123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- *DECK TRED3
- SUBROUTINE TRED3 (N, NV, A, D, E, E2)
- C***BEGIN PROLOGUE TRED3
- C***PURPOSE Reduce a real symmetric matrix stored in packed form to
- C symmetric tridiagonal matrix using orthogonal
- C transformations.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C1B1
- C***TYPE SINGLE PRECISION (TRED3-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of the ALGOL procedure TRED3,
- C NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
- C
- C This subroutine reduces a REAL SYMMETRIC matrix, stored as
- C a one-dimensional array, to a symmetric tridiagonal matrix
- C using orthogonal similarity transformations.
- C
- C On Input
- C
- C N is the order of the matrix A. N is an INTEGER variable.
- C
- C NV is an INTEGER variable set equal to the dimension of the
- C array A as specified in the calling program. NV must not
- C be less than N*(N+1)/2.
- C
- C A contains the lower triangle, stored row-wise, of the real
- C symmetric packed matrix. A is a one-dimensional REAL
- C array, dimensioned A(NV).
- C
- C On Output
- C
- C A contains information about the orthogonal transformations
- C used in the reduction in its first N*(N+1)/2 positions.
- C
- C D contains the diagonal elements of the symmetric tridiagonal
- C matrix. D is a one-dimensional REAL array, dimensioned D(N).
- C
- C E contains the subdiagonal elements of the symmetric
- C tridiagonal matrix in its last N-1 positions. E(1) is set
- C to zero. E is a one-dimensional REAL array, dimensioned
- C E(N).
- C
- C E2 contains the squares of the corresponding elements of E.
- C E2 may coincide with E if the squares are not needed.
- C E2 is a one-dimensional REAL array, dimensioned E2(N).
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE TRED3
- C
- INTEGER I,J,K,L,N,II,IZ,JK,NV
- REAL A(*),D(*),E(*),E2(*)
- REAL F,G,H,HH,SCALE
- C
- C .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
- C***FIRST EXECUTABLE STATEMENT TRED3
- DO 300 II = 1, N
- I = N + 1 - II
- L = I - 1
- IZ = (I * L) / 2
- H = 0.0E0
- SCALE = 0.0E0
- IF (L .LT. 1) GO TO 130
- C .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
- DO 120 K = 1, L
- IZ = IZ + 1
- D(K) = A(IZ)
- SCALE = SCALE + ABS(D(K))
- 120 CONTINUE
- C
- IF (SCALE .NE. 0.0E0) GO TO 140
- 130 E(I) = 0.0E0
- E2(I) = 0.0E0
- GO TO 290
- C
- 140 DO 150 K = 1, L
- D(K) = D(K) / SCALE
- H = H + D(K) * D(K)
- 150 CONTINUE
- C
- E2(I) = SCALE * SCALE * H
- F = D(L)
- G = -SIGN(SQRT(H),F)
- E(I) = SCALE * G
- H = H - F * G
- D(L) = F - G
- A(IZ) = SCALE * D(L)
- IF (L .EQ. 1) GO TO 290
- F = 0.0E0
- C
- DO 240 J = 1, L
- G = 0.0E0
- JK = (J * (J-1)) / 2
- C .......... FORM ELEMENT OF A*U ..........
- DO 180 K = 1, L
- JK = JK + 1
- IF (K .GT. J) JK = JK + K - 2
- G = G + A(JK) * D(K)
- 180 CONTINUE
- C .......... FORM ELEMENT OF P ..........
- E(J) = G / H
- F = F + E(J) * D(J)
- 240 CONTINUE
- C
- HH = F / (H + H)
- JK = 0
- C .......... FORM REDUCED A ..........
- DO 260 J = 1, L
- F = D(J)
- G = E(J) - HH * F
- E(J) = G
- C
- DO 260 K = 1, J
- JK = JK + 1
- A(JK) = A(JK) - F * E(K) - G * D(K)
- 260 CONTINUE
- C
- 290 D(I) = A(IZ+1)
- A(IZ+1) = SCALE * SQRT(H)
- 300 CONTINUE
- C
- RETURN
- END
|