmetric positive definite matrix stored in
- DPBFA-D band form.
- CPBFA-C
-
- SPBSL-S Solve a real symmetric positive definite band system
- DPBSL-D using the factors computed by SPBCO or SPBFA.
- CPBSL-C
-
- D2B2A. Tridiagonal
-
- SPTSL-S Solve a positive definite tridiagonal linear system.
- DPTSL-D
- CPTSL-C
-
- D2B4. Sparse
-
- SBCG-S Preconditioned BiConjugate Gradient Sparse Ax = b Solver.
- DBCG-D Routine to solve a Non-Symmetric linear system Ax = b
- using the Preconditioned BiConjugate Gradient method.
-
- SCG-S Preconditioned Conjugate Gradient Sparse Ax=b Solver.
- DCG-D Routine to solve a symmetric positive definite linear
- system Ax = b using the Preconditioned Conjugate
- Gradient method.
-
- SCGN-S Preconditioned CG Sparse Ax=b Solver for Normal Equations.
- DCGN-D Routine to solve a general linear system Ax = b using the
- Preconditioned Conjugate Gradient method applied to the
- normal equations AA'y = b, x=A'y.
-
- SCGS-S Preconditioned BiConjugate Gradient Squared Ax=b Solver.
- DCGS-D Routine to solve a Non-Symmetric linear system Ax = b
- using the Preconditioned BiConjugate Gradient Squared
- method.
-
- SGMRES-S Preconditioned GMRES Iterative Sparse Ax=b Solver.
- DGMRES-D This routine uses the generalized minimum residual
- (GMRES) method with preconditioning to solve
- non-symmetric linear systems of the form: Ax = b.
-
- SIR-S Preconditioned Iterative Refinement Sparse Ax = b Solver.
- DIR-D Routine to solve a general linear system Ax = b using
- iterative refinement with a matrix splitting.
-
- SLPDOC-S Sparse Linear Algebra Package Version 2.0.2 Documentation.
- DLPDOC-D Routines to solve large sparse symmetric and nonsymmetric
- positive definite linear systems, Ax = b, using precondi-
- tioned iterative methods.
-
- SOMN-S Preconditioned Orthomin Sparse Iterative Ax=b Solver.
- DOMN-D Routine to solve a general linear system Ax = b using
- the Preconditioned Orthomin method.
-
- SSDBCG-S Diagonally Scaled BiConjugate Gradient Sparse Ax=b Solver.
- DSDBCG-D Routine to solve a linear system Ax = b using the
- BiConjugate Gradient method with diagonal scaling.
-
- SSDCG-S Diagonally Scaled Conjugate Gradient Sparse Ax=b Solver.
- DSDCG-D Routine to solve a symmetric positive definite linear
- system Ax = b using the Preconditioned Conjugate
- Gradient method. The preconditioner is diagonal scaling.
-
- SSDCGN-S Diagonally Scaled CG Sparse Ax=b Solver for Normal Eqn's.
- DSDCGN-D Routine to solve a general linear system Ax = b using
- diagonal scaling with the Conjugate Gradient method
- applied to the the normal equations, viz., AA'y = b,
- where x = A'y.
-
- SSDCGS-S Diagonally Scaled CGS Sparse Ax=b Solver.
- DSDCGS-D Routine to solve a linear system Ax = b using the
- BiConjugate Gradient Squared method with diagonal scaling.
-
- SSDGMR-S Diagonally Scaled GMRES Iterative Sparse Ax=b Solver.
- DSDGMR-D This routine uses the generalized minimum residual
- (GMRES) method with diagonal scaling to solve possibly
- non-symmetric linear systems of the form: Ax = b.
-
- SSDOMN-S Diagonally Scaled Orthomin Sparse Iterative Ax=b Solver.
- DSDOMN-D Routine to solve a general linear system Ax = b using
- the Orthomin method with diagonal scaling.
-
- SSGS-S Gauss-Seidel Method Iterative Sparse Ax = b Solver.
- DSGS-D Routine to solve a general linear system Ax = b using
- Gauss-Seidel iteration.
-
- SSICCG-S Incomplete Cholesky Conjugate Gradient Sparse Ax=b Solver.
- DSICCG-D Routine to solve a symmetric positive definite linear
- system Ax = b using the incomplete Cholesky
- Preconditioned Conjugate Gradient method.
-
- SSILUR-S Incomplete LU Iterative Refinement Sparse Ax = b Solver.
- DSILUR-D Routine to solve a general linear system Ax = b using
- the incomplete LU decomposition with iterative refinement.
-
- SSJAC-S Jacobi's Method Iterative Sparse Ax = b Solver.
- DSJAC-D Routine to solve a general linear system Ax = b using
- Jacobi iteration.
-
- SSLUBC-S Incomplete LU BiConjugate Gradient Sparse Ax=b Solver.
- DSLUBC-D Routine to solve a linear system Ax = b using the
- BiConjugate Gradient method with Incomplete LU
- decomposition preconditioning.
-
- SSLUCN-S Incomplete LU CG Sparse Ax=b Solver for Normal Equations.
- DSLUCN-D Routine to solve a general linear system Ax = b using the
- incomplete LU decomposition with the Conjugate Gradient
- method applied to the normal equations, viz., AA'y = b,
- x = A'y.
-
- SSLUCS-S Incomplete LU BiConjugate Gradient Squared Ax=b Solver.
- DSLUCS-D Routine to solve a linear system Ax = b using the
- BiConjugate Gradient Squared method with Incomplete LU
- decomposition preconditioning.
-
- SSLUGM-S Incomplete LU GMRES Iterative Sparse Ax=b Solver.
- DSLUGM-D This routine uses the generalized minimum residual
- (GMRES) method with incomplete LU factorization for
- preconditioning to solve possibly non-symmetric linear
- systems of the form: Ax = b.
-
- SSLUOM-S Incomplete LU Orthomin Sparse Iterative Ax=b Solver.
- DSLUOM-D Routine to solve a general linear system Ax = b using
- the Orthomin method with Incomplete LU decomposition.
-
- D2C. Complex non-Hermitian matrices
- D2C1. General
-
- CGECO-C Factor a matrix using Gaussian elimination and estimate
- SGECO-S the condition number of the matrix.
- DGECO-D
-
- CGEDI-C Compute the determinant and inverse of a matrix using the
- SGEDI-S factors computed by CGECO or CGEFA.
- DGEDI-D
-
- CGEFA-C Factor a matrix using Gaussian elimination.
- SGEFA-S
- DGEFA-D
-
- CGEFS-C Solve a general system of linear equations.
- SGEFS-S
- DGEFS-D
-
- CGEIR-C Solve a general system of linear equations. Iterative
- SGEIR-S refinement is used to obtain an error estimate.
-
- CGESL-C Solve the complex system A*X=B or CTRANS(A)*X=B using the
- SGESL-S factors computed by CGECO or CGEFA.
- DGESL-D
-
- CQRSL-C Apply the output of CQRDC to compute coordinate transfor-
- SQRSL-S mations, projections, and least squares solutions.
- DQRSL-D
-
- CSICO-C Factor a complex symmetric matrix by elimination with
- SSICO-S symmetric pivoting and estimate the condition number of the
- DSICO-D matrix.
- CHICO-C
-
- CSIDI-C Compute the determinant and inverse of a complex symmetric
- SSIDI-S matrix using the factors from CSIFA.
- DSIDI-D
- CHIDI-C
-
- CSIFA-C Factor a complex symmetric matrix by elimination with
- SSIFA-S symmetric pivoting.
- DSIFA-D
- CHIFA-C
-
- CSISL-C Solve a complex symmetric system using the factors obtained
- SSISL-S from CSIFA.
- DSISL-D
- CHISL-C
-
- CSPCO-C Factor a complex symmetric matrix stored in packed form
- SSPCO-S by elimination with symmetric pivoting and estimate the
- DSPCO-D condition number of the matrix.
- CHPCO-C
-
- CSPDI-C Compute the determinant and inverse of a complex symmetric
- SSPDI-S matrix stored in packed form using the factors from CSPFA.
- DSPDI-D
- CHPDI-C
-
- CSPFA-C Factor a complex symmetric matrix stored in packed form by
- SSPFA-S elimination with symmetric pivoting.
- DSPFA-D
- CHPFA-C
-
- CSPSL-C Solve a complex symmetric system using the factors obtained
- SSPSL-S from CSPFA.
- DSPSL-D
- CHPSL-C
-
- D2C2. Banded
-
- CGBCO-C Factor a band matrix by Gaussian elimination and
- SGBCO-S estimate the condition number of the matrix.
- DGBCO-D
-
- CGBFA-C Factor a band matrix using Gaussian elimination.
- SGBFA-S
- DGBFA-D
-
- CGBSL-C Solve the complex band system A*X=B or CTRANS(A)*X=B using
- SGBSL-S the factors computed by CGBCO or CGBFA.
- DGBSL-D
-
- CNBCO-C Factor a band matrix using Gaussian elimination and
- SNBCO-S estimate the condition number.
- DNBCO-D
-
- CNBFA-C Factor a band matrix by elimination.
- SNBFA-S
- DNBFA-D
-
- CNBFS-C Solve a general nonsymmetric banded system of linear
- SNBFS-S equations.
- DNBFS-D
-
- CNBIR-C Solve a general nonsymmetric banded system of linear
- SNBIR-S equations. Iterative refinement is used to obtain an error
- estimate.
-
- CNBSL-C Solve a complex band system using the factors computed by
- SNBSL-S CNBCO or CNBFA.
- DNBSL-D
-
- D2C2A. Tridiagonal
-
- CGTSL-C Solve a tridiagonal linear system.
- SGTSL-S
- DGTSL-D
-
- D2C3. Triangular
-
- CTRCO-C Estimate the condition number of a triangular matrix.
- STRCO-S
- DTRCO-D
-
- CTRDI-C Compute the determinant and inverse of a triangular matrix.
- STRDI-S
- DTRDI-D
-
- CTRSL-C Solve a system of the form T*X=B or CTRANS(T)*X=B, where
- STRSL-S T is a triangular matrix. Here CTRANS(T) is the conjugate
- DTRSL-D transpose.
-
- D2D. Complex Hermitian matrices
- D2D1. General
- D2D1A. Indefinite
-
- CHICO-C Factor a complex Hermitian matrix by elimination with sym-
- SSICO-S metric pivoting and estimate the condition of the matrix.
- DSICO-D
- CSICO-C
-
- CHIDI-C Compute the determinant, inertia and inverse of a complex
- SSIDI-S Hermitian matrix using the factors obtained from CHIFA.
- DSISI-D
- CSIDI-C
-
- CHIFA-C Factor a complex Hermitian matrix by elimination
- SSIFA-S (symmetric pivoting).
- DSIFA-D
- CSIFA-C
-
- CHISL-C Solve the complex Hermitian system using factors obtained
- SSISL-S from CHIFA.
- DSISL-D
- CSISL-C
-
- CHPCO-C Factor a complex Hermitian matrix stored in packed form by
- SSPCO-S elimination with symmetric pivoting and estimate the
- DSPCO-D condition number of the matrix.
- CSPCO-C
-
- CHPDI-C Compute the determinant, inertia and inverse of a complex
- SSPDI-S Hermitian matrix stored in packed form using the factors
- DSPDI-D obtained from CHPFA.
- DSPDI-C
-
- CHPFA-C Factor a complex Hermitian matrix stored in packed form by
- SSPFA-S elimination with symmetric pivoting.
- DSPFA-D
- DSPFA-C
-
- CHPSL-C Solve a complex Hermitian system using factors obtained
- SSPSL-S from CHPFA.
- DSPSL-D
- CSPSL-C
-
- D2D1B. Positive definite
-
- CCHDC-C Compute the Cholesky decomposition of a positive definite
- SCHDC-S matrix. A pivoting option allows the user to estimate the
- DCHDC-D condition number of a positive definite matrix or determine
- the rank of a positive semidefinite matrix.
-
- CPOCO-C Factor a complex Hermitian positive definite matrix
- SPOCO-S and estimate the condition number of the matrix.
- DPOCO-D
-
- CPODI-C Compute the determinant and inverse of a certain complex
- SPODI-S Hermitian positive definite matrix using the factors
- DPODI-D computed by CPOCO, CPOFA, or CQRDC.
-
- CPOFA-C Factor a complex Hermitian positive definite matrix.
- SPOFA-S
- DPOFA-D
-
- CPOFS-C Solve a positive definite symmetric complex system of
- SPOFS-S linear equations.
- DPOFS-D
-
- CPOIR-C Solve a positive definite Hermitian system of linear
- SPOIR-S equations. Iterative refinement is used to obtain an
- error estimate.
-
- CPOSL-C Solve the complex Hermitian positive definite linear system
- SPOSL-S using the factors computed by CPOCO or CPOFA.
- DPOSL-D
-
- CPPCO-C Factor a complex Hermitian positive definite matrix stored
- SPPCO-S in packed form and estimate the condition number of the
- DPPCO-D matrix.
-
- CPPDI-C Compute the determinant and inverse of a complex Hermitian
- SPPDI-S positive definite matrix using factors from CPPCO or CPPFA.
- DPPDI-D
-
- CPPFA-C Factor a complex Hermitian positive definite matrix stored
- SPPFA-S in packed form.
- DPPFA-D
-
- CPPSL-C Solve the complex Hermitian positive definite system using
- SPPSL-S the factors computed by CPPCO or CPPFA.
- DPPSL-D
-
- D2D2. Positive definite banded
-
- CPBCO-C Factor a complex Hermitian positive definite matrix stored
- SPBCO-S in band form and estimate the condition number of the
- DPBCO-D matrix.
-
- CPBFA-C Factor a complex Hermitian positive definite matrix stored
- SPBFA-S in band form.
- DPBFA-D
-
- CPBSL-C Solve the complex Hermitian positive definite band system
- SPBSL-S using the factors computed by CPBCO or CPBFA.
- DPBSL-D
-
- D2D2A. Tridiagonal
-
- CPTSL-C Solve a positive definite tridiagonal linear system.
- SPTSL-S
- DPTSL-D
-
- D2E. Associated operations (e.g., matrix reorderings)
-
- SLLTI2-S SLAP Backsolve routine for LDL' Factorization.
- DLLTI2-D Routine to solve a system of the form L*D*L' X = B,
- where L is a unit lower triangular matrix and D is a
- diagonal matrix and ' means transpose.
-
- SS2LT-S Lower Triangle Preconditioner SLAP Set Up.
- DS2LT-D Routine to store the lower triangle of a matrix stored
- in the SLAP Column format.
-
- SSD2S-S Diagonal Scaling Preconditioner SLAP Normal Eqns Set Up.
- DSD2S-D Routine to compute the inverse of the diagonal of the
- matrix A*A', where A is stored in SLAP-Column format.
-
- SSDS-S Diagonal Scaling Preconditioner SLAP Set Up.
- DSDS-D Routine to compute the inverse of the diagonal of a matrix
- stored in the SLAP Column format.
-
- SSDSCL-S Diagonal Scaling of system Ax = b.
- DSDSCL-D This routine scales (and unscales) the system Ax = b
- by symmetric diagonal scaling.
-
- SSICS-S Incompl. Cholesky Decomposition Preconditioner SLAP Set Up.
- DSICS-D Routine to generate the Incomplete Cholesky decomposition,
- L*D*L-trans, of a symmetric positive definite matrix, A,
- which is stored in SLAP Column format. The unit lower
- triangular matrix L is stored by rows, and the inverse of
- the diagonal matrix D is stored.
-
- SSILUS-S Incomplete LU Decomposition Preconditioner SLAP Set Up.
- DSILUS-D Routine to generate the incomplete LDU decomposition of a
- matrix. The unit lower triangular factor L is stored by
- rows and the unit upper triangular factor U is stored by
- columns. The inverse of the diagonal matrix D is stored.
- No fill in is allowed.
-
- SSLLTI-S SLAP MSOLVE for LDL' (IC) Factorization.
- DSLLTI-D This routine acts as an interface between the SLAP generic
- MSOLVE calling convention and the routine that actually
- -1
- computes (LDL') B = X.
-
- SSLUI-S SLAP MSOLVE for LDU Factorization.
- DSLUI-D This routine acts as an interface between the SLAP generic
- MSOLVE calling convention and the routine that actually
- -1
- computes (LDU) B = X.
-
- SSLUI2-S SLAP Backsolve for LDU Factorization.
- DSLUI2-D Routine to solve a system of the form L*D*U X = B,
- where L is a unit lower triangular matrix, D is a diagonal
- matrix, and U is a unit upper triangular matrix.
-
- SSLUI4-S SLAP Backsolve for LDU Factorization.
- DSLUI4-D Routine to solve a system of the form (L*D*U)' X = B,
- where L is a unit lower triangular matrix, D is a diagonal
- matrix, and U is a unit upper triangular matrix and '
- denotes transpose.
-
- SSLUTI-S SLAP MTSOLV for LDU Factorization.
- DSLUTI-D This routine acts as an interface between the SLAP generic
- MTSOLV calling convention and the routine that actually
- -T
- computes (LDU) B = X.
-
- SSMMI2-S SLAP Backsolve for LDU Factorization of Normal Equations.
- DSMMI2-D To solve a system of the form (L*D*U)*(L*D*U)' X = B,
- where L is a unit lower triangular matrix, D is a diagonal
- matrix, and U is a unit upper triangular matrix and '
- denotes transpose.
-
- SSMMTI-S SLAP MSOLVE for LDU Factorization of Normal Equations.
- DSMMTI-D This routine acts as an interface between the SLAP generic
- MMTSLV calling convention and the routine that actually
- -1
- computes [(LDU)*(LDU)'] B = X.
-
- D3. Determinants
- D3A. Real nonsymmetric matrices
- D3A1. General
-
- SGEDI-S Compute the determinant and inverse of a matrix using the
- DGEDI-D factors computed by SGECO or SGEFA.
- CGEDI-C
-
- D3A2. Banded
-
- SGBDI-S Compute the determinant of a band matrix using the factors
- DGBDI-D computed by SGBCO or SGBFA.
- CGBDI-C
-
- SNBDI-S Compute the determinant of a band matrix using the factors
- DNBDI-D computed by SNBCO or SNBFA.
- CNBDI-C
-
- D3A3. Triangular
-
- STRDI-S Compute the determinant and inverse of a triangular matrix.
- DTRDI-D
- CTRDI-C
-
- D3B. Real symmetric matrices
- D3B1. General
- D3B1A. Indefinite
-
- SSIDI-S Compute the determinant, inertia and inverse of a real
- DSIDI-D symmetric matrix using the factors from SSIFA.
- CHIDI-C
- CSIDI-C
-
- SSPDI-S Compute the determinant, inertia, inverse of a real
- DSPDI-D symmetric matrix stored in packed form using the factors
- CHPDI-C from SSPFA.
- CSPDI-C
-
- D3B1B. Positive definite
-
- SPODI-S Compute the determinant and inverse of a certain real
- DPODI-D symmetric positive definite matrix using the factors
- CPODI-C computed by SPOCO, SPOFA or SQRDC.
-
- SPPDI-S Compute the determinant and inverse of a real symmetric
- DPPDI-D positive definite matrix using factors from SPPCO or SPPFA.
- CPPDI-C
-
- D3B2. Positive definite banded
-
- SPBDI-S Compute the determinant of a symmetric positive definite
- DPBDI-D band matrix using the factors computed by SPBCO or SPBFA.
- CPBDI-C
-
- D3C. Complex non-Hermitian matrices
- D3C1. General
-
- CGEDI-C Compute the determinant and inverse of a matrix using the
- SGEDI-S factors computed by CGECO or CGEFA.
- DGEDI-D
-
- CSIDI-C Compute the determinant and inverse of a complex symmetric
- SSIDI-S matrix using the factors from CSIFA.
