123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- *DECK BISECT
- SUBROUTINE BISECT (N, EPS1, D, E, E2, LB, UB, MM, M, W, IND, IERR,
- + RV4, RV5)
- C***BEGIN PROLOGUE BISECT
- C***PURPOSE Compute the eigenvalues of a symmetric tridiagonal matrix
- C in a given interval using Sturm sequencing.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4A5, D4C2A
- C***TYPE SINGLE PRECISION (BISECT-S)
- C***KEYWORDS EIGENVALUES, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of the bisection technique
- C in the ALGOL procedure TRISTURM by Peters and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971).
- C
- C This subroutine finds those eigenvalues of a TRIDIAGONAL
- C SYMMETRIC matrix which lie in a specified interval,
- C using bisection.
- C
- C On INPUT
- C
- C N is the order of the matrix. N is an INTEGER variable.
- C
- C EPS1 is an absolute error tolerance for the computed
- C eigenvalues. If the input EPS1 is non-positive,
- C it is reset for each submatrix to a default value,
- C namely, minus the product of the relative machine
- C precision and the 1-norm of the submatrix.
- C EPS1 is a REAL variable.
- C
- C D contains the diagonal elements of the input matrix.
- C D is a one-dimensional REAL array, dimensioned D(N).
- C
- C E contains the subdiagonal elements of the input matrix
- C in its last N-1 positions. E(1) is arbitrary.
- C E is a one-dimensional REAL array, dimensioned E(N).
- C
- C E2 contains the squares of the corresponding elements of E.
- C E2(1) is arbitrary. E2 is a one-dimensional REAL array,
- C dimensioned E2(N).
- C
- C LB and UB define the interval to be searched for eigenvalues.
- C If LB is not less than UB, no eigenvalues will be found.
- C LB and UB are REAL variables.
- C
- C MM should be set to an upper bound for the number of
- C eigenvalues in the interval. WARNING - If more than
- C MM eigenvalues are determined to lie in the interval,
- C an error return is made with no eigenvalues found.
- C MM is an INTEGER variable.
- C
- C On OUTPUT
- C
- C EPS1 is unaltered unless it has been reset to its
- C (last) default value.
- C
- C D and E are unaltered.
- C
- C Elements of E2, corresponding to elements of E regarded
- C as negligible, have been replaced by zero causing the
- C matrix to split into a direct sum of submatrices.
- C E2(1) is also set to zero.
- C
- C M is the number of eigenvalues determined to lie in (LB,UB).
- C M is an INTEGER variable.
- C
- C W contains the M eigenvalues in ascending order.
- C W is a one-dimensional REAL array, dimensioned W(MM).
- C
- C IND contains in its first M positions the submatrix indices
- C associated with the corresponding eigenvalues in W --
- C 1 for eigenvalues belonging to the first submatrix from
- C the top, 2 for those belonging to the second submatrix, etc.
- C IND is an one-dimensional INTEGER array, dimensioned IND(MM).
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C 3*N+1 if M exceeds MM. In this case, M contains the
- C number of eigenvalues determined to lie in
- C (LB,UB).
- C
- C RV4 and RV5 are one-dimensional REAL arrays used for temporary
- C storage, dimensioned RV4(N) and RV5(N).
- C
- C The ALGOL procedure STURMCNT contained in TRISTURM
- C appears in BISECT in-line.
- C
- C Note that subroutine TQL1 or IMTQL1 is generally faster than
- C BISECT, if more than N/4 eigenvalues are to be found.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C Applied Mathematics Division, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE BISECT
- C
- INTEGER I,J,K,L,M,N,P,Q,R,S,II,MM,M1,M2,TAG,IERR,ISTURM
- REAL D(*),E(*),E2(*),W(*),RV4(*),RV5(*)
- REAL U,V,LB,T1,T2,UB,XU,X0,X1,EPS1,MACHEP,S1,S2
- INTEGER IND(*)
- LOGICAL FIRST
- C
- SAVE FIRST, MACHEP
- DATA FIRST /.TRUE./
- C***FIRST EXECUTABLE STATEMENT BISECT
- IF (FIRST) THEN
- MACHEP = R1MACH(4)
- ENDIF
- FIRST = .FALSE.
- C
- IERR = 0
- TAG = 0
- T1 = LB
- T2 = UB
- C .......... LOOK FOR SMALL SUB-DIAGONAL ENTRIES ..........
- DO 40 I = 1, N
- IF (I .EQ. 1) GO TO 20
- S1 = ABS(D(I)) + ABS(D(I-1))
- S2 = S1 + ABS(E(I))
- IF (S2 .GT. S1) GO TO 40
- 20 E2(I) = 0.0E0
- 40 CONTINUE
- C .......... DETERMINE THE NUMBER OF EIGENVALUES
- C IN THE INTERVAL ..........
- P = 1
- Q = N
- X1 = UB
- ISTURM = 1
- GO TO 320
- 60 M = S
- X1 = LB
- ISTURM = 2
- GO TO 320
- 80 M = M - S
- IF (M .GT. MM) GO TO 980
- Q = 0
- R = 0
- C .......... ESTABLISH AND PROCESS NEXT SUBMATRIX, REFINING
- C INTERVAL BY THE GERSCHGORIN BOUNDS ..........
