123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- *DECK BSGQ8
- SUBROUTINE BSGQ8 (FUN, XT, BC, N, KK, ID, A, B, INBV, ERR, ANS,
- + IERR, WORK)
- C***BEGIN PROLOGUE BSGQ8
- C***SUBSIDIARY
- C***PURPOSE Subsidiary to BFQAD
- C***LIBRARY SLATEC
- C***TYPE SINGLE PRECISION (BSGQ8-S, DBSGQ8-D)
- C***AUTHOR Jones, R. E., (SNLA)
- C***DESCRIPTION
- C
- C Abstract
- C BSGQ8, a modification of GAUS8, integrates the
- C product of FUN(X) by the ID-th derivative of a spline
- C BVALU(XT,BC,N,KK,ID,X,INBV,WORK) between limits A and B.
- C
- C Description of Arguments
- C
- C INPUT--
- C FUN - Name of external function of one argument which
- C multiplies BVALU.
- C XT - Knot array for BVALU
- C BC - B-coefficient array for BVALU
- C N - Number of B-coefficients for BVALU
- C KK - Order of the spline, KK.GE.1
- C ID - Order of the spline derivative, 0.LE.ID.LE.KK-1
- C A - Lower limit of integral
- C B - Upper limit of integral (may be less than A)
- C INBV- Initialization parameter for BVALU
- C ERR - Is a requested pseudorelative error tolerance. Normally
- C pick a value of ABS(ERR).LT.1E-3. ANS will normally
- C have no more error than ABS(ERR) times the integral of
- C the absolute value of FUN(X)*BVALU(XT,BC,N,KK,X,ID,
- C INBV,WORK).
- C
- C
- C OUTPUT--
- C ERR - Will be an estimate of the absolute error in ANS if the
- C input value of ERR was negative. (ERR is unchanged if
- C the input value of ERR was nonnegative.) The estimated
- C error is solely for information to the user and should
- C not be used as a correction to the computed integral.
- C ANS - Computed value of integral
- C IERR- A status code
- C --Normal Codes
- C 1 ANS most likely meets requested error tolerance,
- C or A=B.
- C -1 A and B are too nearly equal to allow normal
- C integration. ANS is set to zero.
- C --Abnormal Code
- C 2 ANS probably does not meet requested error tolerance.
- C WORK- Work vector of length 3*K for BVALU
- C
- C***SEE ALSO BFQAD
- C***ROUTINES CALLED BVALU, I1MACH, R1MACH, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 800901 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 900328 Added TYPE section. (WRB)
- C 910408 Updated the AUTHOR section. (WRB)
- C***END PROLOGUE BSGQ8
- C
- INTEGER ID, IERR, INBV, K, KK, KML, KMX, L, LMN, LMX, LR, MXL,
- 1 N, NBITS, NIB, NLMN, NLMX
- INTEGER I1MACH
- REAL A, AA, AE, ANIB, ANS, AREA, B, BC, C, CE, EE, EF, EPS, ERR,
- 1 EST,GL,GLR,GR,HH,SQ2,TOL,VL,VR,WORK,W1, W2, W3, W4, XT, X1,
- 2 X2, X3, X4, X, H
- REAL R1MACH, BVALU, G8, FUN
- DIMENSION XT(*), BC(*)
- DIMENSION AA(30), HH(30), LR(30), VL(30), GR(30)
- SAVE X1, X2, X3, X4, W1, W2, W3, W4, SQ2, NLMN, KMX, KML
- DATA X1, X2, X3, X4/
- 1 1.83434642495649805E-01, 5.25532409916328986E-01,
- 2 7.96666477413626740E-01, 9.60289856497536232E-01/