- DSIDI-D
- CHIDI-C
-
- CSPDI-C Compute the determinant and inverse of a complex symmetric
- SSPDI-S matrix stored in packed form using the factors from CSPFA.
- DSPDI-D
- CHPDI-C
-
- D3C2. Banded
-
- CGBDI-C Compute the determinant of a complex band matrix using the
- SGBDI-S factors from CGBCO or CGBFA.
- DGBDI-D
-
- CNBDI-C Compute the determinant of a band matrix using the factors
- SNBDI-S computed by CNBCO or CNBFA.
- DNBDI-D
-
- D3C3. Triangular
-
- CTRDI-C Compute the determinant and inverse of a triangular matrix.
- STRDI-S
- DTRDI-D
-
- D3D. Complex Hermitian matrices
- D3D1. General
- D3D1A. Indefinite
-
- CHIDI-C Compute the determinant, inertia and inverse of a complex
- SSIDI-S Hermitian matrix using the factors obtained from CHIFA.
- DSISI-D
- CSIDI-C
-
- CHPDI-C Compute the determinant, inertia and inverse of a complex
- SSPDI-S Hermitian matrix stored in packed form using the factors
- DSPDI-D obtained from CHPFA.
- DSPDI-C
-
- D3D1B. Positive definite
-
- CPODI-C Compute the determinant and inverse of a certain complex
- SPODI-S Hermitian positive definite matrix using the factors
- DPODI-D computed by CPOCO, CPOFA, or CQRDC.
-
- CPPDI-C Compute the determinant and inverse of a complex Hermitian
- SPPDI-S positive definite matrix using factors from CPPCO or CPPFA.
- DPPDI-D
-
- D3D2. Positive definite banded
-
- CPBDI-C Compute the determinant of a complex Hermitian positive
- SPBDI-S definite band matrix using the factors computed by CPBCO or
- DPBDI-D CPBFA.
-
- D4. Eigenvalues, eigenvectors
-
- EISDOC-A Documentation for EISPACK, a collection of subprograms for
- solving matrix eigen-problems.
-
- D4A. Ordinary eigenvalue problems (Ax = (lambda) * x)
- D4A1. Real symmetric
-
- RS-S Compute the eigenvalues and, optionally, the eigenvectors
- CH-C of a real symmetric matrix.
-
- RSP-S Compute the eigenvalues and, optionally, the eigenvectors
- of a real symmetric matrix packed into a one dimensional
- array.
-
- SSIEV-S Compute the eigenvalues and, optionally, the eigenvectors
- CHIEV-C of a real symmetric matrix.
-
- SSPEV-S Compute the eigenvalues and, optionally, the eigenvectors
- of a real symmetric matrix stored in packed form.
-
- D4A2. Real nonsymmetric
-
- RG-S Compute the eigenvalues and, optionally, the eigenvectors
- CG-C of a real general matrix.
-
- SGEEV-S Compute the eigenvalues and, optionally, the eigenvectors
- CGEEV-C of a real general matrix.
-
- D4A3. Complex Hermitian
-
- CH-C Compute the eigenvalues and, optionally, the eigenvectors
- RS-S of a complex Hermitian matrix.
-
- CHIEV-C Compute the eigenvalues and, optionally, the eigenvectors
- SSIEV-S of a complex Hermitian matrix.
-
- D4A4. Complex non-Hermitian
-
- CG-C Compute the eigenvalues and, optionally, the eigenvectors
- RG-S of a complex general matrix.
-
- CGEEV-C Compute the eigenvalues and, optionally, the eigenvectors
- SGEEV-S of a complex general matrix.
-
- D4A5. Tridiagonal
-
- BISECT-S Compute the eigenvalues of a symmetric tridiagonal matrix
- in a given interval using Sturm sequencing.
-
- IMTQL1-S Compute the eigenvalues of a symmetric tridiagonal matrix
- using the implicit QL method.
-
- IMTQL2-S Compute the eigenvalues and eigenvectors of a symmetric
- tridiagonal matrix using the implicit QL method.
-
- IMTQLV-S Compute the eigenvalues of a symmetric tridiagonal matrix
- using the implicit QL method. Eigenvectors may be computed
- later.
-
- RATQR-S Compute the largest or smallest eigenvalues of a symmetric
- tridiagonal matrix using the rational QR method with Newton
- correction.
-
- RST-S Compute the eigenvalues and, optionally, the eigenvectors
- of a real symmetric tridiagonal matrix.
-
- RT-S Compute the eigenvalues and eigenvectors of a special real
- tridiagonal matrix.
-
- TQL1-S Compute the eigenvalues of symmetric tridiagonal matrix by
- the QL method.
-
- TQL2-S Compute the eigenvalues and eigenvectors of symmetric
- tridiagonal matrix.
-
- TQLRAT-S Compute the eigenvalues of symmetric tridiagonal matrix
- using a rational variant of the QL method.
-
- TRIDIB-S Compute the eigenvalues of a symmetric tridiagonal matrix
- in a given interval using Sturm sequencing.
-
- TSTURM-S Find those eigenvalues of a symmetric tridiagonal matrix
- in a given interval and their associated eigenvectors by
- Sturm sequencing.
-
- D4A6. Banded
-
- BQR-S Compute some of the eigenvalues of a real symmetric
- matrix using the QR method with shifts of origin.
-
- RSB-S Compute the eigenvalues and, optionally, the eigenvectors
- of a symmetric band matrix.
-
- D4B. Generalized eigenvalue problems (e.g., Ax = (lambda)*Bx)
- D4B1. Real symmetric
-
- RSG-S Compute the eigenvalues and, optionally, the eigenvectors
- of a symmetric generalized eigenproblem.
-
- RSGAB-S Compute the eigenvalues and, optionally, the eigenvectors
- of a symmetric generalized eigenproblem.
-
- RSGBA-S Compute the eigenvalues and, optionally, the eigenvectors
- of a symmetric generalized eigenproblem.
-
- D4B2. Real general
-
- RGG-S Compute the eigenvalues and eigenvectors for a real
- generalized eigenproblem.
-
- D4C. Associated operations
- D4C1. Transform problem
- D4C1A. Balance matrix
-
- BALANC-S Balance a real general matrix and isolate eigenvalues
- CBAL-C whenever possible.
-
- D4C1B. Reduce to compact form
- D4C1B1. Tridiagonal
-
- BANDR-S Reduce a real symmetric band matrix to symmetric
- tridiagonal matrix and, optionally, accumulate
- orthogonal similarity transformations.
-
- HTRID3-S Reduce a complex Hermitian (packed) matrix to a real
- symmetric tridiagonal matrix by unitary similarity
- transformations.
-
- HTRIDI-S Reduce a complex Hermitian matrix to a real symmetric
- tridiagonal matrix using unitary similarity
- transformations.
-
- TRED1-S Reduce a real symmetric matrix to symmetric tridiagonal
- matrix using orthogonal similarity transformations.
-
- TRED2-S Reduce a real symmetric matrix to a symmetric tridiagonal
- matrix using and accumulating orthogonal transformations.
-
- TRED3-S Reduce a real symmetric matrix stored in packed form to
- symmetric tridiagonal matrix using orthogonal
- transformations.
-
- D4C1B2. Hessenberg
-
- ELMHES-S Reduce a real general matrix to upper Hessenberg form
- COMHES-C using stabilized elementary similarity transformations.
-
- ORTHES-S Reduce a real general matrix to upper Hessenberg form
- CORTH-C using orthogonal similarity transformations.
-
- D4C1B3. Other
-
- QZHES-S The first step of the QZ algorithm for solving generalized
- matrix eigenproblems. Accepts a pair of real general
- matrices and reduces one of them to upper Hessenberg
- and the other to upper triangular form using orthogonal
- transformations. Usually followed by QZIT, QZVAL, QZVEC.
-
- QZIT-S The second step of the QZ algorithm for generalized
- eigenproblems. Accepts an upper Hessenberg and an upper
- triangular matrix and reduces the former to
- quasi-triangular form while preserving the form of the
- latter. Usually preceded by QZHES and followed by QZVAL
- and QZVEC.
-
- D4C1C. Standardize problem
-
- FIGI-S Transforms certain real non-symmetric tridiagonal matrix
- to symmetric tridiagonal matrix.
-
- FIGI2-S Transforms certain real non-symmetric tridiagonal matrix
- to symmetric tridiagonal matrix.
-
- REDUC-S Reduce a generalized symmetric eigenproblem to a standard
- symmetric eigenproblem using Cholesky factorization.
-
- REDUC2-S Reduce a certain generalized symmetric eigenproblem to a
- standard symmetric eigenproblem using Cholesky
- factorization.
-
- D4C2. Compute eigenvalues of matrix in compact form
- D4C2A. Tridiagonal
-
- BISECT-S Compute the eigenvalues of a symmetric tridiagonal matrix
- in a given interval using Sturm sequencing.
-
- IMTQL1-S Compute the eigenvalues of a symmetric tridiagonal matrix
- using the implicit QL method.
-
- IMTQL2-S Compute the eigenvalues and eigenvectors of a symmetric
- tridiagonal matrix using the implicit QL method.
-
- IMTQLV-S Compute the eigenvalues of a symmetric tridiagonal matrix
- using the implicit QL method. Eigenvectors may be computed
- later.
-
- RATQR-S Compute the largest or smallest eigenvalues of a symmetric
- tridiagonal matrix using the rational QR method with Newton
- correction.
-
- TQL1-S Compute the eigenvalues of symmetric tridiagonal matrix by
- the QL method.
-
- TQL2-S Compute the eigenvalues and eigenvectors of symmetric
- tridiagonal matrix.
-
- TQLRAT-S Compute the eigenvalues of symmetric tridiagonal matrix
- using a rational variant of the QL method.
-
- TRIDIB-S Compute the eigenvalues of a symmetric tridiagonal matrix
- in a given interval using Sturm sequencing.
-
- TSTURM-S Find those eigenvalues of a symmetric tridiagonal matrix
- in a given interval and their associated eigenvectors by
- Sturm sequencing.
-
- D4C2B. Hessenberg
-
- COMLR-C Compute the eigenvalues of a complex upper Hessenberg
- matrix using the modified LR method.
-
- COMLR2-C Compute the eigenvalues and eigenvectors of a complex upper
- Hessenberg matrix using the modified LR method.
-
- HQR-S Compute the eigenvalues of a real upper Hessenberg matrix
- COMQR-C using the QR method.
-
- HQR2-S Compute the eigenvalues and eigenvectors of a real upper
- COMQR2-C Hessenberg matrix using QR method.
-
- INVIT-S Compute the eigenvectors of a real upper Hessenberg
- CINVIT-C matrix associated with specified eigenvalues by inverse
- iteration.
-
- D4C2C. Other
-
- QZVAL-S The third step of the QZ algorithm for generalized
- eigenproblems. Accepts a pair of real matrices, one in
- quasi-triangular form and the other in upper triangular
- form and computes the eigenvalues of the associated
- eigenproblem. Usually preceded by QZHES, QZIT, and
- followed by QZVEC.
-
- D4C3. Form eigenvectors from eigenvalues
-
- BANDV-S Form the eigenvectors of a real symmetric band matrix
- associated with a set of ordered approximate eigenvalues
- by inverse iteration.
-
- QZVEC-S The optional fourth step of the QZ algorithm for
- generalized eigenproblems. Accepts a matrix in
- quasi-triangular form and another in upper triangular
- and computes the eigenvectors of the triangular problem
- and transforms them back to the original coordinates
- Usually preceded by QZHES, QZIT, and QZVAL.
-
- TINVIT-S Compute the eigenvectors of symmetric tridiagonal matrix
- corresponding to specified eigenvalues, using inverse
- iteration.
-
- D4C4. Back transform eigenvectors
-
- BAKVEC-S Form the eigenvectors of a certain real non-symmetric
- tridiagonal matrix from a symmetric tridiagonal matrix
- output from FIGI.
-
- BALBAK-S Form the eigenvectors of a real general matrix from the
- CBABK2-C eigenvectors of matrix output from BALANC.
-
- ELMBAK-S Form the eigenvectors of a real general matrix from the
- COMBAK-C eigenvectors of the upper Hessenberg matrix output from
- ELMHES.
-
- ELTRAN-S Accumulates the stabilized elementary similarity
- transformations used in the reduction of a real general
- matrix to upper Hessenberg form by ELMHES.
-
- HTRIB3-S Compute the eigenvectors of a complex Hermitian matrix from
- the eigenvectors of a real symmetric tridiagonal matrix
- output from HTRID3.
-
- HTRIBK-S Form the eigenvectors of a complex Hermitian matrix from
- the eigenvectors of a real symmetric tridiagonal matrix
- output from HTRIDI.
-
- ORTBAK-S Form the eigenvectors of a general real matrix from the
- CORTB-C eigenvectors of the upper Hessenberg matrix output from
- ORTHES.
-
- ORTRAN-S Accumulate orthogonal similarity transformations in the
- reduction of real general matrix by ORTHES.
-
- REBAK-S Form the eigenvectors of a generalized symmetric
- eigensystem from the eigenvectors of derived matrix output
- from REDUC or REDUC2.
-
- REBAKB-S Form the eigenvectors of a generalized symmetric
- eigensystem from the eigenvectors of derived matrix output
- from REDUC2.
-
- TRBAK1-S Form the eigenvectors of real symmetric matrix from
- the eigenvectors of a symmetric tridiagonal matrix formed
- by TRED1.
-
- TRBAK3-S Form the eigenvectors of a real symmetric matrix from the
- eigenvectors of a symmetric tridiagonal matrix formed
- by TRED3.
-
- D5. QR decomposition, Gram-Schmidt orthogonalization
-
- LLSIA-S Solve a linear least squares problems by performing a QR
- DLLSIA-D factorization of the matrix using Householder
- transformations. Emphasis is put on detecting possible
- rank deficiency.
-
- SGLSS-S Solve a linear least squares problems by performing a QR
- DGLSS-D factorization of the matrix using Householder
- transformations. Emphasis is put on detecting possible
- rank deficiency.
-
- SQRDC-S Use Householder transformations to compute the QR
- DQRDC-D factorization of an N by P matrix. Column pivoting is a
- CQRDC-C users option.
-
- D6. Singular value decomposition
-
- SSVDC-S Perform the singular value decomposition of a rectangular
- DSVDC-D matrix.
- CSVDC-C
-
- D7. Update matrix decompositions
- D7B. Cholesky
-
- SCHDD-S Downdate an augmented Cholesky decomposition or the
- DCHDD-D triangular factor of an augmented QR decomposition.
- CCHDD-C
-
- SCHEX-S Update the Cholesky factorization A=TRANS(R)*R of A
- DCHEX-D positive definite matrix A of order P under diagonal
- CCHEX-C permutations of the form TRANS(E)*A*E, where E is a
- permutation matrix.
-
- SCHUD-S Update an augmented Cholesky decomposition of the
- DCHUD-D triangular part of an augmented QR decomposition.
- CCHUD-C
-
- D9. Overdetermined or underdetermined systems of equations, singular systems,
- pseudo-inverses (search also classes D5, D6, K1a, L8a)
-
- BNDACC-S Compute the LU factorization of a banded matrices using
- DBNDAC-D sequential accumulation of rows of the data matrix.
- Exactly one right-hand side vector is permitted.
-
- BNDSOL-S Solve the least squares problem for a banded matrix using
- DBNDSL-D sequential accumulation of rows of the data matrix.
- Exactly one right-hand side vector is permitted.
-
- HFTI-S Solve a linear least squares problems by performing a QR
- DHFTI-D factorization of the matrix using Householder
- transformations.
-
- LLSIA-S Solve a linear least squares problems by performing a QR
- DLLSIA-D factorization of the matrix using Householder
- transformations. Emphasis is put on detecting possible
- rank deficiency.
-
- LSEI-S Solve a linearly constrained least squares problem with
- DLSEI-D equality and inequality constraints, and optionally compute
- a covariance matrix.
-
- MINFIT-S Compute the singular value decomposition of a rectangular
- matrix and solve the related linear least squares problem.
-
- SGLSS-S Solve a linear least squares problems by performing a QR
- DGLSS-D factorization of the matrix using Householder
- transformations. Emphasis is put on detecting possible
- rank deficiency.
-
- SQRSL-S Apply the output of SQRDC to compute coordinate transfor-
- DQRSL-D mations, projections, and least squares solutions.
- CQRSL-C
-
- ULSIA-S Solve an underdetermined linear system of equations by
- DULSIA-D performing an LQ factorization of the matrix using
- Householder transformations. Emphasis is put on detecting
- possible rank deficiency.
-
- E. Interpolation
-
- BSPDOC-A Documentation for BSPLINE, a package of subprograms for
- working with piecewise polynomial functions
- in B-representation.
-
- E1. Univariate data (curve fitting)
- E1A. Polynomial splines (piecewise polynomials)
-
- BINT4-S Compute the B-representation of a cubic spline
- DBINT4-D which interpolates given data.
-
- BINTK-S Compute the B-representation of a spline which interpolates
- DBINTK-D given data.
-
- BSPDOC-A Documentation for BSPLINE, a package of subprograms for
- working with piecewise polynomial functions
- in B-representation.
-
- PCHDOC-A Documentation for PCHIP, a Fortran package for piecewise
- cubic Hermite interpolation of data.
-
- PCHIC-S Set derivatives needed to determine a piecewise monotone
- DPCHIC-D piecewise cubic Hermite interpolant to given data.
- User control is available over boundary conditions and/or
- treatment of points where monotonicity switches direction.
-
- PCHIM-S Set derivatives needed to determine a monotone piecewise
- DPCHIM-D cubic Hermite interpolant to given data. Boundary values
- are provided which are compatible with monotonicity. The
- interpolant will have an extremum at each point where mono-
- tonicity switches direction. (See PCHIC if user control is
- desired over boundary or switch conditions.)
-
- PCHSP-S Set derivatives needed to determine the Hermite represen-
- DPCHSP-D tation of the cubic spline interpolant to given data, with
- specified boundary conditions.
-
- E1B. Polynomials
-
- POLCOF-S Compute the coefficients of the polynomial fit (including
- DPOLCF-D Hermite polynomial fits) produced by a previous call to
- POLINT.
-
- POLINT-S Produce the polynomial which interpolates a set of discrete
- DPLINT-D data points.
-
- E3. Service routines (e.g., grid generation, evaluation of fitted functions)
- (search also class N5)
-
- BFQAD-S Compute the integral of a product of a function and a
- DBFQAD-D derivative of a B-spline.
-
- BSPDR-S Use the B-representation to construct a divided difference
- DBSPDR-D table preparatory to a (right) derivative calculation.
-
- BSPEV-S Calculate the value of the spline and its derivatives from
- DBSPEV-D the B-representation.
-
- BSPPP-S Convert the B-representation of a B-spline to the piecewise
- DBSPPP-D polynomial (PP) form.
-
- BSPVD-S Calculate the value and all derivatives of order less than
- DBSPVD-D NDERIV of all basis functions which do not vanish at X.
-
- BSPVN-S Calculate the value of all (possibly) nonzero basis
- DBSPVN-D functions at X.
-
- BSQAD-S Compute the integral of a K-th order B-spline using the
- DBSQAD-D B-representation.
-
- BVALU-S Evaluate the B-representation of a B-spline at X for the
- DBVALU-D function value or any of its derivatives.
-
- CHFDV-S Evaluate a cubic polynomial given in Hermite form and its
- DCHFDV-D first derivative at an array of points. While designed for
- use by PCHFD, it may be useful directly as an evaluator
- for a piecewise cubic Hermite function in applications,
- such as graphing, where the interval is known in advance.
- If only function values are required, use CHFEV instead.