- 100 IF (R .EQ. M) GO TO 1001
- TAG = TAG + 1
- P = Q + 1
- XU = D(P)
- X0 = D(P)
- U = 0.0E0
- C
- DO 120 Q = P, N
- X1 = U
- U = 0.0E0
- V = 0.0E0
- IF (Q .EQ. N) GO TO 110
- U = ABS(E(Q+1))
- V = E2(Q+1)
- 110 XU = MIN(D(Q)-(X1+U),XU)
- X0 = MAX(D(Q)+(X1+U),X0)
- IF (V .EQ. 0.0E0) GO TO 140
- 120 CONTINUE
- C
- 140 X1 = MAX(ABS(XU),ABS(X0)) * MACHEP
- IF (EPS1 .LE. 0.0E0) EPS1 = -X1
- IF (P .NE. Q) GO TO 180
- C .......... CHECK FOR ISOLATED ROOT WITHIN INTERVAL ..........
- IF (T1 .GT. D(P) .OR. D(P) .GE. T2) GO TO 940
- M1 = P
- M2 = P
- RV5(P) = D(P)
- GO TO 900
- 180 X1 = X1 * (Q-P+1)
- LB = MAX(T1,XU-X1)
- UB = MIN(T2,X0+X1)
- X1 = LB
- ISTURM = 3
- GO TO 320
- 200 M1 = S + 1
- X1 = UB
- ISTURM = 4
- GO TO 320
- 220 M2 = S
- IF (M1 .GT. M2) GO TO 940
- C .......... FIND ROOTS BY BISECTION ..........
- X0 = UB
- ISTURM = 5
- C
- DO 240 I = M1, M2
- RV5(I) = UB
- RV4(I) = LB
- 240 CONTINUE
- C .......... LOOP FOR K-TH EIGENVALUE
- C FOR K=M2 STEP -1 UNTIL M1 DO --
- C (-DO- NOT USED TO LEGALIZE -COMPUTED GO TO-) ..........
- K = M2
- 250 XU = LB
- C .......... FOR I=K STEP -1 UNTIL M1 DO -- ..........
- DO 260 II = M1, K
- I = M1 + K - II
- IF (XU .GE. RV4(I)) GO TO 260
- XU = RV4(I)
- GO TO 280
- 260 CONTINUE
- C
- 280 IF (X0 .GT. RV5(K)) X0 = RV5(K)
- C .......... NEXT BISECTION STEP ..........
- 300 X1 = (XU + X0) * 0.5E0
- S1 = 2.0E0*(ABS(XU) + ABS(X0) + ABS(EPS1))
- S2 = S1 + ABS(X0 - XU)
- IF (S2 .EQ. S1) GO TO 420
- C .......... IN-LINE PROCEDURE FOR STURM SEQUENCE ..........
- 320 S = P - 1
- U = 1.0E0
- C
- DO 340 I = P, Q
- IF (U .NE. 0.0E0) GO TO 325
- V = ABS(E(I)) / MACHEP
- IF (E2(I) .EQ. 0.0E0) V = 0.0E0
- GO TO 330
- 325 V = E2(I) / U
- 330 U = D(I) - X1 - V
- IF (U .LT. 0.0E0) S = S + 1
- 340 CONTINUE
- C
- GO TO (60,80,200,220,360), ISTURM
- C .......... REFINE INTERVALS ..........
- 360 IF (S .GE. K) GO TO 400
- XU = X1
- IF (S .GE. M1) GO TO 380
- RV4(M1) = X1
- GO TO 300
- 380 RV4(S+1) = X1
- IF (RV5(S) .GT. X1) RV5(S) = X1
- GO TO 300
- 400 X0 = X1
- GO TO 300
- C .......... K-TH EIGENVALUE FOUND ..........
- 420 RV5(K) = X1
- K = K - 1
- IF (K .GE. M1) GO TO 250
- C .......... ORDER EIGENVALUES TAGGED WITH THEIR
- C SUBMATRIX ASSOCIATIONS ..........
- 900 S = R
- R = R + M2 - M1 + 1
- J = 1
- K = M1
- C
- DO 920 L = 1, R
- IF (J .GT. S) GO TO 910
- IF (K .GT. M2) GO TO 940
- IF (RV5(K) .GE. W(L)) GO TO 915
- C
- DO 905 II = J, S
- I = L + S - II
- W(I+1) = W(I)
- IND(I+1) = IND(I)
- 905 CONTINUE
- C
- 910 W(L) = RV5(K)
- IND(L) = TAG
- K = K + 1
- GO TO 920
- 915 J = J + 1
- 920 CONTINUE
- C
- 940 IF (Q .LT. N) GO TO 100
- GO TO 1001
- C .......... SET ERROR -- UNDERESTIMATE OF NUMBER OF
- C EIGENVALUES IN INTERVAL ..........
- 980 IERR = 3 * N + 1
- 1001 LB = T1
- UB = T2
- RETURN
- END
|