123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 |
- *DECK BANDV
- SUBROUTINE BANDV (NM, N, MBW, A, E21, M, W, Z, IERR, NV, RV, RV6)
- C***BEGIN PROLOGUE BANDV
- C***PURPOSE Form the eigenvectors of a real symmetric band matrix
- C associated with a set of ordered approximate eigenvalues
- C by inverse iteration.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C3
- C***TYPE SINGLE PRECISION (BANDV-S)
- C***KEYWORDS EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine finds those eigenvectors of a REAL SYMMETRIC
- C BAND matrix corresponding to specified eigenvalues, using inverse
- C iteration. The subroutine may also be used to solve systems
- C of linear equations with a symmetric or non-symmetric band
- C coefficient matrix.
- C
- C On INPUT
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, A and Z, as declared in the calling
- C program dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrix A. N is an INTEGER variable.
- C N must be less than or equal to NM.
- C
- C MBW is the number of columns of the array A used to store the
- C band matrix. If the matrix is symmetric, MBW is its (half)
- C band width, denoted MB and defined as the number of adjacent
- C diagonals, including the principal diagonal, required to
- C specify the non-zero portion of the lower triangle of the
- C matrix. If the subroutine is being used to solve systems
- C of linear equations and the coefficient matrix is not
- C symmetric, it must however have the same number of adjacent
- C diagonals above the main diagonal as below, and in this
- C case, MBW=2*MB-1. MBW is an INTEGER variable. MB must not
- C be greater than N.
- C
- C A contains the lower triangle of the symmetric band input
- C matrix stored as an N by MB array. Its lowest subdiagonal
- C is stored in the last N+1-MB positions of the first column,
- C its next subdiagonal in the last N+2-MB positions of the
- C second column, further subdiagonals similarly, and finally
- C its principal diagonal in the N positions of column MB.
- C If the subroutine is being used to solve systems of linear
- C equations and the coefficient matrix is not symmetric, A is
- C N by 2*MB-1 instead with lower triangle as above and with
- C its first superdiagonal stored in the first N-1 positions of
- C column MB+1, its second superdiagonal in the first N-2
- C positions of column MB+2, further superdiagonals similarly,
- C and finally its highest superdiagonal in the first N+1-MB
- C positions of the last column. Contents of storage locations
- C not part of the matrix are arbitrary. A is a two-dimensional
- C REAL array, dimensioned A(NM,MBW).
- C
- C E21 specifies the ordering of the eigenvalues and contains
- C 0.0E0 if the eigenvalues are in ascending order, or
- C 2.0E0 if the eigenvalues are in descending order.
- C If the subroutine is being used to solve systems of linear
- C equations, E21 should be set to 1.0E0 if the coefficient
- C matrix is symmetric and to -1.0E0 if not. E21 is a REAL
- C variable.
- C
- C M is the number of specified eigenvalues or the number of
- C systems of linear equations. M is an INTEGER variable.
- C
- C W contains the M eigenvalues in ascending or descending order.
- C If the subroutine is being used to solve systems of linear
- C equations (A-W(J)*I)*X(J)=B(J), where I is the identity
- C matrix, W(J) should be set accordingly, for J=1,2,...,M.
- C W is a one-dimensional REAL array, dimensioned W(M).
- C
- C Z contains the constant matrix columns (B(J),J=1,2,...,M), if
- C the subroutine is used to solve systems of linear equations.
- C Z is a two-dimensional REAL array, dimensioned Z(NM,M).
- C
- C NV must be set to the dimension of the array parameter RV
- C as declared in the calling program dimension statement.
- C NV is an INTEGER variable.
- C
- C On OUTPUT
- C
- C A and W are unaltered.
- C
- C Z contains the associated set of orthogonal eigenvectors.
- C Any vector which fails to converge is set to zero. If the
- C subroutine is used to solve systems of linear equations,
- C Z contains the solution matrix columns (X(J),J=1,2,...,M).
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C -J if the eigenvector corresponding to the J-th
- C eigenvalue fails to converge, or if the J-th
- C system of linear equations is nearly singular.
- C
- C RV and RV6 are temporary storage arrays. If the subroutine
- C is being used to solve systems of linear equations, the
- C determinant (up to sign) of A-W(M)*I is available, upon
- C return, as the product of the first N elements of RV.
- C RV and RV6 are one-dimensional REAL arrays. Note that RV
- C is dimensioned RV(NV), where NV must be at least N*(2*MB-1).
- C RV6 is dimensioned RV6(N).