- DATA W1, W2, W3, W4/
- 1 3.62683783378361983E-01, 3.13706645877887287E-01,
- 2 2.22381034453374471E-01, 1.01228536290376259E-01/
- DATA SQ2/1.41421356E0/
- DATA NLMN/1/,KMX/5000/,KML/6/
- G8(X,H)=H*((W1*(FUN(X-X1*H)*BVALU(XT,BC,N,KK,ID,X-X1*H,INBV,WORK)+
- 1 FUN(X+X1*H)*BVALU(XT,BC,N,KK,ID,X+X1*H,INBV,WORK))
- 2 +W2*(FUN(X-X2*H)*BVALU(XT,BC,N,KK,ID,X-X2*H,INBV,WORK)+
- 3 FUN(X+X2*H)*BVALU(XT,BC,N,KK,ID,X+X2*H,INBV,WORK)))
- 4 +(W3*(FUN(X-X3*H)*BVALU(XT,BC,N,KK,ID,X-X3*H,INBV,WORK)+
- 5 FUN(X+X3*H)*BVALU(XT,BC,N,KK,ID,X+X3*H,INBV,WORK))
- 6 +W4*(FUN(X-X4*H)*BVALU(XT,BC,N,KK,ID,X-X4*H,INBV,WORK)+
- 7 FUN(X+X4*H)*BVALU(XT,BC,N,KK,ID,X+X4*H,INBV,WORK))))
- C
- C INITIALIZE
- C
- C***FIRST EXECUTABLE STATEMENT BSGQ8
- K = I1MACH(11)
- ANIB = R1MACH(5)*K/0.30102000E0
- NBITS = INT(ANIB)
- NLMX = (NBITS*5)/8
- ANS = 0.0E0
- IERR = 1
- CE = 0.0E0
- IF (A.EQ.B) GO TO 140
- LMX = NLMX
- LMN = NLMN
- IF (B.EQ.0.0E0) GO TO 10
- IF (SIGN(1.0E0,B)*A.LE.0.0E0) GO TO 10
- C = ABS(1.0E0-A/B)
- IF (C.GT.0.1E0) GO TO 10
- IF (C.LE.0.0E0) GO TO 140
- ANIB = 0.5E0 - LOG(C)/0.69314718E0
- NIB = INT(ANIB)
- LMX = MIN(NLMX,NBITS-NIB-7)
- IF (LMX.LT.1) GO TO 130
- LMN = MIN(LMN,LMX)
- 10 TOL = MAX(ABS(ERR),2.0E0**(5-NBITS))/2.0E0
- IF (ERR.EQ.0.0E0) TOL = SQRT(R1MACH(4))
- EPS = TOL
- HH(1) = (B-A)/4.0E0
- AA(1) = A
- LR(1) = 1
- L = 1
- EST = G8(AA(L)+2.0E0*HH(L),2.0E0*HH(L))
- K = 8
- AREA = ABS(EST)
- EF = 0.5E0
- MXL = 0
- C
- C COMPUTE REFINED ESTIMATES, ESTIMATE THE ERROR, ETC.
- C
- 20 GL = G8(AA(L)+HH(L),HH(L))
- GR(L) = G8(AA(L)+3.0E0*HH(L),HH(L))
- K = K + 16
- AREA = AREA + (ABS(GL)+ABS(GR(L))-ABS(EST))
- GLR = GL + GR(L)
- EE = ABS(EST-GLR)*EF
- AE = MAX(EPS*AREA,TOL*ABS(GLR))
- IF (EE-AE) 40, 40, 50
- 30 MXL = 1
- 40 CE = CE + (EST-GLR)
- IF (LR(L)) 60, 60, 80
- C
- C CONSIDER THE LEFT HALF OF THIS LEVEL
- C
- 50 IF (K.GT.KMX) LMX = KML
- IF (L.GE.LMX) GO TO 30
- L = L + 1
- EPS = EPS*0.5E0
- EF = EF/SQ2
- HH(L) = HH(L-1)*0.5E0
- LR(L) = -1
- AA(L) = AA(L-1)
- EST = GL
- GO TO 20
- C
- C PROCEED TO RIGHT HALF AT THIS LEVEL
- C
- 60 VL(L) = GLR
- 70 EST = GR(L-1)
- LR(L) = 1
- AA(L) = AA(L) + 4.0E0*HH(L)
- GO TO 20
- C
- C RETURN ONE LEVEL
- C
- 80 VR = GLR
- 90 IF (L.LE.1) GO TO 120
- L = L - 1
- EPS = EPS*2.0E0
- EF = EF*SQ2
- IF (LR(L)) 100, 100, 110
- 100 VL(L) = VL(L+1) + VR
- GO TO 70
- 110 VR = VL(L+1) + VR
- GO TO 90
- C
- C EXIT
- C
- 120 ANS = VR
- IF ((MXL.EQ.0) .OR. (ABS(CE).LE.2.0E0*TOL*AREA)) GO TO 140
- IERR = 2
- CALL XERMSG ('SLATEC', 'BSGQ8',
- + 'ANS IS PROBABLY INSUFFICIENTLY ACCURATE.', 3, 1)
- GO TO 140
- 130 IERR = -1
- CALL XERMSG ('SLATEC', 'BSGQ8',
- + 'A AND B ARE TOO NEARLY EQUAL TO ALLOW NORMAL INTEGRATION. ' //
- + ' ANS IS SET TO ZERO AND IERR TO -1.', 1, -1)
- 140 CONTINUE
- IF (ERR.LT.0.0E0) ERR = CE
- RETURN
- END
|