-
- CHFEV-S Evaluate a cubic polynomial given in Hermite form at an
- DCHFEV-D array of points. While designed for use by PCHFE, it may
- be useful directly as an evaluator for a piecewise cubic
- Hermite function in applications, such as graphing, where
- the interval is known in advance.
-
- INTRV-S Compute the largest integer ILEFT in 1 .LE. ILEFT .LE. LXT
- DINTRV-D such that XT(ILEFT) .LE. X where XT(*) is a subdivision
- of the X interval.
-
- PCHBS-S Piecewise Cubic Hermite to B-Spline converter.
- DPCHBS-D
-
- PCHCM-S Check a cubic Hermite function for monotonicity.
- DPCHCM-D
-
- PCHFD-S Evaluate a piecewise cubic Hermite function and its first
- DPCHFD-D derivative at an array of points. May be used by itself
- for Hermite interpolation, or as an evaluator for PCHIM
- or PCHIC. If only function values are required, use
- PCHFE instead.
-
- PCHFE-S Evaluate a piecewise cubic Hermite function at an array of
- DPCHFE-D points. May be used by itself for Hermite interpolation,
- or as an evaluator for PCHIM or PCHIC.
-
- PCHIA-S Evaluate the definite integral of a piecewise cubic
- DPCHIA-D Hermite function over an arbitrary interval.
-
- PCHID-S Evaluate the definite integral of a piecewise cubic
- DPCHID-D Hermite function over an interval whose endpoints are data
- points.
-
- PFQAD-S Compute the integral on (X1,X2) of a product of a function
- DPFQAD-D F and the ID-th derivative of a B-spline,
- (PP-representation).
-
- POLYVL-S Calculate the value of a polynomial and its first NDER
- DPOLVL-D derivatives where the polynomial was produced by a previous
- call to POLINT.
-
- PPQAD-S Compute the integral on (X1,X2) of a K-th order B-spline
- DPPQAD-D using the piecewise polynomial (PP) representation.
-
- PPVAL-S Calculate the value of the IDERIV-th derivative of the
- DPPVAL-D B-spline from the PP-representation.
-
- F. Solution of nonlinear equations
- F1. Single equation
- F1A. Smooth
- F1A1. Polynomial
- F1A1A. Real coefficients
-
- RPQR79-S Find the zeros of a polynomial with real coefficients.
- CPQR79-C
-
- RPZERO-S Find the zeros of a polynomial with real coefficients.
- CPZERO-C
-
- F1A1B. Complex coefficients
-
- CPQR79-C Find the zeros of a polynomial with complex coefficients.
- RPQR79-S
-
- CPZERO-C Find the zeros of a polynomial with complex coefficients.
- RPZERO-S
-
- F1B. General (no smoothness assumed)
-
- FZERO-S Search for a zero of a function F(X) in a given interval
- DFZERO-D (B,C). It is designed primarily for problems where F(B)
- and F(C) have opposite signs.
-
- F2. System of equations
- F2A. Smooth
-
- SNSQ-S Find a zero of a system of a N nonlinear functions in N
- DNSQ-D variables by a modification of the Powell hybrid method.
-
- SNSQE-S An easy-to-use code to find a zero of a system of N
- DNSQE-D nonlinear functions in N variables by a modification of
- the Powell hybrid method.
-
- SOS-S Solve a square system of nonlinear equations.
- DSOS-D
-
- F3. Service routines (e.g., check user-supplied derivatives)
-
- CHKDER-S Check the gradients of M nonlinear functions in N
- DCKDER-D variables, evaluated at a point X, for consistency
- with the functions themselves.
-
- G. Optimization (search also classes K, L8)
- G2. Constrained
- G2A. Linear programming
- G2A2. Sparse matrix of constraints
-
- SPLP-S Solve linear programming problems involving at
- DSPLP-D most a few thousand constraints and variables.
- Takes advantage of sparsity in the constraint matrix.
-
- G2E. Quadratic programming
-
- SBOCLS-S Solve the bounded and constrained least squares
- DBOCLS-D problem consisting of solving the equation
- E*X = F (in the least squares sense)
- subject to the linear constraints
- C*X = Y.
-
- SBOLS-S Solve the problem
- DBOLS-D E*X = F (in the least squares sense)
- with bounds on selected X values.
-
- G2H. General nonlinear programming
- G2H1. Simple bounds
-
- SBOCLS-S Solve the bounded and constrained least squares
- DBOCLS-D problem consisting of solving the equation
- E*X = F (in the least squares sense)
- subject to the linear constraints
- C*X = Y.
-
- SBOLS-S Solve the problem
- DBOLS-D E*X = F (in the least squares sense)
- with bounds on selected X values.
-
- G2H2. Linear equality or inequality constraints
-
- SBOCLS-S Solve the bounded and constrained least squares
- DBOCLS-D problem consisting of solving the equation
- E*X = F (in the least squares sense)
- subject to the linear constraints
- C*X = Y.
-
- SBOLS-S Solve the problem
- DBOLS-D E*X = F (in the least squares sense)
- with bounds on selected X values.
-
- G4. Service routines
- G4C. Check user-supplied derivatives
-
- CHKDER-S Check the gradients of M nonlinear functions in N
- DCKDER-D variables, evaluated at a point X, for consistency
- with the functions themselves.
-
- H. Differentiation, integration
- H1. Numerical differentiation
-
- CHFDV-S Evaluate a cubic polynomial given in Hermite form and its
- DCHFDV-D first derivative at an array of points. While designed for
- use by PCHFD, it may be useful directly as an evaluator
- for a piecewise cubic Hermite function in applications,
- such as graphing, where the interval is known in advance.
- If only function values are required, use CHFEV instead.
-
- PCHFD-S Evaluate a piecewise cubic Hermite function and its first
- DPCHFD-D derivative at an array of points. May be used by itself
- for Hermite interpolation, or as an evaluator for PCHIM
- or PCHIC. If only function values are required, use
- PCHFE instead.
-
- H2. Quadrature (numerical evaluation of definite integrals)
-
- QPDOC-A Documentation for QUADPACK, a package of subprograms for
- automatic evaluation of one-dimensional definite integrals.
-
- H2A. One-dimensional integrals
- H2A1. Finite interval (general integrand)
- H2A1A. Integrand available via user-defined procedure
- H2A1A1. Automatic (user need only specify required accuracy)
-
- GAUS8-S Integrate a real function of one variable over a finite
- DGAUS8-D interval using an adaptive 8-point Legendre-Gauss
- algorithm. Intended primarily for high accuracy
- integration or integration of smooth functions.
-
- QAG-S The routine calculates an approximation result to a given
- DQAG-D definite integral I = integral of F over (A,B),
- hopefully satisfying following claim for accuracy
- ABS(I-RESULT)LE.MAX(EPSABS,EPSREL*ABS(I)).
-
- QAGE-S The routine calculates an approximation result to a given
- DQAGE-D definite integral I = Integral of F over (A,B),
- hopefully satisfying following claim for accuracy
- ABS(I-RESLT).LE.MAX(EPSABS,EPSREL*ABS(I)).
-
- QAGS-S The routine calculates an approximation result to a given
- DQAGS-D Definite integral I = Integral of F over (A,B),
- Hopefully satisfying following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
-
- QAGSE-S The routine calculates an approximation result to a given
- DQAGSE-D definite integral I = Integral of F over (A,B),
- hopefully satisfying following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
-
- QNC79-S Integrate a function using a 7-point adaptive Newton-Cotes
- DQNC79-D quadrature rule.
-
- QNG-S The routine calculates an approximation result to a
- DQNG-D given definite integral I = integral of F over (A,B),
- hopefully satisfying following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
-
- H2A1A2. Nonautomatic
-
- QK15-S To compute I = Integral of F over (A,B), with error
- DQK15-D estimate
- J = integral of ABS(F) over (A,B)
-
- QK21-S To compute I = Integral of F over (A,B), with error
- DQK21-D estimate
- J = Integral of ABS(F) over (A,B)
-
- QK31-S To compute I = Integral of F over (A,B) with error
- DQK31-D estimate
- J = Integral of ABS(F) over (A,B)
-
- QK41-S To compute I = Integral of F over (A,B), with error
- DQK41-D estimate
- J = Integral of ABS(F) over (A,B)
-
- QK51-S To compute I = Integral of F over (A,B) with error
- DQK51-D estimate
- J = Integral of ABS(F) over (A,B)
-
- QK61-S To compute I = Integral of F over (A,B) with error
- DQK61-D estimate
- J = Integral of ABS(F) over (A,B)
-
- H2A1B. Integrand available only on grid
- H2A1B2. Nonautomatic
-
- AVINT-S Integrate a function tabulated at arbitrarily spaced
- DAVINT-D abscissas using overlapping parabolas.
-
- PCHIA-S Evaluate the definite integral of a piecewise cubic
- DPCHIA-D Hermite function over an arbitrary interval.
-
- PCHID-S Evaluate the definite integral of a piecewise cubic
- DPCHID-D Hermite function over an interval whose endpoints are data
- points.
-
- H2A2. Finite interval (specific or special type integrand including weight
- functions, oscillating and singular integrands, principal value
- integrals, splines, etc.)
- H2A2A. Integrand available via user-defined procedure
- H2A2A1. Automatic (user need only specify required accuracy)
-
- BFQAD-S Compute the integral of a product of a function and a
- DBFQAD-D derivative of a B-spline.
-
- BSQAD-S Compute the integral of a K-th order B-spline using the
- DBSQAD-D B-representation.
-
- PFQAD-S Compute the integral on (X1,X2) of a product of a function
- DPFQAD-D F and the ID-th derivative of a B-spline,
- (PP-representation).
-
- PPQAD-S Compute the integral on (X1,X2) of a K-th order B-spline
- DPPQAD-D using the piecewise polynomial (PP) representation.
-
- QAGP-S The routine calculates an approximation result to a given
- DQAGP-D definite integral I = Integral of F over (A,B),
- hopefully satisfying following claim for accuracy
- break points of the integration interval, where local
- difficulties of the integrand may occur(e.g. SINGULARITIES,
- DISCONTINUITIES), are provided by the user.
-
- QAGPE-S Approximate a given definite integral I = Integral of F
- DQAGPE-D over (A,B), hopefully satisfying the accuracy claim:
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
- Break points of the integration interval, where local
- difficulties of the integrand may occur (e.g. singularities
- or discontinuities) are provided by the user.
-
- QAWC-S The routine calculates an approximation result to a
- DQAWC-D Cauchy principal value I = INTEGRAL of F*W over (A,B)
- (W(X) = 1/((X-C), C.NE.A, C.NE.B), hopefully satisfying
- following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABE,EPSREL*ABS(I)).
-
- QAWCE-S The routine calculates an approximation result to a
- DQAWCE-D CAUCHY PRINCIPAL VALUE I = Integral of F*W over (A,B)
- (W(X) = 1/(X-C), (C.NE.A, C.NE.B), hopefully satisfying
- following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
-
- QAWO-S Calculate an approximation to a given definite integral
- DQAWO-D I = Integral of F(X)*W(X) over (A,B), where
- W(X) = COS(OMEGA*X)
- or W(X) = SIN(OMEGA*X),
- hopefully satisfying the following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
-
- QAWOE-S Calculate an approximation to a given definite integral
- DQAWOE-D I = Integral of F(X)*W(X) over (A,B), where
- W(X) = COS(OMEGA*X)
- or W(X) = SIN(OMEGA*X),
- hopefully satisfying the following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
-
- QAWS-S The routine calculates an approximation result to a given
- DQAWS-D definite integral I = Integral of F*W over (A,B),
- (where W shows a singular behaviour at the end points
- see parameter INTEGR).
- Hopefully satisfying following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
-
- QAWSE-S The routine calculates an approximation result to a given
- DQAWSE-D definite integral I = Integral of F*W over (A,B),
- (where W shows a singular behaviour at the end points,
- see parameter INTEGR).
- Hopefully satisfying following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
-
- QMOMO-S This routine computes modified Chebyshev moments. The K-th
- DQMOMO-D modified Chebyshev moment is defined as the integral over
- (-1,1) of W(X)*T(K,X), where T(K,X) is the Chebyshev
- polynomial of degree K.
-
- H2A2A2. Nonautomatic
-
- QC25C-S To compute I = Integral of F*W over (A,B) with
- DQC25C-D error estimate, where W(X) = 1/(X-C)
-
- QC25F-S To compute the integral I=Integral of F(X) over (A,B)
- DQC25F-D Where W(X) = COS(OMEGA*X) Or (WX)=SIN(OMEGA*X)
- and to compute J=Integral of ABS(F) over (A,B). For small
- value of OMEGA or small intervals (A,B) 15-point GAUSS-
- KRONROD Rule used. Otherwise generalized CLENSHAW-CURTIS us
-
- QC25S-S To compute I = Integral of F*W over (BL,BR), with error
- DQC25S-D estimate, where the weight function W has a singular
- behaviour of ALGEBRAICO-LOGARITHMIC type at the points
- A and/or B. (BL,BR) is a part of (A,B).
-
- QK15W-S To compute I = Integral of F*W over (A,B), with error
- DQK15W-D estimate
- J = Integral of ABS(F*W) over (A,B)
-
- H2A3. Semi-infinite interval (including e**(-x) weight function)
- H2A3A. Integrand available via user-defined procedure
- H2A3A1. Automatic (user need only specify required accuracy)
-
- QAGI-S The routine calculates an approximation result to a given
- DQAGI-D INTEGRAL I = Integral of F over (BOUND,+INFINITY)
- OR I = Integral of F over (-INFINITY,BOUND)
- OR I = Integral of F over (-INFINITY,+INFINITY)
- Hopefully satisfying following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
-
- QAGIE-S The routine calculates an approximation result to a given
- DQAGIE-D integral I = Integral of F over (BOUND,+INFINITY)
- or I = Integral of F over (-INFINITY,BOUND)
- or I = Integral of F over (-INFINITY,+INFINITY),
- hopefully satisfying following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
-
- QAWF-S The routine calculates an approximation result to a given
- DQAWF-D Fourier integral
- I = Integral of F(X)*W(X) over (A,INFINITY)
- where W(X) = COS(OMEGA*X) or W(X) = SIN(OMEGA*X).
- Hopefully satisfying following claim for accuracy
- ABS(I-RESULT).LE.EPSABS.
-
- QAWFE-S The routine calculates an approximation result to a
- DQAWFE-D given Fourier integral
- I = Integral of F(X)*W(X) over (A,INFINITY)
- where W(X) = COS(OMEGA*X) or W(X) = SIN(OMEGA*X),
- hopefully satisfying following claim for accuracy
- ABS(I-RESULT).LE.EPSABS.
-
- H2A3A2. Nonautomatic
-
- QK15I-S The original (infinite integration range is mapped
- DQK15I-D onto the interval (0,1) and (A,B) is a part of (0,1).
- it is the purpose to compute
- I = Integral of transformed integrand over (A,B),
- J = Integral of ABS(Transformed Integrand) over (A,B).
-
- H2A4. Infinite interval (including e**(-x**2)) weight function)
- H2A4A. Integrand available via user-defined procedure
- H2A4A1. Automatic (user need only specify required accuracy)
-
- QAGI-S The routine calculates an approximation result to a given
- DQAGI-D INTEGRAL I = Integral of F over (BOUND,+INFINITY)
- OR I = Integral of F over (-INFINITY,BOUND)
- OR I = Integral of F over (-INFINITY,+INFINITY)
- Hopefully satisfying following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
-
- QAGIE-S The routine calculates an approximation result to a given
- DQAGIE-D integral I = Integral of F over (BOUND,+INFINITY)
- or I = Integral of F over (-INFINITY,BOUND)
- or I = Integral of F over (-INFINITY,+INFINITY),
- hopefully satisfying following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
-
- H2A4A2. Nonautomatic
-
- QK15I-S The original (infinite integration range is mapped
- DQK15I-D onto the interval (0,1) and (A,B) is a part of (0,1).
- it is the purpose to compute
- I = Integral of transformed integrand over (A,B),
- J = Integral of ABS(Transformed Integrand) over (A,B).
-
- I. Differential and integral equations
- I1. Ordinary differential equations
- I1A. Initial value problems
- I1A1. General, nonstiff or mildly stiff
- I1A1A. One-step methods (e.g., Runge-Kutta)
-
- DERKF-S Solve an initial value problem in ordinary differential
- DDERKF-D equations using a Runge-Kutta-Fehlberg scheme.
-
- I1A1B. Multistep methods (e.g., Adams' predictor-corrector)
-
- DEABM-S Solve an initial value problem in ordinary differential
- DDEABM-D equations using an Adams-Bashforth method.
-
- SDRIV1-S The function of SDRIV1 is to solve N (200 or fewer)
- DDRIV1-D ordinary differential equations of the form
- CDRIV1-C dY(I)/dT = F(Y(I),T), given the initial conditions
- Y(I) = YI. SDRIV1 uses single precision arithmetic.
-
- SDRIV2-S The function of SDRIV2 is to solve N ordinary differential
- DDRIV2-D equations of the form dY(I)/dT = F(Y(I),T), given the
- CDRIV2-C initial conditions Y(I) = YI. The program has options to
- allow the solution of both stiff and non-stiff differential
- equations. SDRIV2 uses single precision arithmetic.
-
- SDRIV3-S The function of SDRIV3 is to solve N ordinary differential
- DDRIV3-D equations of the form dY(I)/dT = F(Y(I),T), given the
- CDRIV3-C initial conditions Y(I) = YI. The program has options to
- allow the solution of both stiff and non-stiff differential
- equations. Other important options are available. SDRIV3
- uses single precision arithmetic.
-
- SINTRP-S Approximate the solution at XOUT by evaluating the
- DINTP-D polynomial computed in STEPS at XOUT. Must be used in
- conjunction with STEPS.
-
- STEPS-S Integrate a system of first order ordinary differential
- DSTEPS-D equations one step.
-
- I1A2. Stiff and mixed algebraic-differential equations
-
- DEBDF-S Solve an initial value problem in ordinary differential
- DDEBDF-D equations using backward differentiation formulas. It is
- intended primarily for stiff problems.
-
- SDASSL-S This code solves a system of differential/algebraic
- DDASSL-D equations of the form G(T,Y,YPRIME) = 0.
-
- SDRIV1-S The function of SDRIV1 is to solve N (200 or fewer)
- DDRIV1-D ordinary differential equations of the form
- CDRIV1-C dY(I)/dT = F(Y(I),T), given the initial conditions
- Y(I) = YI. SDRIV1 uses single precision arithmetic.
-
- SDRIV2-S The function of SDRIV2 is to solve N ordinary differential
- DDRIV2-D equations of the form dY(I)/dT = F(Y(I),T), given the
- CDRIV2-C initial conditions Y(I) = YI. The program has options to
- allow the solution of both stiff and non-stiff differential
- equations. SDRIV2 uses single precision arithmetic.
-
- SDRIV3-S The function of SDRIV3 is to solve N ordinary differential
- DDRIV3-D equations of the form dY(I)/dT = F(Y(I),T), given the
- CDRIV3-C initial conditions Y(I) = YI. The program has options to
- allow the solution of both stiff and non-stiff differential
- equations. Other important options are available. SDRIV3
- uses single precision arithmetic.
-
- I1B. Multipoint boundary value problems
- I1B1. Linear
-
- BVSUP-S Solve a linear two-point boundary value problem using
- DBVSUP-D superposition coupled with an orthonormalization procedure
- and a variable-step integration scheme.
-
- I2. Partial differential equations
- I2B. Elliptic boundary value problems
- I2B1. Linear
- I2B1A. Second order
- I2B1A1. Poisson (Laplace) or Helmholz equation
- I2B1A1A. Rectangular domain (or topologically rectangular in the coordinate
- system)
-
- HSTCRT-S Solve the standard five-point finite difference
- approximation on a staggered grid to the Helmholtz equation
- in Cartesian coordinates.