- C
- C Questions and comments should be directed to B. S. Garbow,
- C Applied Mathematics Division, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE BANDV
- C
- INTEGER I,J,K,M,N,R,II,IJ,JJ,KJ,MB,M1,NM,NV,IJ1,ITS,KJ1,MBW,M21
- INTEGER IERR,MAXJ,MAXK,GROUP
- REAL A(NM,*),W(*),Z(NM,*),RV(*),RV6(*)
- REAL U,V,UK,XU,X0,X1,E21,EPS2,EPS3,EPS4,NORM,ORDER,S
- C
- C***FIRST EXECUTABLE STATEMENT BANDV
- IERR = 0
- IF (M .EQ. 0) GO TO 1001
- MB = MBW
- IF (E21 .LT. 0.0E0) MB = (MBW + 1) / 2
- M1 = MB - 1
- M21 = M1 + MB
- ORDER = 1.0E0 - ABS(E21)
- C .......... FIND VECTORS BY INVERSE ITERATION ..........
- DO 920 R = 1, M
- ITS = 1
- X1 = W(R)
- IF (R .NE. 1) GO TO 100
- C .......... COMPUTE NORM OF MATRIX ..........
- NORM = 0.0E0
- C
- DO 60 J = 1, MB
- JJ = MB + 1 - J
- KJ = JJ + M1
- IJ = 1
- S = 0.0E0
- C
- DO 40 I = JJ, N
- S = S + ABS(A(I,J))
- IF (E21 .GE. 0.0E0) GO TO 40
- S = S + ABS(A(IJ,KJ))
- IJ = IJ + 1
- 40 CONTINUE
- C
- NORM = MAX(NORM,S)
- 60 CONTINUE
- C
- IF (E21 .LT. 0.0E0) NORM = 0.5E0 * NORM
- C .......... EPS2 IS THE CRITERION FOR GROUPING,
- C EPS3 REPLACES ZERO PIVOTS AND EQUAL
- C ROOTS ARE MODIFIED BY EPS3,
- C EPS4 IS TAKEN VERY SMALL TO AVOID OVERFLOW ..........
- IF (NORM .EQ. 0.0E0) NORM = 1.0E0
- EPS2 = 1.0E-3 * NORM * ABS(ORDER)
- EPS3 = NORM
- 70 EPS3 = 0.5E0*EPS3
- IF (NORM + EPS3 .GT. NORM) GO TO 70
- UK = SQRT(REAL(N))
- EPS3 = UK * EPS3
- EPS4 = UK * EPS3
- 80 GROUP = 0
- GO TO 120
- C .......... LOOK FOR CLOSE OR COINCIDENT ROOTS ..........
- 100 IF (ABS(X1-X0) .GE. EPS2) GO TO 80
- GROUP = GROUP + 1
- IF (ORDER * (X1 - X0) .LE. 0.0E0) X1 = X0 + ORDER * EPS3
- C .......... EXPAND MATRIX, SUBTRACT EIGENVALUE,
- C AND INITIALIZE VECTOR ..........
- 120 DO 200 I = 1, N
- IJ = I + MIN(0,I-M1) * N
- KJ = IJ + MB * N
- IJ1 = KJ + M1 * N
- IF (M1 .EQ. 0) GO TO 180
- C
- DO 150 J = 1, M1
- IF (IJ .GT. M1) GO TO 125
- IF (IJ .GT. 0) GO TO 130
- RV(IJ1) = 0.0E0
- IJ1 = IJ1 + N
- GO TO 130
- 125 RV(IJ) = A(I,J)
- 130 IJ = IJ + N
- II = I + J
- IF (II .GT. N) GO TO 150
- JJ = MB - J
- IF (E21 .GE. 0.0E0) GO TO 140
- II = I
- JJ = MB + J
- 140 RV(KJ) = A(II,JJ)
- KJ = KJ + N
- 150 CONTINUE
- C
- 180 RV(IJ) = A(I,MB) - X1
- RV6(I) = EPS4
- IF (ORDER .EQ. 0.0E0) RV6(I) = Z(I,R)
- 200 CONTINUE
- C
- IF (M1 .EQ. 0) GO TO 600
- C .......... ELIMINATION WITH INTERCHANGES ..........
- DO 580 I = 1, N
- II = I + 1
- MAXK = MIN(I+M1-1,N)
- MAXJ = MIN(N-I,M21-2) * N
- C
- DO 360 K = I, MAXK
- KJ1 = K
- J = KJ1 + N
- JJ = J + MAXJ
- C
- DO 340 KJ = J, JJ, N
- RV(KJ1) = RV(KJ)
- KJ1 = KJ
- 340 CONTINUE
- C
- RV(KJ1) = 0.0E0
- 360 CONTINUE
- C
- IF (I .EQ. N) GO TO 580
- U = 0.0E0
- MAXK = MIN(I+M1,N)
- MAXJ = MIN(N-II,M21-2) * N
- C
- DO 450 J = I, MAXK
- IF (ABS(RV(J)) .LT. ABS(U)) GO TO 450
- U = RV(J)
- K = J
- 450 CONTINUE
- C
- J = I + N
- JJ = J + MAXJ
- IF (K .EQ. I) GO TO 520
- KJ = K
- C
- DO 500 IJ = I, JJ, N
- V = RV(IJ)
- RV(IJ) = RV(KJ)
- RV(KJ) = V
- KJ = KJ + N
- 500 CONTINUE
- C
- IF (ORDER .NE. 0.0E0) GO TO 520
- V = RV6(I)
- RV6(I) = RV6(K)
- RV6(K) = V
- 520 IF (U .EQ. 0.0E0) GO TO 580
- C
- DO 560 K = II, MAXK
- V = RV(K) / U
- KJ = K
- C
- DO 540 IJ = J, JJ, N
- KJ = KJ + N
- RV(KJ) = RV(KJ) - V * RV(IJ)
- 540 CONTINUE
- C
- IF (ORDER .EQ. 0.0E0) RV6(K) = RV6(K) - V * RV6(I)
- 560 CONTINUE
- C
- 580 CONTINUE
- C .......... BACK SUBSTITUTION
- C FOR I=N STEP -1 UNTIL 1 DO -- ..........
- 600 DO 630 II = 1, N
- I = N + 1 - II
- MAXJ = MIN(II,M21)
- IF (MAXJ .EQ. 1) GO TO 620
- IJ1 = I
- J = IJ1 + N
- JJ = J + (MAXJ - 2) * N
- C
- DO 610 IJ = J, JJ, N
- IJ1 = IJ1 + 1
- RV6(I) = RV6(I) - RV(IJ) * RV6(IJ1)
- 610 CONTINUE
- C
- 620 V = RV(I)
- IF (ABS(V) .GE. EPS3) GO TO 625
- C .......... SET ERROR -- NEARLY SINGULAR LINEAR SYSTEM ..........
- IF (ORDER .EQ. 0.0E0) IERR = -R
- V = SIGN(EPS3,V)
- 625 RV6(I) = RV6(I) / V
- 630 CONTINUE
- C
- XU = 1.0E0
- IF (ORDER .EQ. 0.0E0) GO TO 870
- C .......... ORTHOGONALIZE WITH RESPECT TO PREVIOUS
- C MEMBERS OF GROUP ..........
- IF (GROUP .EQ. 0) GO TO 700
- C
- DO 680 JJ = 1, GROUP
- J = R - GROUP - 1 + JJ
- XU = 0.0E0
- C
- DO 640 I = 1, N
- 640 XU = XU + RV6(I) * Z(I,J)
- C
- DO 660 I = 1, N
- 660 RV6(I) = RV6(I) - XU * Z(I,J)
- C
- 680 CONTINUE
- C
- 700 NORM = 0.0E0
- C
- DO 720 I = 1, N
- 720 NORM = NORM + ABS(RV6(I))
- C
- IF (NORM .GE. 0.1E0) GO TO 840
- C .......... IN-LINE PROCEDURE FOR CHOOSING
- C A NEW STARTING VECTOR ..........
- IF (ITS .GE. N) GO TO 830
- ITS = ITS + 1
- XU = EPS4 / (UK + 1.0E0)
- RV6(1) = EPS4
- C
- DO 760 I = 2, N
- 760 RV6(I) = XU
- C
- RV6(ITS) = RV6(ITS) - EPS4 * UK
- GO TO 600
- C .......... SET ERROR -- NON-CONVERGED EIGENVECTOR ..........
- 830 IERR = -R
- XU = 0.0E0
- GO TO 870
- C .......... NORMALIZE SO THAT SUM OF SQUARES IS
- C 1 AND EXPAND TO FULL ORDER ..........
- 840 U = 0.0E0
- C
- DO 860 I = 1, N
- 860 U = U + RV6(I)**2
- C
- XU = 1.0E0 / SQRT(U)
- C
- 870 DO 900 I = 1, N
- 900 Z(I,R) = RV6(I) * XU
- C
- X0 = X1
- 920 CONTINUE
- C
- 1001 RETURN
- END
|