-
- HSTCSP-S Solve the standard five-point finite difference
- approximation on a staggered grid to the modified Helmholtz
- equation in spherical coordinates assuming axisymmetry
- (no dependence on longitude).
-
- HSTCYL-S Solve the standard five-point finite difference
- approximation on a staggered grid to the modified
- Helmholtz equation in cylindrical coordinates.
-
- HSTPLR-S Solve the standard five-point finite difference
- approximation on a staggered grid to the Helmholtz equation
- in polar coordinates.
-
- HSTSSP-S Solve the standard five-point finite difference
- approximation on a staggered grid to the Helmholtz
- equation in spherical coordinates and on the surface of
- the unit sphere (radius of 1).
-
- HW3CRT-S Solve the standard seven-point finite difference
- approximation to the Helmholtz equation in Cartesian
- coordinates.
-
- HWSCRT-S Solves the standard five-point finite difference
- approximation to the Helmholtz equation in Cartesian
- coordinates.
-
- HWSCSP-S Solve a finite difference approximation to the modified
- Helmholtz equation in spherical coordinates assuming
- axisymmetry (no dependence on longitude).
-
- HWSCYL-S Solve a standard finite difference approximation
- to the Helmholtz equation in cylindrical coordinates.
-
- HWSPLR-S Solve a finite difference approximation to the Helmholtz
- equation in polar coordinates.
-
- HWSSSP-S Solve a finite difference approximation to the Helmholtz
- equation in spherical coordinates and on the surface of the
- unit sphere (radius of 1).
-
- I2B1A2. Other separable problems
-
- SEPELI-S Discretize and solve a second and, optionally, a fourth
- order finite difference approximation on a uniform grid to
- the general separable elliptic partial differential
- equation on a rectangle with any combination of periodic or
- mixed boundary conditions.
-
- SEPX4-S Solve for either the second or fourth order finite
- difference approximation to the solution of a separable
- elliptic partial differential equation on a rectangle.
- Any combination of periodic or mixed boundary conditions is
- allowed.
-
- I2B4. Service routines
- I2B4B. Solution of discretized elliptic equations
-
- BLKTRI-S Solve a block tridiagonal system of linear equations
- CBLKTR-C (usually resulting from the discretization of separable
- two-dimensional elliptic equations).
-
- GENBUN-S Solve by a cyclic reduction algorithm the linear system
- CMGNBN-C of equations that results from a finite difference
- approximation to certain 2-d elliptic PDE's on a centered
- grid .
-
- POIS3D-S Solve a three-dimensional block tridiagonal linear system
- which arises from a finite difference approximation to a
- three-dimensional Poisson equation using the Fourier
- transform package FFTPAK written by Paul Swarztrauber.
-
- POISTG-S Solve a block tridiagonal system of linear equations
- that results from a staggered grid finite difference
- approximation to 2-D elliptic PDE's.
-
- J. Integral transforms
- J1. Fast Fourier transforms (search class L10 for time series analysis)
-
- FFTDOC-A Documentation for FFTPACK, a collection of Fast Fourier
- Transform routines.
-
- J1A. One-dimensional
- J1A1. Real
-
- EZFFTB-S A simplified real, periodic, backward fast Fourier
- transform.
-
- EZFFTF-S Compute a simplified real, periodic, fast Fourier forward
- transform.
-
- EZFFTI-S Initialize a work array for EZFFTF and EZFFTB.
-
- RFFTB1-S Compute the backward fast Fourier transform of a real
- CFFTB1-C coefficient array.
-
- RFFTF1-S Compute the forward transform of a real, periodic sequence.
- CFFTF1-C
-
- RFFTI1-S Initialize a real and an integer work array for RFFTF1 and
- CFFTI1-C RFFTB1.
-
- J1A2. Complex
-
- CFFTB1-C Compute the unnormalized inverse of CFFTF1.
- RFFTB1-S
-
- CFFTF1-C Compute the forward transform of a complex, periodic
- RFFTF1-S sequence.
-
- CFFTI1-C Initialize a real and an integer work array for CFFTF1 and
- RFFTI1-S CFFTB1.
-
- J1A3. Trigonometric (sine, cosine)
-
- COSQB-S Compute the unnormalized inverse cosine transform.
-
- COSQF-S Compute the forward cosine transform with odd wave numbers.
-
- COSQI-S Initialize a work array for COSQF and COSQB.
-
- COST-S Compute the cosine transform of a real, even sequence.
-
- COSTI-S Initialize a work array for COST.
-
- SINQB-S Compute the unnormalized inverse of SINQF.
-
- SINQF-S Compute the forward sine transform with odd wave numbers.
-
- SINQI-S Initialize a work array for SINQF and SINQB.
-
- SINT-S Compute the sine transform of a real, odd sequence.
-
- SINTI-S Initialize a work array for SINT.
-
- J4. Hilbert transforms
-
- QAWC-S The routine calculates an approximation result to a
- DQAWC-D Cauchy principal value I = INTEGRAL of F*W over (A,B)
- (W(X) = 1/((X-C), C.NE.A, C.NE.B), hopefully satisfying
- following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABE,EPSREL*ABS(I)).
-
- QAWCE-S The routine calculates an approximation result to a
- DQAWCE-D CAUCHY PRINCIPAL VALUE I = Integral of F*W over (A,B)
- (W(X) = 1/(X-C), (C.NE.A, C.NE.B), hopefully satisfying
- following claim for accuracy
- ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
-
- QC25C-S To compute I = Integral of F*W over (A,B) with
- DQC25C-D error estimate, where W(X) = 1/(X-C)
-
- K. Approximation (search also class L8)
-
- BSPDOC-A Documentation for BSPLINE, a package of subprograms for
- working with piecewise polynomial functions
- in B-representation.
-
- K1. Least squares (L-2) approximation
- K1A. Linear least squares (search also classes D5, D6, D9)
- K1A1. Unconstrained
- K1A1A. Univariate data (curve fitting)
- K1A1A1. Polynomial splines (piecewise polynomials)
-
- EFC-S Fit a piecewise polynomial curve to discrete data.
- DEFC-D The piecewise polynomials are represented as B-splines.
- The fitting is done in a weighted least squares sense.
-
- FC-S Fit a piecewise polynomial curve to discrete data.
- DFC-D The piecewise polynomials are represented as B-splines.
- The fitting is done in a weighted least squares sense.
- Equality and inequality constraints can be imposed on the
- fitted curve.
-
- K1A1A2. Polynomials
-
- PCOEF-S Convert the POLFIT coefficients to Taylor series form.
- DPCOEF-D
-
- POLFIT-S Fit discrete data in a least squares sense by polynomials
- DPOLFT-D in one variable.
-
- K1A2. Constrained
- K1A2A. Linear constraints
-
- EFC-S Fit a piecewise polynomial curve to discrete data.
- DEFC-D The piecewise polynomials are represented as B-splines.
- The fitting is done in a weighted least squares sense.
-
- FC-S Fit a piecewise polynomial curve to discrete data.
- DFC-D The piecewise polynomials are represented as B-splines.
- The fitting is done in a weighted least squares sense.
- Equality and inequality constraints can be imposed on the
- fitted curve.
-
- LSEI-S Solve a linearly constrained least squares problem with
- DLSEI-D equality and inequality constraints, and optionally compute
- a covariance matrix.
-
- SBOCLS-S Solve the bounded and constrained least squares
- DBOCLS-D problem consisting of solving the equation
- E*X = F (in the least squares sense)
- subject to the linear constraints
- C*X = Y.
-
- SBOLS-S Solve the problem
- DBOLS-D E*X = F (in the least squares sense)
- with bounds on selected X values.
-
- WNNLS-S Solve a linearly constrained least squares problem with
- DWNNLS-D equality constraints and nonnegativity constraints on
- selected variables.
-
- K1B. Nonlinear least squares
- K1B1. Unconstrained
-
- SCOV-S Calculate the covariance matrix for a nonlinear data
- DCOV-D fitting problem. It is intended to be used after a
- successful return from either SNLS1 or SNLS1E.
-
- K1B1A. Smooth functions
- K1B1A1. User provides no derivatives
-
- SNLS1-S Minimize the sum of the squares of M nonlinear functions
- DNLS1-D in N variables by a modification of the Levenberg-Marquardt
- algorithm.
-
- SNLS1E-S An easy-to-use code which minimizes the sum of the squares
- DNLS1E-D of M nonlinear functions in N variables by a modification
- of the Levenberg-Marquardt algorithm.
-
- K1B1A2. User provides first derivatives
-
- SNLS1-S Minimize the sum of the squares of M nonlinear functions
- DNLS1-D in N variables by a modification of the Levenberg-Marquardt
- algorithm.
-
- SNLS1E-S An easy-to-use code which minimizes the sum of the squares
- DNLS1E-D of M nonlinear functions in N variables by a modification
- of the Levenberg-Marquardt algorithm.
-
- K6. Service routines (e.g., mesh generation, evaluation of fitted functions)
- (search also class N5)
-
- BFQAD-S Compute the integral of a product of a function and a
- DBFQAD-D derivative of a B-spline.
-
- DBSPDR-D Use the B-representation to construct a divided difference
- BSPDR-S table preparatory to a (right) derivative calculation.
-
- BSPEV-S Calculate the value of the spline and its derivatives from
- DBSPEV-D the B-representation.
-
- BSPPP-S Convert the B-representation of a B-spline to the piecewise
- DBSPPP-D polynomial (PP) form.
-
- BSPVD-S Calculate the value and all derivatives of order less than
- DBSPVD-D NDERIV of all basis functions which do not vanish at X.
-
- BSPVN-S Calculate the value of all (possibly) nonzero basis
- DBSPVN-D functions at X.
-
- BSQAD-S Compute the integral of a K-th order B-spline using the
- DBSQAD-D B-representation.
-
- BVALU-S Evaluate the B-representation of a B-spline at X for the
- DBVALU-D function value or any of its derivatives.
-
- INTRV-S Compute the largest integer ILEFT in 1 .LE. ILEFT .LE. LXT
- DINTRV-D such that XT(ILEFT) .LE. X where XT(*) is a subdivision
- of the X interval.
-
- PFQAD-S Compute the integral on (X1,X2) of a product of a function
- DPFQAD-D F and the ID-th derivative of a B-spline,
- (PP-representation).
-
- PPQAD-S Compute the integral on (X1,X2) of a K-th order B-spline
- DPPQAD-D using the piecewise polynomial (PP) representation.
-
- PPVAL-S Calculate the value of the IDERIV-th derivative of the
- DPPVAL-D B-spline from the PP-representation.
-
- PVALUE-S Use the coefficients generated by POLFIT to evaluate the
- DP1VLU-D polynomial fit of degree L, along with the first NDER of
- its derivatives, at a specified point.
-
- L. Statistics, probability
- L5. Function evaluation (search also class C)
- L5A. Univariate
- L5A1. Cumulative distribution functions, probability density functions
- L5A1E. Error function, exponential, extreme value
-
- ERF-S Compute the error function.
- DERF-D
-
- ERFC-S Compute the complementary error function.
- DERFC-D
-
- L6. Pseudo-random number generation
- L6A. Univariate
- L6A14. Negative binomial, normal
-
- RGAUSS-S Generate a normally distributed (Gaussian) random number.
-
- L6A21. Uniform
-
- RAND-S Generate a uniformly distributed random number.
-
- RUNIF-S Generate a uniformly distributed random number.
-
- L7. Experimental design, including analysis of variance
- L7A. Univariate
- L7A3. Analysis of covariance
-
- CV-S Evaluate the variance function of the curve obtained
- DCV-D by the constrained B-spline fitting subprogram FC.
-
- L8. Regression (search also classes G, K)
- L8A. Linear least squares (L-2) (search also classes D5, D6, D9)
- L8A3. Piecewise polynomial (i.e. multiphase or spline)
-
- EFC-S Fit a piecewise polynomial curve to discrete data.
- DEFC-D The piecewise polynomials are represented as B-splines.
- The fitting is done in a weighted least squares sense.
-
- FC-S Fit a piecewise polynomial curve to discrete data.
- DFC-D The piecewise polynomials are represented as B-splines.
- The fitting is done in a weighted least squares sense.
- Equality and inequality constraints can be imposed on the
- fitted curve.
-
- N. Data handling (search also class L2)
- N1. Input, output
-
- SBHIN-S Read a Sparse Linear System in the Boeing/Harwell Format.
- DBHIN-D The matrix is read in and if the right hand side is also
- present in the input file then it too is read in. The
- matrix is then modified to be in the SLAP Column format.
-
- SCPPLT-S Printer Plot of SLAP Column Format Matrix.
- DCPPLT-D Routine to print out a SLAP Column format matrix in a
- "printer plot" graphical representation.
-
- STIN-S Read in SLAP Triad Format Linear System.
- DTIN-D Routine to read in a SLAP Triad format matrix and right
- hand side and solution to the system, if known.
-
- STOUT-S Write out SLAP Triad Format Linear System.
- DTOUT-D Routine to write out a SLAP Triad format matrix and right
- hand side and solution to the system, if known.
-
- N6. Sorting
- N6A. Internal
- N6A1. Passive (i.e. construct pointer array, rank)
- N6A1A. Integer
-
- IPSORT-I Return the permutation vector generated by sorting a given
- SPSORT-S array and, optionally, rearrange the elements of the array.
- DPSORT-D The array may be sorted in increasing or decreasing order.
- HPSORT-H A slightly modified quicksort algorithm is used.
-
- N6A1B. Real
-
- SPSORT-S Return the permutation vector generated by sorting a given
- DPSORT-D array and, optionally, rearrange the elements of the array.
- IPSORT-I The array may be sorted in increasing or decreasing order.
- HPSORT-H A slightly modified quicksort algorithm is used.
-
- N6A1C. Character
-
- HPSORT-H Return the permutation vector generated by sorting a
- SPSORT-S substring within a character array and, optionally,
- DPSORT-D rearrange the elements of the array. The array may be
- IPSORT-I sorted in forward or reverse lexicographical order. A
- slightly modified quicksort algorithm is used.
-
- N6A2. Active
- N6A2A. Integer
-
- IPSORT-I Return the permutation vector generated by sorting a given
- SPSORT-S array and, optionally, rearrange the elements of the array.
- DPSORT-D The array may be sorted in increasing or decreasing order.
- HPSORT-H A slightly modified quicksort algorithm is used.
-
- ISORT-I Sort an array and optionally make the same interchanges in
- SSORT-S an auxiliary array. The array may be sorted in increasing
- DSORT-D or decreasing order. A slightly modified QUICKSORT
- algorithm is used.
-
- N6A2B. Real
-
- SPSORT-S Return the permutation vector generated by sorting a given
- DPSORT-D array and, optionally, rearrange the elements of the array.
- IPSORT-I The array may be sorted in increasing or decreasing order.
- HPSORT-H A slightly modified quicksort algorithm is used.
-
- SSORT-S Sort an array and optionally make the same interchanges in
- DSORT-D an auxiliary array. The array may be sorted in increasing
- ISORT-I or decreasing order. A slightly modified QUICKSORT
- algorithm is used.
-
- N6A2C. Character
-
- HPSORT-H Return the permutation vector generated by sorting a
- SPSORT-S substring within a character array and, optionally,
- DPSORT-D rearrange the elements of the array. The array may be
- IPSORT-I sorted in forward or reverse lexicographical order. A
- slightly modified quicksort algorithm is used.
-
- N8. Permuting
-
- SPPERM-S Rearrange a given array according to a prescribed
- DPPERM-D permutation vector.
- IPPERM-I
- HPPERM-H
-
- R. Service routines
- R1. Machine-dependent constants
-
- I1MACH-I Return integer machine dependent constants.
-
- R1MACH-S Return floating point machine dependent constants.
- D1MACH-D
-
- R2. Error checking (e.g., check monotonicity)
-
- GAMLIM-S Compute the minimum and maximum bounds for the argument in
- DGAMLM-D the Gamma function.
-
- R3. Error handling
-
- FDUMP-A Symbolic dump (should be locally written).
-
- R3A. Set criteria for fatal errors
-
- XSETF-A Set the error control flag.
-
- R3B. Set unit number for error messages
-
- XSETUA-A Set logical unit numbers (up to 5) to which error
- messages are to be sent.
-
- XSETUN-A Set output file to which error messages are to be sent.
-
- R3C. Other utility programs
-
- NUMXER-I Return the most recent error number.
-
- XERCLR-A Reset current error number to zero.
-
- XERDMP-A Print the error tables and then clear them.
-
- XERMAX-A Set maximum number of times any error message is to be
- printed.
-
- XERMSG-A Process error messages for SLATEC and other libraries.
-
- XGETF-A Return the current value of the error control flag.
-
- XGETUA-A Return unit number(s) to which error messages are being
- sent.
-
- XGETUN-A Return the (first) output file to which error messages
- are being sent.
-
- Z. Other
-
- AAAAAA-A SLATEC Common Mathematical Library disclaimer and version.
-
- BSPDOC-A Documentation for BSPLINE, a package of subprograms for
- working with piecewise polynomial functions
- in B-representation.
-
- EISDOC-A Documentation for EISPACK, a collection of subprograms for
- solving matrix eigen-problems.
-
- FFTDOC-A Documentation for FFTPACK, a collection of Fast Fourier
- Transform routines.
-
- FUNDOC-A Documentation for FNLIB, a collection of routines for
- evaluating elementary and special functions.
-
- PCHDOC-A Documentation for PCHIP, a Fortran package for piecewise
- cubic Hermite interpolation of data.
-
- QPDOC-A Documentation for QUADPACK, a package of subprograms for
- automatic evaluation of one-dimensional definite integrals.
-
- SLPDOC-S Sparse Linear Algebra Package Version 2.0.2 Documentation.
- DLPDOC-D Routines to solve large sparse symmetric and nonsymmetric
- positive definite linear systems, Ax = b, using precondi-
- tioned iterative methods.
-
-
- SECTION II. Subsidiary Routines
-
- ASYIK Subsidiary to BESI and BESK
-
- ASYJY Subsidiary to BESJ and BESY
-
- BCRH Subsidiary to CBLKTR
-
- BDIFF Subsidiary to BSKIN
-
- BESKNU Subsidiary to BESK
-
- BESYNU Subsidiary to BESY
-
- BKIAS Subsidiary to BSKIN
-
- BKISR Subsidiary to BSKIN
-
- BKSOL Subsidiary to BVSUP
-
- BLKTR1 Subsidiary to BLKTRI
-
- BNFAC Subsidiary to BINT4 and BINTK
-
- BNSLV Subsidiary to BINT4 and BINTK
-
- BSGQ8 Subsidiary to BFQAD
-
- BSPLVD Subsidiary to FC
-
- BSPLVN Subsidiary to FC
-
- BSRH Subsidiary to BLKTRI
-
- BVDER Subsidiary to BVSUP
-
- BVPOR Subsidiary to BVSUP
-
- C1MERG Merge two strings of complex numbers. Each string is
- ascending by the real part.
-
- C9LGMC Compute the log gamma correction factor so that
- LOG(CGAMMA(Z)) = 0.5*LOG(2.*PI) + (Z-0.5)*LOG(Z) - Z
- + C9LGMC(Z).
-
- C9LN2R Evaluate LOG(1+Z) from second order relative accuracy so
- that LOG(1+Z) = Z - Z**2/2 + Z**3*C9LN2R(Z).
-
- CACAI Subsidiary to CAIRY
-
- CACON Subsidiary to CBESH and CBESK
-
- CASYI Subsidiary to CBESI and CBESK
-
- CBINU Subsidiary to CAIRY, CBESH, CBESI, CBESJ, CBESK and CBIRY
-
- CBKNU Subsidiary to CAIRY, CBESH, CBESI and CBESK
-
- CBLKT1 Subsidiary to CBLKTR
-
- CBUNI Subsidiary to CBESI and CBESK
-
- CBUNK Subsidiary to CBESH and CBESK
-
- CCMPB Subsidiary to CBLKTR
-
- CDCOR Subroutine CDCOR computes corrections to the Y array.
-
- CDCST CDCST sets coefficients used by the core integrator CDSTP.
-
- CDIV Compute the complex quotient of two complex numbers.
-
- CDNTL Subroutine CDNTL is called to set parameters on the first
- call to CDSTP, on an internal restart, or when the user has
- altered MINT, MITER, and/or H.
-
- CDNTP Subroutine CDNTP interpolates the K-th derivative of Y at
- TOUT, using the data in the YH array. If K has a value
- greater than NQ, the NQ-th derivative is calculated.
-
- CDPSC Subroutine CDPSC computes the predicted YH values by
- effectively multiplying the YH array by the Pascal triangle
- matrix when KSGN is +1, and performs the inverse function
- when KSGN is -1.
-
- CDPST Subroutine CDPST evaluates the Jacobian matrix of the right
- hand side of the differential equations.
-
- CDSCL Subroutine CDSCL rescales the YH array whenever the step
- size is changed.
-
- CDSTP CDSTP performs one step of the integration of an initial
- value problem for a system of ordinary differential
- equations.
-
- CDZRO CDZRO searches for a zero of a function F(N, T, Y, IROOT)
- between the given values B and C until the width of the
- interval (B, C) has collapsed to within a tolerance
- specified by the stopping criterion,
- ABS(B - C) .LE. 2.*(RW*ABS(B) + AE).
-
- CFFTB Compute the unnormalized inverse of CFFTF.
-
- CFFTF Compute the forward transform of a complex, periodic
- sequence.
-
- CFFTI Initialize a work array for CFFTF and CFFTB.
-
- CFOD Subsidiary to DEBDF
-
- CHFCM Check a single cubic for monotonicity.
-
- CHFIE Evaluates integral of a single cubic for PCHIA
-
- CHKPR4 Subsidiary to SEPX4
-
- CHKPRM Subsidiary to SEPELI
-
- CHKSN4 Subsidiary to SEPX4
-
- CHKSNG Subsidiary to SEPELI
-
- CKSCL Subsidiary to CBKNU, CUNK1 and CUNK2
-
- CMLRI Subsidiary to CBESI and CBESK
-
- CMPCSG Subsidiary to CMGNBN
-
- CMPOSD Subsidiary to CMGNBN
-
- CMPOSN Subsidiary to CMGNBN
-
- CMPOSP Subsidiary to CMGNBN
-
- CMPTR3 Subsidiary to CMGNBN
-
- CMPTRX Subsidiary to CMGNBN
-
- COMPB Subsidiary to BLKTRI
-
- COSGEN Subsidiary to GENBUN
-
- COSQB1 Compute the unnormalized inverse of COSQF1.
-
- COSQF1 Compute the forward cosine transform with odd wave numbers.
-
- CPADD Subsidiary to CBLKTR
-
- CPEVL Subsidiary to CPZERO
-
- CPEVLR Subsidiary to CPZERO
-
- CPROC Subsidiary to CBLKTR
-
- CPROCP Subsidiary to CBLKTR
-
- CPROD Subsidiary to BLKTRI
-
- CPRODP Subsidiary to BLKTRI
-
- CRATI Subsidiary to CBESH, CBESI and CBESK
-
- CS1S2 Subsidiary to CAIRY and CBESK
-
- CSCALE Subsidiary to BVSUP
-
- CSERI Subsidiary to CBESI and CBESK
-
- CSHCH Subsidiary to CBESH and CBESK
-
- CSROOT Compute the complex square root of a complex number.
-
- CUCHK Subsidiary to SERI, CUOIK, CUNK1, CUNK2, CUNI1, CUNI2 and
- CKSCL
-
- CUNHJ Subsidiary to CBESI and CBESK
-
- CUNI1 Subsidiary to CBESI and CBESK
-
- CUNI2 Subsidiary to CBESI and CBESK
-
- CUNIK Subsidiary to CBESI and CBESK
-
- CUNK1 Subsidiary to CBESK
-
- CUNK2 Subsidiary to CBESK
-
- CUOIK Subsidiary to CBESH, CBESI and CBESK
-
- CWRSK Subsidiary to CBESI and CBESK
-
- D1MERG Merge two strings of ascending double precision numbers.
-
- D1MPYQ Subsidiary to DNSQ and DNSQE
-
- D1UPDT Subsidiary to DNSQ and DNSQE
-
- D9AIMP Evaluate the Airy modulus and phase.
-
- D9ATN1 Evaluate DATAN(X) from first order relative accuracy so
- that DATAN(X) = X + X**3*D9ATN1(X).
-
- D9B0MP Evaluate the modulus and phase for the J0 and Y0 Bessel
- functions.
-
- D9B1MP Evaluate the modulus and phase for the J1 and Y1 Bessel
- functions.
-
- D9CHU Evaluate for large Z Z**A * U(A,B,Z) where U is the
- logarithmic confluent hypergeometric function.
-
- D9GMIC Compute the complementary incomplete Gamma function for A
- near a negative integer and X small.
-
- D9GMIT Compute Tricomi's incomplete Gamma function for small
- arguments.
-
- D9KNUS Compute Bessel functions EXP(X)*K-SUB-XNU(X) and EXP(X)*
- K-SUB-XNU+1(X) for 0.0 .LE. XNU .LT. 1.0.
-
- D9LGIC Compute the log complementary incomplete Gamma function
- for large X and for A .LE. X.
-
- D9LGIT Compute the logarithm of Tricomi's incomplete Gamma
- function with Perron's continued fraction for large X and
- A .GE. X.
-
- D9LGMC Compute the log Gamma correction factor so that
- LOG(DGAMMA(X)) = LOG(SQRT(2*PI)) + (X-5.)*LOG(X) - X
- + D9LGMC(X).
-
- D9LN2R Evaluate LOG(1+X) from second order relative accuracy so
- that LOG(1+X) = X - X**2/2 + X**3*D9LN2R(X)
-
- DASYIK Subsidiary to DBESI and DBESK
-
- DASYJY Subsidiary to DBESJ and DBESY
-
- DBDIFF Subsidiary to DBSKIN
-
- DBKIAS Subsidiary to DBSKIN
-
- DBKISR Subsidiary to DBSKIN
-
- DBKSOL Subsidiary to DBVSUP
-
- DBNFAC Subsidiary to DBINT4 and DBINTK
-
- DBNSLV Subsidiary to DBINT4 and DBINTK
-
- DBOLSM Subsidiary to DBOCLS and DBOLS
-
- DBSGQ8 Subsidiary to DBFQAD
-
- DBSKNU Subsidiary to DBESK
-
- DBSYNU Subsidiary to DBESY
-
- DBVDER Subsidiary to DBVSUP
-
- DBVPOR Subsidiary to DBVSUP
-
- DCFOD Subsidiary to DDEBDF
-
- DCHFCM Check a single cubic for monotonicity.
-
- DCHFIE Evaluates integral of a single cubic for DPCHIA
-
- DCHKW SLAP WORK/IWORK Array Bounds Checker.
- This routine checks the work array lengths and interfaces
- to the SLATEC error handler if a problem is found.
-
- DCOEF Subsidiary to DBVSUP
-
- DCSCAL Subsidiary to DBVSUP and DSUDS
-
- DDAINI Initialization routine for DDASSL.
-
- DDAJAC Compute the iteration matrix for DDASSL and form the
- LU-decomposition.
-
- DDANRM Compute vector norm for DDASSL.
-
- DDASLV Linear system solver for DDASSL.
-
- DDASTP Perform one step of the DDASSL integration.
-
- DDATRP Interpolation routine for DDASSL.
-
- DDAWTS Set error weight vector for DDASSL.
-
- DDCOR Subroutine DDCOR computes corrections to the Y array.
-
- DDCST DDCST sets coefficients used by the core integrator DDSTP.
-
- DDES Subsidiary to DDEABM
-
- DDNTL Subroutine DDNTL is called to set parameters on the first
- call to DDSTP, on an internal restart, or when the user has
- altered MINT, MITER, and/or H.
-
- DDNTP Subroutine DDNTP interpolates the K-th derivative of Y at
- TOUT, using the data in the YH array. If K has a value
- greater than NQ, the NQ-th derivative is calculated.
-
- DDOGLG Subsidiary to DNSQ and DNSQE
-
- DDPSC Subroutine DDPSC computes the predicted YH values by
- effectively multiplying the YH array by the Pascal triangle
- matrix when KSGN is +1, and performs the inverse function
- when KSGN is -1.
-
- DDPST Subroutine DDPST evaluates the Jacobian matrix of the right
- hand side of the differential equations.
-
- DDSCL Subroutine DDSCL rescales the YH array whenever the step
- size is changed.
-
- DDSTP DDSTP performs one step of the integration of an initial
- value problem for a system of ordinary differential
- equations.
-
- DDZRO DDZRO searches for a zero of a function F(N, T, Y, IROOT)
- between the given values B and C until the width of the
- interval (B, C) has collapsed to within a tolerance
- specified by the stopping criterion,
- ABS(B - C) .LE. 2.*(RW*ABS(B) + AE).
-
- DEFCMN Subsidiary to DEFC
-
- DEFE4 Subsidiary to SEPX4
-
- DEFEHL Subsidiary to DERKF
-
- DEFER Subsidiary to SEPELI
-
- DENORM Subsidiary to DNSQ and DNSQE
-
- DERKFS Subsidiary to DERKF
-
- DES Subsidiary to DEABM
-
- DEXBVP Subsidiary to DBVSUP
-
- DFCMN Subsidiary to FC
-
- DFDJC1 Subsidiary to DNSQ and DNSQE
-
- DFDJC3 Subsidiary to DNLS1 and DNLS1E
-
- DFEHL Subsidiary to DDERKF
-
- DFSPVD Subsidiary to DFC
-
- DFSPVN Subsidiary to DFC
-
- DFULMT Subsidiary to DSPLP
-
- DGAMLN Compute the logarithm of the Gamma function
-
- DGAMRN Subsidiary to DBSKIN
-
- DH12 Subsidiary to DHFTI, DLSEI and DWNNLS
-
- DHELS Internal routine for DGMRES.
-
- DHEQR Internal routine for DGMRES.
-
- DHKSEQ Subsidiary to DBSKIN
-
- DHSTRT Subsidiary to DDEABM, DDEBDF and DDERKF
-
- DHVNRM Subsidiary to DDEABM, DDEBDF and DDERKF
-
- DINTYD Subsidiary to DDEBDF
-
- DJAIRY Subsidiary to DBESJ and DBESY
-
- DLPDP Subsidiary to DLSEI
-
- DLSI Subsidiary to DLSEI
-
- DLSOD Subsidiary to DDEBDF
-
- DLSSUD Subsidiary to DBVSUP and DSUDS
-
- DMACON Subsidiary to DBVSUP
-
- DMGSBV Subsidiary to DBVSUP
-
- DMOUT Subsidiary to DBOCLS and DFC
-
- DMPAR Subsidiary to DNLS1 and DNLS1E
-
- DOGLEG Subsidiary to SNSQ and SNSQE
-
- DOHTRL Subsidiary to DBVSUP and DSUDS
-
- DORTH Internal routine for DGMRES.
-
- DORTHR Subsidiary to DBVSUP and DSUDS
-
- DPCHCE Set boundary conditions for DPCHIC
-
- DPCHCI Set interior derivatives for DPCHIC
-
- DPCHCS Adjusts derivative values for DPCHIC
-
- DPCHDF Computes divided differences for DPCHCE and DPCHSP
-
- DPCHKT Compute B-spline knot sequence for DPCHBS.
-
- DPCHNG Subsidiary to DSPLP
-
- DPCHST DPCHIP Sign-Testing Routine
-
- DPCHSW Limits excursion from data for DPCHCS
-
- DPIGMR Internal routine for DGMRES.
-
- DPINCW Subsidiary to DSPLP
-
- DPINIT Subsidiary to DSPLP
-
- DPINTM Subsidiary to DSPLP
-
- DPJAC Subsidiary to DDEBDF
-
- DPLPCE Subsidiary to DSPLP
-
- DPLPDM Subsidiary to DSPLP
-
- DPLPFE Subsidiary to DSPLP
-
- DPLPFL Subsidiary to DSPLP
-
- DPLPMN Subsidiary to DSPLP
-
- DPLPMU Subsidiary to DSPLP
-
- DPLPUP Subsidiary to DSPLP
-
- DPNNZR Subsidiary to DSPLP
-
- DPOPT Subsidiary to DSPLP
-
- DPPGQ8 Subsidiary to DPFQAD
-
- DPRVEC Subsidiary to DBVSUP
-
- DPRWPG Subsidiary to DSPLP
-
- DPRWVR Subsidiary to DSPLP
-
- DPSIXN Subsidiary to DEXINT
-
- DQCHEB This routine computes the CHEBYSHEV series expansion
- of degrees 12 and 24 of a function using A
- FAST FOURIER TRANSFORM METHOD
- F(X) = SUM(K=1,..,13) (CHEB12(K)*T(K-1,X)),
- F(X) = SUM(K=1,..,25) (CHEB24(K)*T(K-1,X)),
- Where T(K,X) is the CHEBYSHEV POLYNOMIAL OF DEGREE K.
-
- DQELG The routine determines the limit of a given sequence of
- approximations, by means of the Epsilon algorithm of
- P.Wynn. An estimate of the absolute error is also given.
- The condensed Epsilon table is computed. Only those
- elements needed for the computation of the next diagonal
- are preserved.
-
- DQFORM Subsidiary to DNSQ and DNSQE
-
- DQPSRT This routine maintains the descending ordering in the
- list of the local error estimated resulting from the
- interval subdivision process. At each call two error
- estimates are inserted using the sequential search
- method, top-down for the largest error estimate and
- bottom-up for the smallest error estimate.
-
- DQRFAC Subsidiary to DNLS1, DNLS1E, DNSQ and DNSQE
-
- DQRSLV Subsidiary to DNLS1 and DNLS1E
-
- DQWGTC This function subprogram is used together with the
- routine DQAWC and defines the WEIGHT function.
-
- DQWGTF This function subprogram is used together with the
- routine DQAWF and defines the WEIGHT function.
-
- DQWGTS This function subprogram is used together with the
- routine DQAWS and defines the WEIGHT function.
-
- DREADP Subsidiary to DSPLP
-
- DREORT Subsidiary to DBVSUP
-
- DRKFAB Subsidiary to DBVSUP
-
- DRKFS Subsidiary to DDERKF
-
- DRLCAL Internal routine for DGMRES.
-
- DRSCO Subsidiary to DDEBDF
-
- DSLVS Subsidiary to DDEBDF
-
- DSOSEQ Subsidiary to DSOS
-
- DSOSSL Subsidiary to DSOS
-
- DSTOD Subsidiary to DDEBDF
-
- DSTOR1 Subsidiary to DBVSUP
-
- DSTWAY Subsidiary to DBVSUP
-
- DSUDS Subsidiary to DBVSUP
-
- DSVCO Subsidiary to DDEBDF
-
- DU11LS Subsidiary to DLLSIA
-
- DU11US Subsidiary to DULSIA
-
- DU12LS Subsidiary to DLLSIA
-
- DU12US Subsidiary to DULSIA
-
- DUSRMT Subsidiary to DSPLP
-
- DVECS Subsidiary to DBVSUP
-
- DVNRMS Subsidiary to DDEBDF
-
- DVOUT Subsidiary to DSPLP
-
- DWNLIT Subsidiary to DWNNLS
-
- DWNLSM Subsidiary to DWNNLS
-
- DWNLT1 Subsidiary to WNLIT
-
- DWNLT2 Subsidiary to WNLIT
-
- DWNLT3 Subsidiary to WNLIT
-
- DWRITP Subsidiary to DSPLP
-
- DWUPDT Subsidiary to DNLS1 and DNLS1E
-
- DX Subsidiary to SEPELI
-
- DX4 Subsidiary to SEPX4
-
- DXLCAL Internal routine for DGMRES.
-
- DXPMU To compute the values of Legendre functions for DXLEGF.
- Method: backward mu-wise recurrence for P(-MU,NU,X) for
- fixed nu to obtain P(-MU2,NU1,X), P(-(MU2-1),NU1,X), ...,
- P(-MU1,NU1,X) and store in ascending mu order.
-
- DXPMUP To compute the values of Legendre functions for DXLEGF.
- This subroutine transforms an array of Legendre functions
- of the first kind of negative order stored in array PQA
- into Legendre functions of the first kind of positive
- order stored in array PQA. The original array is destroyed.
-
- DXPNRM To compute the values of Legendre functions for DXLEGF.
- This subroutine transforms an array of Legendre functions
- of the first kind of negative order stored in array PQA
- into normalized Legendre polynomials stored in array PQA.
- The original array is destroyed.
-
- DXPQNU To compute the values of Legendre functions for DXLEGF.
- This subroutine calculates initial values of P or Q using
- power series, then performs forward nu-wise recurrence to
- obtain P(-MU,NU,X), Q(0,NU,X), or Q(1,NU,X). The nu-wise
- recurrence is stable for P for all mu and for Q for mu=0,1.
-
- DXPSI To compute values of the Psi function for DXLEGF.
-
- DXQMU To compute the values of Legendre functions for DXLEGF.
- Method: forward mu-wise recurrence for Q(MU,NU,X) for fixed
- nu to obtain Q(MU1,NU,X), Q(MU1+1,NU,X), ..., Q(MU2,NU,X).
-
- DXQNU To compute the values of Legendre functions for DXLEGF.
- Method: backward nu-wise recurrence for Q(MU,NU,X) for
- fixed mu to obtain Q(MU1,NU1,X), Q(MU1,NU1+1,X), ...,
- Q(MU1,NU2,X).
-
- DY Subsidiary to SEPELI
-
- DY4 Subsidiary to SEPX4
-
- DYAIRY Subsidiary to DBESJ and DBESY
-
- EFCMN Subsidiary to EFC
-
- ENORM Subsidiary to SNLS1, SNLS1E, SNSQ and SNSQE
-
- EXBVP Subsidiary to BVSUP
-
- EZFFT1 EZFFTI calls EZFFT1 with appropriate work array
- partitioning.
-
- FCMN Subsidiary to FC
-
- FDJAC1 Subsidiary to SNSQ and SNSQE
-
- FDJAC3 Subsidiary to SNLS1 and SNLS1E
-
- FULMAT Subsidiary to SPLP
-
- GAMLN Compute the logarithm of the Gamma function
-
- GAMRN Subsidiary to BSKIN
-
- H12 Subsidiary to HFTI, LSEI and WNNLS
-
- HKSEQ Subsidiary to BSKIN
-
- HSTART Subsidiary to DEABM, DEBDF and DERKF
-
- HSTCS1 Subsidiary to HSTCSP
-
- HVNRM Subsidiary to DEABM, DEBDF and DERKF
-
- HWSCS1 Subsidiary to HWSCSP
-
- HWSSS1 Subsidiary to HWSSSP
-
- I1MERG Merge two strings of ascending integers.
-
- IDLOC Subsidiary to DSPLP
-
- INDXA Subsidiary to BLKTRI
-
- INDXB Subsidiary to BLKTRI
-
- INDXC Subsidiary to BLKTRI
-
- INTYD Subsidiary to DEBDF
-
- INXCA Subsidiary to CBLKTR
-
- INXCB Subsidiary to CBLKTR
-
- INXCC Subsidiary to CBLKTR
-
- IPLOC Subsidiary to SPLP
-
- ISDBCG Preconditioned BiConjugate Gradient Stop Test.
- This routine calculates the stop test for the BiConjugate
- Gradient iteration scheme. It returns a non-zero if the
- error estimate (the type of which is determined by ITOL)
- is less than the user specified tolerance TOL.
-
- ISDCG Preconditioned Conjugate Gradient Stop Test.
- This routine calculates the stop test for the Conjugate
- Gradient iteration scheme. It returns a non-zero if the
- error estimate (the type of which is determined by ITOL)
- is less than the user specified tolerance TOL.
-
- ISDCGN Preconditioned CG on Normal Equations Stop Test.
- This routine calculates the stop test for the Conjugate
- Gradient iteration scheme applied to the normal equations.
- It returns a non-zero if the error estimate (the type of
- which is determined by ITOL) is less than the user
- specified tolerance TOL.
-
- ISDCGS Preconditioned BiConjugate Gradient Squared Stop Test.
- This routine calculates the stop test for the BiConjugate
- Gradient Squared iteration scheme. It returns a non-zero
- if the error estimate (the type of which is determined by
- ITOL) is less than the user specified tolerance TOL.
-
- ISDGMR Generalized Minimum Residual Stop Test.
- This routine calculates the stop test for the Generalized
- Minimum RESidual (GMRES) iteration scheme. It returns a
- non-zero if the error estimate (the type of which is
- determined by ITOL) is less than the user specified
- tolerance TOL.
-
- ISDIR Preconditioned Iterative Refinement Stop Test.
- This routine calculates the stop test for the iterative
- refinement iteration scheme. It returns a non-zero if the
- error estimate (the type of which is determined by ITOL)
- is less than the user specified tolerance TOL.
-
- ISDOMN Preconditioned Orthomin Stop Test.
- This routine calculates the stop test for the Orthomin
- iteration scheme. It returns a non-zero if the error
- estimate (the type of which is determined by ITOL) is
- less than the user specified tolerance TOL.
-
- ISSBCG Preconditioned BiConjugate Gradient Stop Test.
- This routine calculates the stop test for the BiConjugate
- Gradient iteration scheme. It returns a non-zero if the
- error estimate (the type of which is determined by ITOL)
- is less than the user specified tolerance TOL.
-
- ISSCG Preconditioned Conjugate Gradient Stop Test.
- This routine calculates the stop test for the Conjugate
- Gradient iteration scheme. It returns a non-zero if the
- error estimate (the type of which is determined by ITOL)
- is less than the user specified tolerance TOL.
-
- ISSCGN Preconditioned CG on Normal Equations Stop Test.
- This routine calculates the stop test for the Conjugate
- Gradient iteration scheme applied to the normal equations.
- It returns a non-zero if the error estimate (the type of
- which is determined by ITOL) is less than the user
- specified tolerance TOL.
-
- ISSCGS Preconditioned BiConjugate Gradient Squared Stop Test.
- This routine calculates the stop test for the BiConjugate
- Gradient Squared iteration scheme. It returns a non-zero
- if the error estimate (the type of which is determined by
- ITOL) is less than the user specified tolerance TOL.
-
- ISSGMR Generalized Minimum Residual Stop Test.
- This routine calculates the stop test for the Generalized
- Minimum RESidual (GMRES) iteration scheme. It returns a
- non-zero if the error estimate (the type of which is
- determined by ITOL) is less than the user specified
- tolerance TOL.
-
- ISSIR Preconditioned Iterative Refinement Stop Test.
- This routine calculates the stop test for the iterative
- refinement iteration scheme. It returns a non-zero if the
- error estimate (the type of which is determined by ITOL)
- is less than the user specified tolerance TOL.
-
- ISSOMN Preconditioned Orthomin Stop Test.
- This routine calculates the stop test for the Orthomin
- iteration scheme. It returns a non-zero if the error
- estimate (the type of which is determined by ITOL) is
- less than the user specified tolerance TOL.
-
- IVOUT Subsidiary to SPLP
-
- J4SAVE Save or recall global variables needed by error
- handling routines.
-
- JAIRY Subsidiary to BESJ and BESY
-
- LA05AD Subsidiary to DSPLP
-
- LA05AS Subsidiary to SPLP
-
- LA05BD Subsidiary to DSPLP
-
- LA05BS Subsidiary to SPLP
-
- LA05CD Subsidiary to DSPLP
-
- LA05CS Subsidiary to SPLP
-
- LA05ED Subsidiary to DSPLP
-
- LA05ES Subsidiary to SPLP
-
- LMPAR Subsidiary to SNLS1 and SNLS1E
-
- LPDP Subsidiary to LSEI
-
- LSAME Test two characters to determine if they are the same
- letter, except for case.
-
- LSI Subsidiary to LSEI
-
- LSOD Subsidiary to DEBDF
-
- LSSODS Subsidiary to BVSUP
-
- LSSUDS Subsidiary to BVSUP
-
- MACON Subsidiary to BVSUP
-
- MC20AD Subsidiary to DSPLP
-
- MC20AS Subsidiary to SPLP
-
- MGSBV Subsidiary to BVSUP
-
- MINSO4 Subsidiary to SEPX4
-
- MINSOL Subsidiary to SEPELI
-
- MPADD Subsidiary to DQDOTA and DQDOTI
-
- MPADD2 Subsidiary to DQDOTA and DQDOTI
-
- MPADD3 Subsidiary to DQDOTA and DQDOTI
-
- MPBLAS Subsidiary to DQDOTA and DQDOTI
-
- MPCDM Subsidiary to DQDOTA and DQDOTI
-
- MPCHK Subsidiary to DQDOTA and DQDOTI
-
- MPCMD Subsidiary to DQDOTA and DQDOTI
-
- MPDIVI Subsidiary to DQDOTA and DQDOTI
-
- MPERR Subsidiary to DQDOTA and DQDOTI
-
- MPMAXR Subsidiary to DQDOTA and DQDOTI
-
- MPMLP Subsidiary to DQDOTA and DQDOTI
-
- MPMUL Subsidiary to DQDOTA and DQDOTI
-
- MPMUL2 Subsidiary to DQDOTA and DQDOTI
-
- MPMULI Subsidiary to DQDOTA and DQDOTI
-
- MPNZR Subsidiary to DQDOTA and DQDOTI
-
- MPOVFL Subsidiary to DQDOTA and DQDOTI
-
- MPSTR Subsidiary to DQDOTA and DQDOTI
-
- MPUNFL Subsidiary to DQDOTA and DQDOTI
-
- OHTROL Subsidiary to BVSUP
-
- OHTROR Subsidiary to BVSUP
-
- ORTHO4 Subsidiary to SEPX4
-
- ORTHOG Subsidiary to SEPELI
-
- ORTHOL Subsidiary to BVSUP
-
- ORTHOR Subsidiary to BVSUP
-
- PASSB Calculate the fast Fourier transform of subvectors of
- arbitrary length.
-
- PASSB2 Calculate the fast Fourier transform of subvectors of
- length two.
-
- PASSB3 Calculate the fast Fourier transform of subvectors of
- length three.
-
- PASSB4 Calculate the fast Fourier transform of subvectors of
- length four.
-
- PASSB5 Calculate the fast Fourier transform of subvectors of
- length five.
-
- PASSF Calculate the fast Fourier transform of subvectors of
- arbitrary length.
-
- PASSF2 Calculate the fast Fourier transform of subvectors of
- length two.
-
- PASSF3 Calculate the fast Fourier transform of subvectors of
- length three.
-
- PASSF4 Calculate the fast Fourier transform of subvectors of
- length four.
-
- PASSF5 Calculate the fast Fourier transform of subvectors of
- length five.
-
- PCHCE Set boundary conditions for PCHIC
-
- PCHCI Set interior derivatives for PCHIC
-
- PCHCS Adjusts derivative values for PCHIC
-
- PCHDF Computes divided differences for PCHCE and PCHSP
-
- PCHKT Compute B-spline knot sequence for PCHBS.
-
- PCHNGS Subsidiary to SPLP
-
- PCHST PCHIP Sign-Testing Routine
-
- PCHSW Limits excursion from data for PCHCS
-
- PGSF Subsidiary to CBLKTR
-
- PIMACH Subsidiary to HSTCSP, HSTSSP and HWSCSP
-
- PINITM Subsidiary to SPLP
-
- PJAC Subsidiary to DEBDF
-
- PNNZRS Subsidiary to SPLP
-
- POISD2 Subsidiary to GENBUN
-
- POISN2 Subsidiary to GENBUN
-
- POISP2 Subsidiary to GENBUN
-
- POS3D1 Subsidiary to POIS3D
-
- POSTG2 Subsidiary to POISTG
-
- PPADD Subsidiary to BLKTRI
-
- PPGQ8 Subsidiary to PFQAD
-
- PPGSF Subsidiary to CBLKTR
-
- PPPSF Subsidiary to CBLKTR
-
- PPSGF Subsidiary to BLKTRI
-
- PPSPF Subsidiary to BLKTRI
-
- PROC Subsidiary to CBLKTR
-
- PROCP Subsidiary to CBLKTR
-
- PROD Subsidiary to BLKTRI
-
- PRODP Subsidiary to BLKTRI
-
- PRVEC Subsidiary to BVSUP
-
- PRWPGE Subsidiary to SPLP
-
- PRWVIR Subsidiary to SPLP
-
- PSGF Subsidiary to BLKTRI
-
- PSIXN Subsidiary to EXINT
-
- PYTHAG Compute the complex square root of a complex number without
- destructive overflow or underflow.
-
- QCHEB This routine computes the CHEBYSHEV series expansion
- of degrees 12 and 24 of a function using A
- FAST FOURIER TRANSFORM METHOD
- F(X) = SUM(K=1,..,13) (CHEB12(K)*T(K-1,X)),
- F(X) = SUM(K=1,..,25) (CHEB24(K)*T(K-1,X)),
- Where T(K,X) is the CHEBYSHEV POLYNOMIAL OF DEGREE K.
-
- QELG The routine determines the limit of a given sequence of
- approximations, by means of the Epsilon algorithm of
- P. Wynn. An estimate of the absolute error is also given.
- The condensed Epsilon table is computed. Only those
- elements needed for the computation of the next diagonal
- are preserved.
-
- QFORM Subsidiary to SNSQ and SNSQE
-
- QPSRT Subsidiary to QAGE, QAGIE, QAGPE, QAGSE, QAWCE, QAWOE and
- QAWSE
-
- QRFAC Subsidiary to SNLS1, SNLS1E, SNSQ and SNSQE
-
- QRSOLV Subsidiary to SNLS1 and SNLS1E
-
- QS2I1D Sort an integer array, moving an integer and DP array.
- This routine sorts the integer array IA and makes the same
- interchanges in the integer array JA and the double pre-
- cision array A. The array IA may be sorted in increasing
- order or decreasing order. A slightly modified QUICKSORT
- algorithm is used.
-
- QS2I1R Sort an integer array, moving an integer and real array.
- This routine sorts the integer array IA and makes the same
- interchanges in the integer array JA and the real array A.
- The array IA may be sorted in increasing order or decreas-
- ing order. A slightly modified QUICKSORT algorithm is
- used.
-
- QWGTC This function subprogram is used together with the
- routine QAWC and defines the WEIGHT function.
-
- QWGTF This function subprogram is used together with the
- routine QAWF and defines the WEIGHT function.
-
- QWGTS This function subprogram is used together with the
- routine QAWS and defines the WEIGHT function.
-
- R1MPYQ Subsidiary to SNSQ and SNSQE
-
- R1UPDT Subsidiary to SNSQ and SNSQE
-
- R9AIMP Evaluate the Airy modulus and phase.
-
- R9ATN1 Evaluate ATAN(X) from first order relative accuracy so that
- ATAN(X) = X + X**3*R9ATN1(X).
-
- R9CHU Evaluate for large Z Z**A * U(A,B,Z) where U is the
- logarithmic confluent hypergeometric function.
-
- R9GMIC Compute the complementary incomplete Gamma function for A
- near a negative integer and for small X.
-
- R9GMIT Compute Tricomi's incomplete Gamma function for small
- arguments.
-
- R9KNUS Compute Bessel functions EXP(X)*K-SUB-XNU(X) and EXP(X)*
- K-SUB-XNU+1(X) for 0.0 .LE. XNU .LT. 1.0.
-
- R9LGIC Compute the log complementary incomplete Gamma function
- for large X and for A .LE. X.
-
- R9LGIT Compute the logarithm of Tricomi's incomplete Gamma
- function with Perron's continued fraction for large X and
- A .GE. X.
-
- R9LGMC Compute the log Gamma correction factor so that
- LOG(GAMMA(X)) = LOG(SQRT(2*PI)) + (X-.5)*LOG(X) - X
- + R9LGMC(X).
-
- R9LN2R Evaluate LOG(1+X) from second order relative accuracy so
- that LOG(1+X) = X - X**2/2 + X**3*R9LN2R(X).
-
- RADB2 Calculate the fast Fourier transform of subvectors of
- length two.
-
- RADB3 Calculate the fast Fourier transform of subvectors of
- length three.
-
- RADB4 Calculate the fast Fourier transform of subvectors of
- length four.
-
- RADB5 Calculate the fast Fourier transform of subvectors of
- length five.
-
- RADBG Calculate the fast Fourier transform of subvectors of
- arbitrary length.
-
- RADF2 Calculate the fast Fourier transform of subvectors of
- length two.
-
- RADF3 Calculate the fast Fourier transform of subvectors of
- length three.
-
- RADF4 Calculate the fast Fourier transform of subvectors of
- length four.
-
- RADF5 Calculate the fast Fourier transform of subvectors of
- length five.
-
- RADFG Calculate the fast Fourier transform of subvectors of
- arbitrary length.
-
- REORT Subsidiary to BVSUP
-
- RFFTB Compute the backward fast Fourier transform of a real
- coefficient array.
-
- RFFTF Compute the forward transform of a real, periodic sequence.
-
- RFFTI Initialize a work array for RFFTF and RFFTB.
-
- RKFAB Subsidiary to BVSUP
-
- RSCO Subsidiary to DEBDF
-
- RWUPDT Subsidiary to SNLS1 and SNLS1E
-
- S1MERG Merge two strings of ascending real numbers.
-
- SBOLSM Subsidiary to SBOCLS and SBOLS
-
- SCHKW SLAP WORK/IWORK Array Bounds Checker.
- This routine checks the work array lengths and interfaces
- to the SLATEC error handler if a problem is found.
-
- SCLOSM Subsidiary to SPLP
-
- SCOEF Subsidiary to BVSUP
-
- SDAINI Initialization routine for SDASSL.
-
- SDAJAC Compute the iteration matrix for SDASSL and form the
- LU-decomposition.
-
- SDANRM Compute vector norm for SDASSL.
-
- SDASLV Linear system solver for SDASSL.
-
- SDASTP Perform one step of the SDASSL integration.
-
- SDATRP Interpolation routine for SDASSL.
-
- SDAWTS Set error weight vector for SDASSL.
-
- SDCOR Subroutine SDCOR computes corrections to the Y array.
-
- SDCST SDCST sets coefficients used by the core integrator SDSTP.
-
- SDNTL Subroutine SDNTL is called to set parameters on the first
- call to SDSTP, on an internal restart, or when the user has
- altered MINT, MITER, and/or H.
-
- SDNTP Subroutine SDNTP interpolates the K-th derivative of Y at
- TOUT, using the data in the YH array. If K has a value
- greater than NQ, the NQ-th derivative is calculated.
-
- SDPSC Subroutine SDPSC computes the predicted YH values by
- effectively multiplying the YH array by the Pascal triangle
- matrix when KSGN is +1, and performs the inverse function
- when KSGN is -1.
-
- SDPST Subroutine SDPST evaluates the Jacobian matrix of the right
- hand side of the differential equations.
-
- SDSCL Subroutine SDSCL rescales the YH array whenever the step
- size is changed.
-
- SDSTP SDSTP performs one step of the integration of an initial
- value problem for a system of ordinary differential
- equations.
-
- SDZRO SDZRO searches for a zero of a function F(N, T, Y, IROOT)
- between the given values B and C until the width of the
- interval (B, C) has collapsed to within a tolerance
- specified by the stopping criterion,
- ABS(B - C) .LE. 2.*(RW*ABS(B) + AE).
-
- SHELS Internal routine for SGMRES.
-
- SHEQR Internal routine for SGMRES.
-
- SLVS Subsidiary to DEBDF
-
- SMOUT Subsidiary to FC and SBOCLS
-
- SODS Subsidiary to BVSUP
-
- SOPENM Subsidiary to SPLP
-
- SORTH Internal routine for SGMRES.
-
- SOSEQS Subsidiary to SOS
-
- SOSSOL Subsidiary to SOS
-
- SPELI4 Subsidiary to SEPX4
-
- SPELIP Subsidiary to SEPELI
-
- SPIGMR Internal routine for SGMRES.
-
- SPINCW Subsidiary to SPLP
-
- SPINIT Subsidiary to SPLP
-
- SPLPCE Subsidiary to SPLP
-
- SPLPDM Subsidiary to SPLP
-
- SPLPFE Subsidiary to SPLP
-
- SPLPFL Subsidiary to SPLP
-
- SPLPMN Subsidiary to SPLP
-
- SPLPMU Subsidiary to SPLP
-
- SPLPUP Subsidiary to SPLP
-
- SPOPT Subsidiary to SPLP
-
- SREADP Subsidiary to SPLP
-
- SRLCAL Internal routine for SGMRES.
-
- STOD Subsidiary to DEBDF
-
- STOR1 Subsidiary to BVSUP
-
- STWAY Subsidiary to BVSUP
-
- SUDS Subsidiary to BVSUP
-
- SVCO Subsidiary to DEBDF
-
- SVD Perform the singular value decomposition of a rectangular
- matrix.
-
- SVECS Subsidiary to BVSUP
-
- SVOUT Subsidiary to SPLP
-
- SWRITP Subsidiary to SPLP
-
- SXLCAL Internal routine for SGMRES.
-
- TEVLC Subsidiary to CBLKTR
-
- TEVLS Subsidiary to BLKTRI
-
- TRI3 Subsidiary to GENBUN
-
- TRIDQ Subsidiary to POIS3D
-
- TRIS4 Subsidiary to SEPX4
-
- TRISP Subsidiary to SEPELI
-
- TRIX Subsidiary to GENBUN
-
- U11LS Subsidiary to LLSIA
-
- U11US Subsidiary to ULSIA
-
- U12LS Subsidiary to LLSIA
-
- U12US Subsidiary to ULSIA
-
- USRMAT Subsidiary to SPLP
-
- VNWRMS Subsidiary to DEBDF
-
- WNLIT Subsidiary to WNNLS
-
- WNLSM Subsidiary to WNNLS
-
- WNLT1 Subsidiary to WNLIT
-
- WNLT2 Subsidiary to WNLIT
-
- WNLT3 Subsidiary to WNLIT
-
- XERBLA Error handler for the Level 2 and Level 3 BLAS Routines.
-
- XERCNT Allow user control over handling of errors.
-
- XERHLT Abort program execution and print error message.
-
- XERPRN Print error messages processed by XERMSG.
-
- XERSVE Record that an error has occurred.
-
- XPMU To compute the values of Legendre functions for XLEGF.
- Method: backward mu-wise recurrence for P(-MU,NU,X) for
- fixed nu to obtain P(-MU2,NU1,X), P(-(MU2-1),NU1,X), ...,
- P(-MU1,NU1,X) and store in ascending mu order.
-
- XPMUP To compute the values of Legendre functions for XLEGF.
- This subroutine transforms an array of Legendre functions
- of the first kind of negative order stored in array PQA
- into Legendre functions of the first kind of positive
- order stored in array PQA. The original array is destroyed.
-
- XPNRM To compute the values of Legendre functions for XLEGF.
- This subroutine transforms an array of Legendre functions
- of the first kind of negative order stored in array PQA
- into normalized Legendre polynomials stored in array PQA.
- The original array is destroyed.
-
- XPQNU To compute the values of Legendre functions for XLEGF.
- This subroutine calculates initial values of P or Q using
- power series, then performs forward nu-wise recurrence to
- obtain P(-MU,NU,X), Q(0,NU,X), or Q(1,NU,X). The nu-wise
- recurrence is stable for P for all mu and for Q for mu=0,1.
-
- XPSI To compute values of the Psi function for XLEGF.
-
- XQMU To compute the values of Legendre functions for XLEGF.
- Method: forward mu-wise recurrence for Q(MU,NU,X) for fixed
- nu to obtain Q(MU1,NU,X), Q(MU1+1,NU,X), ..., Q(MU2,NU,X).
-
- XQNU To compute the values of Legendre functions for XLEGF.
- Method: backward nu-wise recurrence for Q(MU,NU,X) for
- fixed mu to obtain Q(MU1,NU1,X), Q(MU1,NU1+1,X), ...,
- Q(MU1,NU2,X).
-
- YAIRY Subsidiary to BESJ and BESY
-
- ZABS Subsidiary to ZBESH, ZBESI, ZBESJ, ZBESK, ZBESY, ZAIRY and
- ZBIRY
-
- ZACAI Subsidiary to ZAIRY
-
- ZACON Subsidiary to ZBESH and ZBESK
-
- ZASYI Subsidiary to ZBESI and ZBESK
-
- ZBINU Subsidiary to ZAIRY, ZBESH, ZBESI, ZBESJ, ZBESK and ZBIRY
-
- ZBKNU Subsidiary to ZAIRY, ZBESH, ZBESI and ZBESK
-
- ZBUNI Subsidiary to ZBESI and ZBESK
-
- ZBUNK Subsidiary to ZBESH and ZBESK
-
- ZDIV Subsidiary to ZBESH, ZBESI, ZBESJ, ZBESK, ZBESY, ZAIRY and
- ZBIRY
-
- ZEXP Subsidiary to ZBESH, ZBESI, ZBESJ, ZBESK, ZBESY, ZAIRY and
- ZBIRY
-
- ZKSCL Subsidiary to ZBESK
-
- ZLOG Subsidiary to ZBESH, ZBESI, ZBESJ, ZBESK, ZBESY, ZAIRY and
- ZBIRY
-
- ZMLRI Subsidiary to ZBESI and ZBESK
-
- ZMLT Subsidiary to ZBESH, ZBESI, ZBESJ, ZBESK, ZBESY, ZAIRY and
- ZBIRY
-
- ZRATI Subsidiary to ZBESH, ZBESI and ZBESK
-
- ZS1S2 Subsidiary to ZAIRY and ZBESK
-
- ZSERI Subsidiary to ZBESI and ZBESK
-
- ZSHCH Subsidiary to ZBESH and ZBESK
-
- ZSQRT Subsidiary to ZBESH, ZBESI, ZBESJ, ZBESK, ZBESY, ZAIRY and
- ZBIRY
-
- ZUCHK Subsidiary to SERI, ZUOIK, ZUNK1, ZUNK2, ZUNI1, ZUNI2 and
- ZKSCL
-
- ZUNHJ Subsidiary to ZBESI and ZBESK
-
- ZUNI1 Subsidiary to ZBESI and ZBESK
-
- ZUNI2 Subsidiary to ZBESI and ZBESK
-
- ZUNIK Subsidiary to ZBESI and ZBESK
-
- ZUNK1 Subsidiary to ZBESK
-
- ZUNK2 Subsidiary to ZBESK
-
- ZUOIK Subsidiary to ZBESH, ZBESI and ZBESK
-
- ZWRSK Subsidiary to ZBESI and ZBESK
-
-
- SECTION III. Alphabetic List of Routines and Categories
- As stated in the introduction, an asterisk (*) immediately
- preceeding a routine name indicates a subsidiary routine.
-
- AAAAAA Z ACOSH C4C
- AI C10D AIE C10D
- ALBETA C7B ALGAMS C7A
- ALI C5 ALNGAM C7A
- ALNREL C4B ASINH C4C
- *ASYIK *ASYJY
- ATANH C4C AVINT H2A1B2
- BAKVEC D4C4 BALANC D4C1A
- BALBAK D4C4 BANDR D4C1B1
- BANDV D4C3 *BCRH
- *BDIFF BESI C10B3
- BESI0 C10B1 BESI0E C10B1
- BESI1 C10B1 BESI1E C10B1
- BESJ C10A3 BESJ0 C10A1
- BESJ1 C10A1 BESK C10B3
- BESK0 C10B1 BESK0E C10B1
- BESK1 C10B1 BESK1E C10B1
- BESKES C10B3 *BESKNU
- BESKS C10B3 BESY C10A3
- BESY0 C10A1 BESY1 C10A1
- *BESYNU BETA C7B
- BETAI C7F BFQAD H2A2A1, E3, K6
- BI C10D BIE C10D
- BINOM C1 BINT4 E1A
- BINTK E1A BISECT D4A5, D4C2A
- *BKIAS *BKISR
- *BKSOL *BLKTR1
- BLKTRI I2B4B BNDACC D9
- BNDSOL D9 *BNFAC
- *BNSLV BQR D4A6
- *BSGQ8 BSKIN C10F
- BSPDOC E, E1A, K, Z BSPDR E3
- BSPEV E3, K6 *BSPLVD
- *BSPLVN BSPPP E3, K6
- BSPVD E3, K6 BSPVN E3, K6
- BSQAD H2A2A1, E3, K6 *BSRH
- BVALU E3, K6 *BVDER
- *BVPOR BVSUP I1B1
- C0LGMC C7A *C1MERG
- *C9LGMC C7A *C9LN2R C4B
- *CACAI *CACON
- CACOS C4A CACOSH C4C
- CAIRY C10D CARG A4A
- CASIN C4A CASINH C4C
- *CASYI CATAN C4A
- CATAN2 C4A CATANH C4C
- CAXPY D1A7 CBABK2 D4C4
- CBAL D4C1A CBESH C10A4
- CBESI C10B4 CBESJ C10A4
- CBESK C10B4 CBESY C10A4
- CBETA C7B *CBINU
- CBIRY C10D *CBKNU
- *CBLKT1 CBLKTR I2B4B
- CBRT C2 *CBUNI
- *CBUNK CCBRT C2
- CCHDC D2D1B CCHDD D7B
- CCHEX D7B CCHUD D7B
- *CCMPB CCOPY D1A5
- CCOSH C4C CCOT C4A
- CDCDOT D1A4 *CDCOR
- *CDCST *CDIV
- *CDNTL *CDNTP
- CDOTC D1A4 CDOTU D1A4
- *CDPSC *CDPST
- CDRIV1 I1A2, I1A1B CDRIV2 I1A2, I1A1B
- CDRIV3 I1A2, I1A1B *CDSCL
- *CDSTP *CDZRO
- CEXPRL C4B *CFFTB J1A2
- CFFTB1 J1A2 *CFFTF J1A2
- CFFTF1 J1A2 *CFFTI J1A2
- CFFTI1 J1A2 *CFOD
- CG D4A4 CGAMMA C7A
- CGAMR C7A CGBCO D2C2
- CGBDI D3C2 CGBFA D2C2
- CGBMV D1B4 CGBSL D2C2
- CGECO D2C1 CGEDI D2C1, D3C1
- CGEEV D4A4 CGEFA D2C1
- CGEFS D2C1 CGEIR D2C1
- CGEMM D1B6 CGEMV D1B4
- CGERC D1B4 CGERU D1B4
- CGESL D2C1 CGTSL D2C2A
- CH D4A3 CHBMV D1B4
- CHEMM D1B6 CHEMV D1B4
- CHER D1B4 CHER2 D1B4
- CHER2K D1B6 CHERK D1B6
- *CHFCM CHFDV E3, H1
- CHFEV E3 *CHFIE
- CHICO D2D1A CHIDI D2D1A, D3D1A
- CHIEV D4A3 CHIFA D2D1A
- CHISL D2D1A CHKDER F3, G4C
- *CHKPR4 *CHKPRM
- *CHKSN4 *CHKSNG
- CHPCO D2D1A CHPDI D2D1A, D3D1A
- CHPFA D2D1A CHPMV D1B4
- CHPR D1B4 CHPR2 D1B4
- CHPSL D2D1A CHU C11
- CINVIT D4C2B *CKSCL
- CLBETA C7B CLNGAM C7A
- CLNREL C4B CLOG10 C4B
- CMGNBN I2B4B *CMLRI
- *CMPCSG *CMPOSD
- *CMPOSN *CMPOSP
- *CMPTR3 *CMPTRX
- CNBCO D2C2 CNBDI D3C2
- CNBFA D2C2 CNBFS D2C2
- CNBIR D2C2 CNBSL D2C2
- COMBAK D4C4 COMHES D4C1B2
- COMLR D4C2B COMLR2 D4C2B
- *COMPB COMQR D4C2B
- COMQR2 D4C2B CORTB D4C4
- CORTH D4C1B2 COSDG C4A
- *COSGEN COSQB J1A3
- *COSQB1 J1A3 COSQF J1A3
- *COSQF1 J1A3 COSQI J1A3
- COST J1A3 COSTI J1A3
- COT C4A *CPADD
- CPBCO D2D2 CPBDI D3D2
- CPBFA D2D2 CPBSL D2D2
- *CPEVL *CPEVLR
- CPOCO D2D1B CPODI D2D1B, D3D1B
- CPOFA D2D1B CPOFS D2D1B
- CPOIR D2D1B CPOSL D2D1B
- CPPCO D2D1B CPPDI D2D1B, D3D1B
- CPPFA D2D1B CPPSL D2D1B
- CPQR79 F1A1B *CPROC
- *CPROCP *CPROD
- *CPRODP CPSI C7C
- CPTSL D2D2A CPZERO F1A1B
- CQRDC D5 CQRSL D9, D2C1
- *CRATI CROTG D1B10
- *CS1S2 CSCAL D1A6
- *CSCALE *CSERI
- CSEVL C3A2 *CSHCH
- CSICO D2C1 CSIDI D2C1, D3C1
- CSIFA D2C1 CSINH C4C
- CSISL D2C1 CSPCO D2C1
- CSPDI D2C1, D3C1 CSPFA D2C1
- CSPSL D2C1 *CSROOT
- CSROT D1B10 CSSCAL D1A6
- CSVDC D6 CSWAP D1A5
- CSYMM D1B6 CSYR2K D1B6
- CSYRK D1B6 CTAN C4A
- CTANH C4C CTBMV D1B4
- CTBSV D1B4 CTPMV D1B4
- CTPSV D1B4 CTRCO D2C3
- CTRDI D2C3, D3C3 CTRMM D1B6
- CTRMV D1B4 CTRSL D2C3
- CTRSM D1B6 CTRSV D1B4
- *CUCHK *CUNHJ
- *CUNI1 *CUNI2
- *CUNIK *CUNK1
- *CUNK2 *CUOIK
- CV L7A3 *CWRSK
- D1MACH R1 *D1MERG
- *D1MPYQ *D1UPDT
- *D9AIMP C10D *D9ATN1 C4A
- *D9B0MP C10A1 *D9B1MP C10A1
- *D9CHU C11 *D9GMIC C7E
- *D9GMIT C7E *D9KNUS C10B3
- *D9LGIC C7E *D9LGIT C7E
- *D9LGMC C7E *D9LN2R C4B
- D9PAK A6B D9UPAK A6B
- DACOSH C4C DAI C10D
- DAIE C10D DASINH C4C
- DASUM D1A3A *DASYIK
- *DASYJY DATANH C4C
- DAVINT H2A1B2 DAWS C8C
- DAXPY D1A7 DBCG D2A4, D2B4
- *DBDIFF DBESI C10B3
- DBESI0 C10B1 DBESI1 C10B1
- DBESJ C10A3 DBESJ0 C10A1
- DBESJ1 C10A1 DBESK C10B3
- DBESK0 C10B1 DBESK1 C10B1
- DBESKS C10B3 DBESY C10A3
- DBESY0 C10A1 DBESY1 C10A1
- DBETA C7B DBETAI C7F
- DBFQAD H2A2A1, E3, K6 DBHIN N1
- DBI C10D DBIE C10D
- DBINOM C1 DBINT4 E1A
- DBINTK E1A *DBKIAS
- *DBKISR *DBKSOL
- DBNDAC D9 DBNDSL D9
- *DBNFAC *DBNSLV
- DBOCLS K1A2A, G2E, G2H1, G2H2 DBOLS K1A2A, G2E, G2H1, G2H2
- *DBOLSM *DBSGQ8
- DBSI0E C10B1 DBSI1E C10B1
- DBSK0E C10B1 DBSK1E C10B1
- DBSKES C10B3 DBSKIN C10F
- *DBSKNU DBSPDR E3, K6
- DBSPEV E3, K6 DBSPPP E3, K6
- DBSPVD E3, K6 DBSPVN E3, K6
- DBSQAD H2A2A1, E3, K6 *DBSYNU
- DBVALU E3, K6 *DBVDER
- *DBVPOR DBVSUP I1B1
- DCBRT C2 DCDOT D1A4
- *DCFOD DCG D2B4
- DCGN D2A4, D2B4 DCGS D2A4, D2B4
- DCHDC D2B1B DCHDD D7B
- DCHEX D7B *DCHFCM
- DCHFDV E3, H1 DCHFEV E3
- *DCHFIE *DCHKW R2
- DCHU C11 DCHUD D7B
- DCKDER F3, G4C *DCOEF
- DCOPY D1A5 DCOPYM D1A5
- DCOSDG C4A DCOT C4A
- DCOV K1B1 DCPPLT N1
- *DCSCAL DCSEVL C3A2
- DCV L7A3 *DDAINI
- *DDAJAC *DDANRM
- *DDASLV DDASSL I1A2
- *DDASTP *DDATRP
- DDAWS C8C *DDAWTS
- *DDCOR *DDCST
- DDEABM I1A1B DDEBDF I1A2
- DDERKF I1A1A *DDES
- *DDNTL *DDNTP
- *DDOGLG DDOT D1A4
- *DDPSC *DDPST
- DDRIV1 I1A2, I1A1B DDRIV2 I1A2, I1A1B
- DDRIV3 I1A2, I1A1B *DDSCL
- *DDSTP *DDZRO
- DE1 C5 DEABM I1A1B
- DEBDF I1A2 DEFC K1A1A1, K1A2A, L8A3
- *DEFCMN *DEFE4
- *DEFEHL *DEFER
- DEI C5 *DENORM
- DERF C8A, L5A1E DERFC C8A, L5A1E
- DERKF I1A1A *DERKFS
- *DES *DEXBVP
- DEXINT C5 DEXPRL C4B
- DFAC C1 DFC K1A1A1, K1A2A, L8A3
- *DFCMN *DFDJC1
- *DFDJC3 *DFEHL
- *DFSPVD *DFSPVN
- *DFULMT DFZERO F1B
- DGAMI C7E DGAMIC C7E
- DGAMIT C7E DGAMLM C7A, R2
- *DGAMLN C7A DGAMMA C7A
- DGAMR C7A *DGAMRN
- DGAUS8 H2A1A1 DGBCO D2A2
- DGBDI D3A2 DGBFA D2A2
- DGBMV D1B4 DGBSL D2A2
- DGECO D2A1 DGEDI D3A1, D2A1
- DGEFA D2A1 DGEFS D2A1
- DGEMM D1B6 DGEMV D1B4
- DGER D1B4 DGESL D2A1
- DGLSS D9, D5 DGMRES D2A4, D2B4
- DGTSL D2A2A *DH12
- *DHELS D2A4, D2B4 *DHEQR D2A4, D2B4
- DHFTI D9 *DHKSEQ
- *DHSTRT *DHVNRM
- DINTP I1A1B DINTRV E3, K6
- *DINTYD DIR D2A4, D2B4
- *DJAIRY DLBETA C7B
- DLGAMS C7A DLI C5
- DLLSIA D9, D5 DLLTI2 D2E
- DLNGAM C7A DLNREL C4B
- DLPDOC D2A4, D2B4, Z *DLPDP
- DLSEI K1A2A, D9 *DLSI
- *DLSOD *DLSSUD
- *DMACON *DMGSBV
- *DMOUT *DMPAR
- DNBCO D2A2 DNBDI D3A2
- DNBFA D2A2 DNBFS D2A2
- DNBSL D2A2 DNLS1 K1B1A1, K1B1A2
- DNLS1E K1B1A1, K1B1A2 DNRM2 D1A3B
- DNSQ F2A DNSQE F2A
- *DOGLEG *DOHTRL
- DOMN D2A4, D2B4 *DORTH D2A4, D2B4
- *DORTHR DP1VLU K6
- DPBCO D2B2 DPBDI D3B2
- DPBFA D2B2 DPBSL D2B2
- DPCHBS E3 *DPCHCE
- *DPCHCI DPCHCM E3
- *DPCHCS *DPCHDF
- DPCHFD E3, H1 DPCHFE E3
- DPCHIA E3, H2A1B2 DPCHIC E1A
- DPCHID E3, H2A1B2 DPCHIM E1A
- *DPCHKT E3 *DPCHNG
- DPCHSP E1A *DPCHST
- *DPCHSW DPCOEF K1A1A2
- DPFQAD H2A2A1, E3, K6 *DPIGMR D2A4, D2B4
- *DPINCW *DPINIT
- *DPINTM *DPJAC
- DPLINT E1B *DPLPCE
- *DPLPDM *DPLPFE
- *DPLPFL *DPLPMN
- *DPLPMU *DPLPUP
- *DPNNZR DPOCH C1, C7A
- DPOCH1 C1, C7A DPOCO D2B1B
- DPODI D2B1B, D3B1B DPOFA D2B1B
- DPOFS D2B1B DPOLCF E1B
- DPOLFT K1A1A2 DPOLVL E3
- *DPOPT DPOSL D2B1B
- DPPCO D2B1B DPPDI D2B1B, D3B1B
- DPPERM N8 DPPFA D2B1B
- *DPPGQ8 DPPQAD H2A2A1, E3, K6
- DPPSL D2B1B DPPVAL E3, K6
- *DPRVEC *DPRWPG
- *DPRWVR DPSI C7C
- DPSIFN C7C *DPSIXN
- DPSORT N6A1B, N6A2B DPTSL D2B2A
- DQAG H2A1A1 DQAGE H2A1A1
- DQAGI H2A3A1, H2A4A1 DQAGIE H2A3A1, H2A4A1
- DQAGP H2A2A1 DQAGPE H2A2A1
- DQAGS H2A1A1 DQAGSE H2A1A1
- DQAWC H2A2A1, J4 DQAWCE H2A2A1, J4
- DQAWF H2A3A1 DQAWFE H2A3A1
- DQAWO H2A2A1 DQAWOE H2A2A1
- DQAWS H2A2A1 DQAWSE H2A2A1
- DQC25C H2A2A2, J4 DQC25F H2A2A2
- DQC25S H2A2A2 *DQCHEB
- DQDOTA D1A4 DQDOTI D1A4
- *DQELG *DQFORM
- DQK15 H2A1A2 DQK15I H2A3A2, H2A4A2
- DQK15W H2A2A2 DQK21 H2A1A2
- DQK31 H2A1A2 DQK41 H2A1A2
- DQK51 H2A1A2 DQK61 H2A1A2
- DQMOMO H2A2A1, C3A2 DQNC79 H2A1A1
- DQNG H2A1A1 *DQPSRT
- DQRDC D5 *DQRFAC
- DQRSL D9, D2A1 *DQRSLV
- *DQWGTC *DQWGTF
- *DQWGTS DRC C14
- DRC3JJ C19 DRC3JM C19
- DRC6J C19 DRD C14
- *DREADP *DREORT
- DRF C14 DRJ C14
- *DRKFAB *DRKFS
- *DRLCAL D2A4, D2B4 DROT D1A8
- DROTG D1B10 DROTM D1A8
- DROTMG D1B10 *DRSCO
- DS2LT D2E DS2Y D1B9
- DSBMV D1B4 DSCAL D1A6
- DSD2S D2E DSDBCG D2A4, D2B4
- DSDCG D2B4 DSDCGN D2A4, D2B4
- DSDCGS D2A4, D2B4 DSDGMR D2A4, D2B4
- DSDI D1B4 DSDOMN D2A4, D2B4
- DSDOT D1A4 DSDS D2E
- DSDSCL D2E DSGS D2A4, D2B4
- DSICCG D2B4 DSICO D2B1A
- DSICS D2E DSIDI D2B1A, D3B1A
- DSIFA D2B1A DSILUR D2A4, D2B4
- DSILUS D2E DSINDG C4A
- DSISL D2B1A DSJAC D2A4, D2B4
- DSLI D2A3 DSLI2 D2A3
- DSLLTI D2E DSLUBC D2A4, D2B4
- DSLUCN D2A4, D2B4 DSLUCS D2A4, D2B4
- DSLUGM D2A4, D2B4 DSLUI D2E
- DSLUI2 D2E DSLUI4 D2E
- DSLUOM D2A4, D2B4 DSLUTI D2E
- *DSLVS DSMMI2 D2E
- DSMMTI D2E DSMTV D1B4
- DSMV D1B4 DSORT N6A2B
- DSOS F2A *DSOSEQ
- *DSOSSL DSPCO D2B1A
- DSPDI D2B1A, D3B1A DSPENC C5
- DSPFA D2B1A DSPLP G2A2
- DSPMV D1B4 DSPR D1B4
- DSPR2 D1B4 DSPSL D2B1A
- DSTEPS I1A1B *DSTOD
- *DSTOR1 *DSTWAY
- *DSUDS *DSVCO
- DSVDC D6 DSWAP D1A5
- DSYMM D1B6 DSYMV D1B4
- DSYR D1B4 DSYR2 D1B4
- DSYR2K D1B6 DSYRK D1B6
- DTBMV D1B4 DTBSV D1B4
- DTIN N1 DTOUT N1
- DTPMV D1B4 DTPSV D1B4
- DTRCO D2A3 DTRDI D2A3, D3A3
- DTRMM D1B6 DTRMV D1B4
- DTRSL D2A3 DTRSM D1B6
- DTRSV D1B4 *DU11LS
- *DU11US *DU12LS
- *DU12US DULSIA D9
- *DUSRMT *DVECS
- *DVNRMS *DVOUT
- *DWNLIT *DWNLSM
- *DWNLT1 *DWNLT2
- *DWNLT3 DWNNLS K1A2A
- *DWRITP *DWUPDT
- *DX *DX4
- DXADD A3D DXADJ A3D
- DXC210 A3D DXCON A3D
- *DXLCAL D2A4, D2B4 DXLEGF C3A2, C9
- DXNRMP C3A2, C9 *DXPMU C3A2, C9
- *DXPMUP C3A2, C9 *DXPNRM C3A2, C9
- *DXPQNU C3A2, C9 *DXPSI C7C
- *DXQMU C3A2, C9 *DXQNU C3A2, C9
- DXRED A3D DXSET A3D
- *DY *DY4
- *DYAIRY E1 C5
- EFC K1A1A1, K1A2A, L8A3 *EFCMN
- EI C5 EISDOC D4, Z
- ELMBAK D4C4 ELMHES D4C1B2
- ELTRAN D4C4 *ENORM
- ERF C8A, L5A1E ERFC C8A, L5A1E
- *EXBVP EXINT C5
- EXPREL C4B *EZFFT1
- EZFFTB J1A1 EZFFTF J1A1
- EZFFTI J1A1 FAC C1
- FC K1A1A1, K1A2A, L8A3 *FCMN
- *FDJAC1 *FDJAC3
- FDUMP R3 FFTDOC J1, Z
- FIGI D4C1C FIGI2 D4C1C
- *FULMAT FUNDOC C, Z
- FZERO F1B GAMI C7E
- GAMIC C7E GAMIT C7E
- GAMLIM C7A, R2 *GAMLN C7A
- GAMMA C7A GAMR C7A
- *GAMRN GAUS8 H2A1A1
- GENBUN I2B4B *H12
- HFTI D9 *HKSEQ
- HPPERM N8 HPSORT N6A1C, N6A2C
- HQR D4C2B HQR2 D4C2B
- *HSTART HSTCRT I2B1A1A
- *HSTCS1 HSTCSP I2B1A1A
- HSTCYL I2B1A1A HSTPLR I2B1A1A
- HSTSSP I2B1A1A HTRIB3 D4C4
- HTRIBK D4C4 HTRID3 D4C1B1
- HTRIDI D4C1B1 *HVNRM
- HW3CRT I2B1A1A HWSCRT I2B1A1A
- *HWSCS1 HWSCSP I2B1A1A
- HWSCYL I2B1A1A HWSPLR I2B1A1A
- *HWSSS1 HWSSSP I2B1A1A
- I1MACH R1 *I1MERG
- ICAMAX D1A2 ICOPY D1A5
- IDAMAX D1A2 *IDLOC
- IMTQL1 D4A5, D4C2A IMTQL2 D4A5, D4C2A
- IMTQLV D4A5, D4C2A *INDXA
- *INDXB *INDXC
- INITDS C3A2 INITS C3A2
- INTRV E3, K6 *INTYD
- INVIT D4C2B *INXCA
- *INXCB *INXCC
- *IPLOC IPPERM N8
- IPSORT N6A1A, N6A2A ISAMAX D1A2
- *ISDBCG D2A4, D2B4 *ISDCG D2B4
- *ISDCGN D2A4, D2B4 *ISDCGS D2A4, D2B4
- *ISDGMR D2A4, D2B4 *ISDIR D2A4, D2B4
- *ISDOMN D2A4, D2B4 ISORT N6A2A
- *ISSBCG D2A4, D2B4 *ISSCG D2B4
- *ISSCGN D2A4, D2B4 *ISSCGS D2A4, D2B4
- *ISSGMR D2A4, D2B4 *ISSIR D2A4, D2B4
- *ISSOMN D2A4, D2B4 ISWAP D1A5
- *IVOUT *J4SAVE
- *JAIRY *LA05AD
- *LA05AS *LA05BD
- *LA05BS *LA05CD
- *LA05CS *LA05ED
- *LA05ES LLSIA D9, D5
- *LMPAR *LPDP
- *LSAME R, N3 LSEI K1A2A, D9
- *LSI *LSOD
- *LSSODS *LSSUDS
- *MACON *MC20AD
- *MC20AS *MGSBV
- MINFIT D9 *MINSO4
- *MINSOL *MPADD
- *MPADD2 *MPADD3
- *MPBLAS *MPCDM
- *MPCHK *MPCMD
- *MPDIVI *MPERR
- *MPMAXR *MPMLP
- *MPMUL *MPMUL2
- *MPMULI *MPNZR
- *MPOVFL *MPSTR
- *MPUNFL NUMXER R3C
- *OHTROL *OHTROR
- ORTBAK D4C4 ORTHES D4C1B2
- *ORTHO4 *ORTHOG
- *ORTHOL *ORTHOR
- ORTRAN D4C4 *PASSB
- *PASSB2 *PASSB3
- *PASSB4 *PASSB5
- *PASSF *PASSF2
- *PASSF3 *PASSF4
- *PASSF5 PCHBS E3
- *PCHCE *PCHCI
- PCHCM E3 *PCHCS
- *PCHDF PCHDOC E1A, Z
- PCHFD E3, H1 PCHFE E3
- PCHIA E3, H2A1B2 PCHIC E1A
- PCHID E3, H2A1B2 PCHIM E1A
- *PCHKT E3 *PCHNGS
- PCHSP E1A *PCHST
- *PCHSW PCOEF K1A1A2
- PFQAD H2A2A1, E3, K6 *PGSF
- *PIMACH *PINITM
- *PJAC *PNNZRS
- POCH C1, C7A POCH1 C1, C7A
- POIS3D I2B4B *POISD2
- *POISN2 *POISP2
- POISTG I2B4B POLCOF E1B
- POLFIT K1A1A2 POLINT E1B
- POLYVL E3 *POS3D1
- *POSTG2 *PPADD
- *PPGQ8 *PPGSF
- *PPPSF PPQAD H2A2A1, E3, K6
- *PPSGF *PPSPF
- PPVAL E3, K6 *PROC
- *PROCP *PROD
- *PRODP *PRVEC
- *PRWPGE *PRWVIR
- *PSGF PSI C7C
- PSIFN C7C *PSIXN
- PVALUE K6 *PYTHAG
- QAG H2A1A1 QAGE H2A1A1
- QAGI H2A3A1, H2A4A1 QAGIE H2A3A1, H2A4A1
- QAGP H2A2A1 QAGPE H2A2A1
- QAGS H2A1A1 QAGSE H2A1A1
- QAWC H2A2A1, J4 QAWCE H2A2A1, J4
- QAWF H2A3A1 QAWFE H2A3A1
- QAWO H2A2A1 QAWOE H2A2A1
- QAWS H2A2A1 QAWSE H2A2A1
- QC25C H2A2A2, J4 QC25F H2A2A2
- QC25S H2A2A2 *QCHEB
- *QELG *QFORM
- QK15 H2A1A2 QK15I H2A3A2, H2A4A2
- QK15W H2A2A2 QK21 H2A1A2
- QK31 H2A1A2 QK41 H2A1A2
- QK51 H2A1A2 QK61 H2A1A2
- QMOMO H2A2A1, C3A2 QNC79 H2A1A1
- QNG H2A1A1 QPDOC H2, Z
- *QPSRT *QRFAC
- *QRSOLV *QS2I1D N6A2A
- *QS2I1R N6A2A *QWGTC
- *QWGTF *QWGTS
- QZHES D4C1B3 QZIT D4C1B3
- QZVAL D4C2C QZVEC D4C3
- R1MACH R1 *R1MPYQ
- *R1UPDT *R9AIMP C10D
- *R9ATN1 C4A *R9CHU C11
- *R9GMIC C7E *R9GMIT C7E
- *R9KNUS C10B3 *R9LGIC C7E
- *R9LGIT C7E *R9LGMC C7E
- *R9LN2R C4B R9PAK A6B
- R9UPAK A6B *RADB2
- *RADB3 *RADB4
- *RADB5 *RADBG
- *RADF2 *RADF3
- *RADF4 *RADF5
- *RADFG RAND L6A21
- RATQR D4A5, D4C2A RC C14
- RC3JJ C19 RC3JM C19
- RC6J C19 RD C14
- REBAK D4C4 REBAKB D4C4
- REDUC D4C1C REDUC2 D4C1C
- *REORT RF C14
- *RFFTB J1A1 RFFTB1 J1A1
- *RFFTF J1A1 RFFTF1 J1A1
- *RFFTI J1A1 RFFTI1 J1A1
- RG D4A2 RGAUSS L6A14
- RGG D4B2 RJ C14
- *RKFAB RPQR79 F1A1A
- RPZERO F1A1A RS D4A1
- RSB D4A6 *RSCO
- RSG D4B1 RSGAB D4B1
- RSGBA D4B1 RSP D4A1
- RST D4A5 RT D4A5
- RUNIF L6A21 *RWUPDT
- *S1MERG SASUM D1A3A
- SAXPY D1A7 SBCG D2A4, D2B4
- SBHIN N1 SBOCLS K1A2A, G2E, G2H1, G2H2
- SBOLS K1A2A, G2E, G2H1, G2H2 *SBOLSM
- SCASUM D1A3A SCG D2B4
- SCGN D2A4, D2B4 SCGS D2A4, D2B4
- SCHDC D2B1B SCHDD D7B
- SCHEX D7B *SCHKW R2
- SCHUD D7B *SCLOSM
- SCNRM2 D1A3B *SCOEF
- SCOPY D1A5 SCOPYM D1A5
- SCOV K1B1 SCPPLT N1
- *SDAINI *SDAJAC
- *SDANRM *SDASLV
- SDASSL I1A2 *SDASTP
- *SDATRP *SDAWTS
- *SDCOR *SDCST
- *SDNTL *SDNTP
- SDOT D1A4 *SDPSC
- *SDPST SDRIV1 I1A2, I1A1B
- SDRIV2 I1A2, I1A1B SDRIV3 I1A2, I1A1B
- *SDSCL SDSDOT D1A4
- *SDSTP *SDZRO
- SEPELI I2B1A2 SEPX4 I2B1A2
- SGBCO D2A2 SGBDI D3A2
- SGBFA D2A2 SGBMV D1B4
- SGBSL D2A2 SGECO D2A1
- SGEDI D2A1, D3A1 SGEEV D4A2
- SGEFA D2A1 SGEFS D2A1
- SGEIR D2A1 SGEMM D1B6
- SGEMV D1B4 SGER D1B4
- SGESL D2A1 SGLSS D9, D5
- SGMRES D2A4, D2B4 SGTSL D2A2A
- *SHELS D2A4, D2B4 *SHEQR D2A4, D2B4
- SINDG C4A SINQB J1A3
- SINQF J1A3 SINQI J1A3
- SINT J1A3 SINTI J1A3
- SINTRP I1A1B SIR D2A4, D2B4
- SLLTI2 D2E SLPDOC D2A4, D2B4, Z
- *SLVS *SMOUT
- SNBCO D2A2 SNBDI D3A2
- SNBFA D2A2 SNBFS D2A2
- SNBIR D2A2 SNBSL D2A2
- SNLS1 K1B1A1, K1B1A2 SNLS1E K1B1A1, K1B1A2
- SNRM2 D1A3B SNSQ F2A
- SNSQE F2A *SODS
- SOMN D2A4, D2B4 *SOPENM
- *SORTH D2A4, D2B4 SOS F2A
- *SOSEQS *SOSSOL
- SPBCO D2B2 SPBDI D3B2
- SPBFA D2B2 SPBSL D2B2
- *SPELI4 *SPELIP
- SPENC C5 *SPIGMR D2A4, D2B4
- *SPINCW *SPINIT
- SPLP G2A2 *SPLPCE
- *SPLPDM *SPLPFE
- *SPLPFL *SPLPMN
- *SPLPMU *SPLPUP
- SPOCO D2B1B SPODI D2B1B, D3B1B
- SPOFA D2B1B SPOFS D2B1B
- SPOIR D2B1B *SPOPT
- SPOSL D2B1B SPPCO D2B1B
- SPPDI D2B1B, D3B1B SPPERM N8
- SPPFA D2B1B SPPSL D2B1B
- SPSORT N6A1B, N6A2B SPTSL D2B2A
- SQRDC D5 SQRSL D9, D2A1
- *SREADP *SRLCAL D2A4, D2B4
- SROT D1A8 SROTG D1B10
- SROTM D1A8 SROTMG D1B10
- SS2LT D2E SS2Y D1B9
- SSBMV D1B4 SSCAL D1A6
- SSD2S D2E SSDBCG D2A4, D2B4
- SSDCG D2B4 SSDCGN D2A4, D2B4
- SSDCGS D2A4, D2B4 SSDGMR D2A4, D2B4
- SSDI D1B4 SSDOMN D2A4, D2B4
- SSDS D2E SSDSCL D2E
- SSGS D2A4, D2B4 SSICCG D2B4
- SSICO D2B1A SSICS D2E
- SSIDI D2B1A, D3B1A SSIEV D4A1
- SSIFA D2B1A SSILUR D2A4, D2B4
- SSILUS D2E SSISL D2B1A
- SSJAC D2A4, D2B4 SSLI D2A3
- SSLI2 D2A3 SSLLTI D2E
- SSLUBC D2A4, D2B4 SSLUCN D2A4, D2B4
- SSLUCS D2A4, D2B4 SSLUGM D2A4, D2B4
- SSLUI D2E SSLUI2 D2E
- SSLUI4 D2E SSLUOM D2A4, D2B4
- SSLUTI D2E SSMMI2 D2E
- SSMMTI D2E SSMTV D1B4
- SSMV D1B4 SSORT N6A2B
- SSPCO D2B1A SSPDI D2B1A, D3B1A
- SSPEV D4A1 SSPFA D2B1A
- SSPMV D1B4 SSPR D1B4
- SSPR2 D1B4 SSPSL D2B1A
- SSVDC D6 SSWAP D1A5
- SSYMM D1B6 SSYMV D1B4
- SSYR D1B4 SSYR2 D1B4
- SSYR2K D1B6 SSYRK D1B6
- STBMV D1B4 STBSV D1B4
- STEPS I1A1B STIN N1
- *STOD *STOR1
- STOUT N1 STPMV D1B4
- STPSV D1B4 STRCO D2A3
- STRDI D2A3, D3A3 STRMM D1B6
- STRMV D1B4 STRSL D2A3
- STRSM D1B6 STRSV D1B4
- *STWAY *SUDS
- *SVCO *SVD
- *SVECS *SVOUT
- *SWRITP *SXLCAL D2A4, D2B4
- *TEVLC *TEVLS
- TINVIT D4C3 TQL1 D4A5, D4C2A
- TQL2 D4A5, D4C2A TQLRAT D4A5, D4C2A
- TRBAK1 D4C4 TRBAK3 D4C4
- TRED1 D4C1B1 TRED2 D4C1B1
- TRED3 D4C1B1 *TRI3
- TRIDIB D4A5, D4C2A *TRIDQ
- *TRIS4 *TRISP
- *TRIX TSTURM D4A5, D4C2A
- *U11LS *U11US
- *U12LS *U12US
- ULSIA D9 *USRMAT
- *VNWRMS *WNLIT
- *WNLSM *WNLT1
- *WNLT2 *WNLT3
- WNNLS K1A2A XADD A3D
- XADJ A3D XC210 A3D
- XCON A3D *XERBLA R3
- XERCLR R3C *XERCNT R3C
- XERDMP R3C *XERHLT R3C
- XERMAX R3C XERMSG R3C
- *XERPRN R3C *XERSVE R3
- XGETF R3C XGETUA R3C
- XGETUN R3C XLEGF C3A2, C9
- XNRMP C3A2, C9 *XPMU C3A2, C9
- *XPMUP C3A2, C9 *XPNRM C3A2, C9
- *XPQNU C3A2, C9 *XPSI C7C
- *XQMU C3A2, C9 *XQNU C3A2, C9
- XRED A3D XSET A3D
- XSETF R3A XSETUA R3B
- XSETUN R3B *YAIRY
- *ZABS *ZACAI
- *ZACON ZAIRY C10D
- *ZASYI ZBESH C10A4
- ZBESI C10B4 ZBESJ C10A4
- ZBESK C10B4 ZBESY C10A4
- *ZBINU ZBIRY C10D
- *ZBKNU *ZBUNI
- *ZBUNK *ZDIV
- *ZEXP *ZKSCL
- *ZLOG *ZMLRI
- *ZMLT *ZRATI
- *ZS1S2 *ZSERI
- *ZSHCH *ZSQRT
- *ZUCHK *ZUNHJ
- *ZUNI1 *ZUNI2
- *ZUNIK *ZUNK1
- *ZUNK2 *ZUOIK
- *ZWRSK
|